Integrating Global Open Geo-Information for Major Disaster Assessment: A Case Study of the Myanmar Flood
Abstract
:1. Introduction
2. Global Open Geo-Information and Integrated Framework
2.1. Available Global Open Dataset
2.2. Integrated Framework
2.2.1. Data and Information Integration
2.2.2. Methodology Integration
2.2.3. Product and Service Integration
3. Study Area, Data and Workflow
3.1. Study Area
3.2. Data
3.3. Workflow
4. Results
4.1. Flooded Extent
4.2. Impact Estimation
4.3. Validation and Application
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Subra, S. Global Challenges Need Global Solutions. Nature 2012, 490, 337–338. [Google Scholar]
- Guha-Sapir, D.; Hoyois, P.; Below, R. Annual Disaster Statistical Review 2015: The Numbers and Trends; CRED: Brussels, Belgium, 2016. [Google Scholar]
- Hiroyuki, M.; Masahiko, N.; Ryosuke, S. Reviews of Geospatial Information Technology and Collaborative Data Delivery for Disaster Risk Management. ISPRS Int. J. Geo-Inf. 2015, 4, 1936–1964. [Google Scholar]
- Wald, D.J.; Jaiswal, K.; Marano, K.D.; Bausch, D.; Hearne, M. PAGER-Rapid Assessment of an Earthquake’s Impact: U.S. Geological Survey Fact Sheet 2010–3036. Available online: https://pubs.usgs.gov/fs/2010/3036/pdf/FS10-3036.pdf (accessed on 3 May 2017).
- Andrea, A.; Piero, B.; Franca, D.; Fabio, G.T. Rapid Mapping: Geomatics role and research opportunities. Rendiconti Lincei 2015, 26, 63–73. [Google Scholar] [CrossRef]
- Global Disaster Alert and Coordination System. Available online: http://www.gdacs.org (accessed on 3 May 2017).
- Fan, Y.; Yang, S.; Wang, W.; Wang, L.; Nie, J.; Zhang, B. Study on Urgent Monitoring and Assessment in Wenchuan Earthquake. J. Remote Sens. 2008, 12, 858–864. [Google Scholar]
- Martin, H.; Linda, S.; Nandin, E.T.; Steffen, F. Towards an Integrated Global Land Cover Monitoring and Mapping System. Remote Sens. 2016, 8, 1036. [Google Scholar] [CrossRef]
- Chen, J.; Li, S.N.; Wu, H.; Chen, X.J. Towards a collaborative global land cover information service. Int. J. Digital Earth 2017, 10, 356–370. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M. Global land cover mapping at 30m resolution: A pok-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef]
- Hannes, T.; Joachim, F.; Stefan, D. Regions Set in Stone—Delimiting and Categorizing Regions in Europe by Settlement Patterns Derived from EO-Data. ISPRS Int. J. Geo-Inf. 2017, 6, 55. [Google Scholar] [CrossRef]
- Open Government Partnership. Available online: https://www.opengovpartnership.org (accessed on 3 May 2017).
- Open Data Charter. Available online: http://opendatacharter.net/ (accessed on 3 May 2017).
- International Charter Space & Major Diasater. Available online: http://www.disasterscharter.org (accessed on 3 May 2017).
- Group on Earth Observations. Available online: http://www.earthobservations.org (accessed on 3 May 2017).
- The Sendai Framework for Disaster Risk Reduction: 2015–2030. Available online: http://www.unisdr.org/files/43291_sendaiframeworkfordrren.pdf (accessed on 3 May 2017).
- Earthquake Hazards Program of USGS. Available online: http://earthquake.usgs.gov/data/shakemap/ (accessed on 3 May 2017).
- Wu, H.; Adler, R.F.; Tian, Y.; Huffman, G.J.; Li, H.; Wang, J. Real-time global flood estimation using satellite-based precipitation and a coupled land surface and routing model. Water Resour. Res. 2014, 50, 2693–2717. [Google Scholar] [CrossRef]
- Global Flood Monitoring System (GFMS). Available online: http://flood.umd.edu/ (accessed on 3 May 2017).
- NOAA Satellites and infomation. Available online: http://rammb.cira.colostate.edu/products/tc_realtime/index.asp (accessed on 3 May 2017).
- Natural Hazards Data, Image and Education. Available online: https://ngdc.noaa.gov/hazard/hazards.shtml (accessed on 3 May 2017).
- Understanding Risk in an Evolving World: Emerging Best Practices in Natural Disaster Risk Assessment. Available online: https://www.gfdrr.org/sites/gfdrr/files/publication/Understanding_Risk-Web_Version-rev_1.8.0.pdf (accessed on 3 May 2017).
- Center for International Earth Science Information Network—CIESIN—Columbia University. Documentation for the Gridded Population of the World, Version 4 (GPWv4); NASA Socioeconomic Data and Applications Center: Palisades, NY, USA, 2016. [Google Scholar]
- Andreas, F.; Thomas, E.; Wieke, H.; Mattia, M.; Julian, Z.; Achim, R.; Martin, K.; Michael, W.; Hannes, T. The global urban footprint—Processing status and cross comparison to existing human settlement products. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 4816–4819. [Google Scholar]
- Chen, J.; Ban, Y.F.; Li, S.N. China: Open Access to Earth Land-cover Map. Nature 2014, 514, 434. [Google Scholar]
- The International Disaster Database. Available online: http://www.emdat.be/ (accessed on 3 May 2017).
- Reliefweb. Available online: http://reliefweb.int/ (accessed on 3 May 2017).
- IWG-SEM (2014) Emergency Mapping Guidelines. Available online: http://www.unspider.org/sites/default/files/IWG_SEM_EmergencyMappingGuidelines_A4_v1_March2014.pdf (accessed on 3 May 2017).
- Stefan, V.; Fabio, G.T.; Josh, L.; Jan, K.; Brenda, J.; Tobias, S.; Gabriel, P.; Kazuya, K.; Manzul, K.H.; Lorant, C.; et al. Global trends in satellite-based emergency mapping. Science 2016, 353, 247–252. [Google Scholar] [CrossRef]
- Wang, M.; Li, Q.; Hu, Q.; Zhou, M. Quality analysis of open street map data. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Proceedings of the 8th International Symposium on Spatial Data Quality, Hong Kong, China, 30 May–1 June 2013; ISPRS: Hanover, Germany, 2013; pp. 155–158. [Google Scholar]
- Pascal, N.; Peter, S.; Alexander, Z. Collaborative mapping and Emergency Routing for Disaster Logistics—Case studies from the Haiti earthquake and the UN portal for Afrika. Available online: http://wiki.openstreetmap.org/wiki/Research (accessed on 3 May 2017).
- Imi, Y.; Hayakawa, T.; Ito, T. Analyzing the effect of open street map during crises: The great east Japan earthquake. In Proceedings of the 14th International Conference on Commerce and Enterprise Computing, Hangzhou, China, 9–11 September 2012; pp. 126–130. [Google Scholar]
- Abu, B.S.; Fusanori, M. Integration of Spatial Analysis for Tsunami Inundation and Impact Assessment. J. Geog. Inf. Syst. 2014, 6, 11–22. [Google Scholar]
- Teimour, M.; Delavar, M.R.; Koyaie, S.; Chavoshi, S.H.; Moghaddm, H.K. A SDSS-Based Earthquake Damage Assessment for Emergency Response: Case Study in BAM. Available online: http://www.isprs.org/proceedings/XXXVII/congress/8_pdf/2_WG-VIII-2/55.pdf (accessed on 3 May 2017).
- Azar, D.; Engstrom, R.; Graesser, J.; Comenetz, J. Generation of fine scale population layers using multi-resolution satellite imagery and geospatial data. Remote Sens. Environ. 2013, 219–232. [Google Scholar] [CrossRef]
- Debarati, G.S.; Philippe, H. Estimating populations affected by disasters: A review of methodological issues and research gaps. Global Sustainable Report 2015. Available online: http://cred.be/pubulication (accessed on 3 May 2017).
- Carina, V.; Karel, J.; Dieter, D.P.; Dmitrii, K.; Ŝtěpán, K.; Pieter, C.; Otakar, Č. Geodata interoperability and harmonization in transport: A case study of open transport net. Open Geospat. Data Softw. Stand. 2017, 2, 3. [Google Scholar] [CrossRef]
- Jerome, E.D.; Edward, A.B.; Phillip, R.C.; Richard, C.D.; Brian, A.W. LandScan: A Global Population Database for Estimating Populations at Risk. Photogramm. Eng. Remote Sens. 2000, 66, 849–857. [Google Scholar]
- Corbane, C.; Lemoine, G.; Kauffmann, M. Relationship between the spatial distribution of SMS messages reporting needs and building damage in 2010 Haiti disaster. Nat. Hazards Earth Syst. Sci. 2012, 12, 255–265. [Google Scholar] [CrossRef]
- Lu, L.; Guo, H.; Corbane, C. Building Damage Assessment with VHR Images and Comparative Analysis for Yushu Earthquake, China. Disaster Adv. 2013, 6, 37–44. [Google Scholar]
- 2010 Haiti Earthquake Final Report. A world Bank/GFDRR IMAGECAT REPORT: Post-disaster Building Damage Assessment Using Satellite and Aerial Imagery Interpretation, Field Verification and Modeling. Available online: https://www.gfdrr.org/sites/gfdrr.org/files/publication/2010haitiearthquakepost-disasterbuildingdamageassessment.pdf (accessed on 3 May 2017).
- Disaster Information Management System. Available online: http://www.desinventar.net/gft.html (accessed on 8 June 2017).
- Perera, I.; Meedeniya, D.; Benerjee, I.; Choudhury, J. Educating Users for Disaster Management: An Exploratory Study on Using Immersive Training for Disaster Management. In Proceedings of the 2013 IEEE International Conference in MOOC, Jaipur, India, 20–22 December 2013; pp. 245–250. [Google Scholar]
- Wikipedia. Available online: https://en.wikipedia.org/wiki/Myanmar (accessed on 3 May 2017).
- 2016 Myanmar Humanitarian Response Plan. Available online: http://reliefweb.int/sites/reliefweb.int/files/resources/2016_myanmar_hrp_final.pdf (accessed on 3 May 2017).
- United Nations Office for the Coordination of Humanitarian Affairs (OCHA). Myanmar: Floods emergency situation report No. 5 (as of 21 August 2015). Available online: http://reliefweb.int/report/myanmar/ (accessed on 3 May 2017).
- Myanmar Information Management Unit. Available online: http://www.themimu.info/baseline-datasets (accessed on 3 May 2017).
- Zhang, T.; Yang, X.M.; Hu, S.S.; Su, F.Z. Extraction of Coastline in Aquaculture Coast from Multispectral Remote Sensing Images: Object-Based Region Growing Integrating Edge Detection. Remote Sens. 2013, 5, 4470–4487. [Google Scholar] [CrossRef]
- Max, C.; Lea, S. Data democracy—Increased supply of geospatial information and expanded participatory processes in the production of data. Int. J. Digital Earth 2015, 8, 679–693. [Google Scholar] [CrossRef]
- Michael, F.G.; Glennon, J.A. Crowdsourcing geographic information for disaster response: A research frontier. Int. J. Digital Earth 2010, 3, 231–241. [Google Scholar] [CrossRef]
- Stephane, R.; Eliane, P.Z.; Boris, M. GeoWeb and crisis management: Issues and perspectives of volunteered geographic information. GeoJournal 2013, 78, 21–40. [Google Scholar] [CrossRef]
- Kazuya, K.; Noriko, A.; Futoshi, T. Space-based response to the 2011 Great East Japan Earthquake: Lessons learnt from JAXA’s support using earth observation satellites. Int. J. Disaster Risk Reduct. 2015, 12, 134–153. [Google Scholar]
- Stefan, V.; Tobias, S.; André, T.; Monika, G.; Enrico, S.; Harald, M. Rapid Damage Assessment and Situation Mapping: Learning from the 2010 Haiti Earthquake. Photogramm. Eng. Remote Sens. 2011, 77, 923–931. [Google Scholar]
- Luke, B.; Shubharoop, G.; Marjorie, G.; Shary, H.; Jay, B.; Stuart, G.; Albert, Y.L.; Charles, H. Crowdsourcing earthquake damage assessment using remote sensing imagery. Ann. Geophys. 2011, 54. [Google Scholar] [CrossRef]
- Yang, C.W.; Yu, M.Z.; Hu, F.; Jiang, Y.Y.; Li, Y. Utilizaing Cloud Computing to address big geospatial data challenges. Comput. Environ. Urban Syst. 2017, 61, 120–128. [Google Scholar] [CrossRef]
- Yang, C.W.; Huang, Q.Y.; Li, Z.L.; Liu, K.; Hu, F. Big Data cloud computing: Innovation opportunities and challenges. Int. J. Digital Earth 2017, 10, 13–53. [Google Scholar] [CrossRef]
- Papadimitriou, F. Modelling Landscape Complexity for Land Use Management in Rio de Janeiro, Brazil. Land Use Policy 2012, 29, 855–861. [Google Scholar] [CrossRef]
Type | Name | Format and Source | Date | Coverage, Number and Resolution | Application |
---|---|---|---|---|---|
Global Open Datasets | GLC30 | Raster; GLC30 platform, http://globallandcover.com | 2010 | Global, 30 m | Affected arable land estimation |
Township | Vector; MIMU web, http://www.themimu.info/ | February 2012 | Whole country | Affected residential area assessment | |
Village | February 2012 | ||||
Province Border | April 2014 | Affected province estimation | |||
Country Border | April 2014 | Affected administrative unit estimation | |||
Post Disaster Information | Reports; OCHA web, http://reliefweb.int/ | August 2015 | Flooded area | For reference and validation | |
Remote Sensing Images | HJ-1A/B-CCD Image | NDRCC | May 2015 | Whole country, 22frames, 30 m | Pre-flood water extent extraction |
HJ-1A/B-CCD Image | NDRCC | July–August 2015 | Whole country 33frames, 30 m | Post-flood water extent extraction | |
HJ-1C Image | NDRCC | July–August 2015 | Part flooded area, 8frames, 20 m | Post-flood water extent extraction | |
SJ-9A-CCD Image | NDRCC | August 2015 | Part flooded area, 3frames, 10 m | Post-flood water extent extraction |
Province/State | Flooded Extent (km) | Affected Township Number | Affected Village Number | Flooded Arable Land (1000 ha) | Flooded Arable Land Proportion (%) |
---|---|---|---|---|---|
Ayeyarwady | 3980.84 | 14 | 488 | 312.1 | 78.4 |
Bago | 1861.44 | 18 | 485 | 129.7 | 69.7 |
Chin | 2.56 | 3 | 0 | 8.0 | 31.3 |
Kachin | 775.25 | 3 | 59 | 60.6 | 78.2 |
Kayin | 679.93 | 3 | 79 | 48.3 | 71.0 |
Magway | 1017.51 | 18 | 201 | 56.2 | 55.2 |
Mandalay | 676.85 | 14 | 35 | 39.8 | 58.8 |
Mon | 22.08 | 4 | 2 | 2.2 | 99.6 |
Naypyitaw | 34.62 | 2 | 1 | 1.4 | 40.4 |
Rakhine | 207.24 | 2 | 9 | 6.2 | 29.9 |
Sagaing | 2124.31 | 16 | 304 | 175.2 | 82.5 |
Shan | 325.16 | 8 | 38 | 18.0 | 55.4 |
Yangon | 627.08 | 3 | 46 | 52.0 | 82.9 |
Sum | 12,334.9 | 108 | 1747 | 909.7 | 73.8 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Cui, Y.; Liu, M.; He, H.; Ravan, S. Integrating Global Open Geo-Information for Major Disaster Assessment: A Case Study of the Myanmar Flood. ISPRS Int. J. Geo-Inf. 2017, 6, 201. https://doi.org/10.3390/ijgi6070201
Li S, Cui Y, Liu M, He H, Ravan S. Integrating Global Open Geo-Information for Major Disaster Assessment: A Case Study of the Myanmar Flood. ISPRS International Journal of Geo-Information. 2017; 6(7):201. https://doi.org/10.3390/ijgi6070201
Chicago/Turabian StyleLi, Suju, Yan Cui, Ming Liu, Haixia He, and Shirish Ravan. 2017. "Integrating Global Open Geo-Information for Major Disaster Assessment: A Case Study of the Myanmar Flood" ISPRS International Journal of Geo-Information 6, no. 7: 201. https://doi.org/10.3390/ijgi6070201
APA StyleLi, S., Cui, Y., Liu, M., He, H., & Ravan, S. (2017). Integrating Global Open Geo-Information for Major Disaster Assessment: A Case Study of the Myanmar Flood. ISPRS International Journal of Geo-Information, 6(7), 201. https://doi.org/10.3390/ijgi6070201