Investigation of Post-Fire Debris Flows in Montecito
Abstract
:1. Introduction
2. Background and Study Area
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Fire Analysis Using the Shortwave Infrared (SWIR) and Normalized Burn Ratio (NBR)
3.2.2. Watershed Extraction Method Based on 30-m Resolution Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) Data
3.2.3. Hypsometric Integral
3.2.4. Logistic Regression Model
3.2.5. Technical Route
4. Data Interpretation and Model Construction
4.1. Data Interpretation
4.1.1. The Spread of Mountain Fires and Burn Severity around Montecito
4.1.2. Geomorphic Development Stage
4.1.3. Rainfall
4.2. Model Construction of Post-Fire Debris Flow Occurrence Probability
- -
- Hypsometric integral value of each basin (HI);
- -
- total three-hour precipitation (PR, mm);
- -
- percent of the low-severity burned area in each basin (%Low-severity burn); and
- -
- percent of the high and moderate severity burned area in each basin (%Low-severity burn).
5. Model Application around Montecito
6. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jaiswal, R.K.; Mukherjee, S.; Raju, K.D.; Saxena, R. Forest fire risk zone mapping from satellite imagery and GIS. Int. J. Appl. Earth Obs. Geoinf. 2002, 4, 1–10. [Google Scholar] [CrossRef]
- Siegert, F.; Ruecker, G.; Hinrichs, A.; Hoffmann, A.A. Increased damage from fires in logged forests during droughts caused by El Nino. Nature 2001, 414, 437. [Google Scholar] [CrossRef] [PubMed]
- Mooney, H.A.; Bonnicksen, T.M.; Christensen, N.L.; Lotan, J.E.; Reiners, W.A. Proceedings of the conference fire regimes and ecosystem properties, December 11–15, 1978, Honolulu. J. Chem. Eng. Data 1981, 37, 470–473. [Google Scholar]
- Cannon, S.H.; Gartner, J.E.; Wilson, R.C.; Bowers, J.C.; Laber, J.L. Storm rainfall conditions for floods and debris flows from recently burned areas in southwestern Colorado and southern California. Geomorphology 2008, 96, 250–269. [Google Scholar] [CrossRef]
- Kean, J.W.; Staley, D.M.; Cannon, S.H. In situ measurements of post-fire debris flows in southern California: Comparisons of the timing and magnitude of 24 debris-flow events with rainfall and soil moisture conditions. J. Geophys. Res. Earth Surf. 2011, 116, F4. [Google Scholar] [CrossRef]
- Santi, P.M.; Higgins, J.D.; Cannon, S.H.; Gartner, J.E. Sources of debris flow material in burned areas. Geomorphology 2008, 96, 310–321. [Google Scholar] [CrossRef]
- Short, L.E.; Gabet, E.J.; Hoffman, D.F. The role of large woody debris in modulating the dispersal of a post-fire sediment pulse. Geomorphology 2015, 246, 351–358. [Google Scholar] [CrossRef]
- Cheng, D.; Cui, Y.; Su, F.; Jia, Y.; Choi, C.E. The characteristics of the Mocoa compound disaster event, Colombia. Landslides 2018, 15, 1223–1232. [Google Scholar] [CrossRef] [Green Version]
- Ciurleo, M.; Mandaglio, M.C.; Moraci, N. Landslide susceptibility assessment by TRIGRS in a frequently affected shallow instability area. Landslides 2018. [Google Scholar] [CrossRef]
- Soeters, R.; van Westen, C.J. Slope instability recognition, analysis and zonation. In Landslides Investigation and Mitigation; Turner, A.K., Schuster, R.L., Eds.; TRB Special Report 247; National Academy Press: Washington, DC, USA, 1996; pp. 129–177. [Google Scholar]
- Ciurleo, M.; Cascini, L.; Calvello, M. A comparison of statistical and deterministic methods for shallow landslide susceptibility zoning in clayey soils. Eng. Geol. 2017, 223, 71–81. [Google Scholar] [CrossRef]
- Borrelli, L.; Ciurleo, M.; Gulla, G. Shallow landslide susceptibility assessment in granitic rocks using GIS-based statistical methods: The contribution of the weathering grade map. Landslides 2018, 15, 1127–1142. [Google Scholar] [CrossRef]
- Fell, R.; Corominas, J.; Bonnard, C.; Cascini, L.; Leroi, E.; Savage, W.Z. Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng. Geol. 2008, 102, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Cannon, S.H.; Gartner, J.E. Wildfire-Related Debris Flow from a Hazards Perspective; Springer: Berlin/Heidelberg, Germany, 2005; pp. 363–385. [Google Scholar]
- Cannon, S.H.; Gartner, J.E.; Rupert, M.G.; Michael, J.A.; Djokic, D.; Sreedhar, S. Emergency assessment of debris-flow hazards from basins burned by the grand prix and old fires of 2003. U.S. Geol. Surv. 2003, 45–59. [Google Scholar] [CrossRef]
- Gartner, J.E.; Cannon, S.H.; Santi, P.M.; Dewolfe, V.G. Empirical models to predict the volumes of debris flows generated by recently burned basins in the western U.S. Geomorphology 2008, 96, 339–354. [Google Scholar] [CrossRef]
- Cannon, S.H.; Gartner, J.E.; Rupert, M.G.; Michael, J.A.; Rea, A.H.; Parrett, C. Predicting the probability and volume of postwildfire debris flows in the intermountain western united states. Geol. Soc. Am. Bull. 2009, 122, 127–144. [Google Scholar] [CrossRef]
- Gartner, J.E.; Santi, P.M.; Cannon, S.H. Predicting locations of post-fire debris-flow erosion in the san Gabriel mountains of southern California. Natl. Hazards 2015, 77, 1305–1321. [Google Scholar] [CrossRef]
- Friedel, M.J. A data-driven approach for modeling post-fire debris-flow volumes and their uncertainty. Environ. Model. Softw. 2011, 26, 1583–1598. [Google Scholar] [CrossRef]
- Cannon, S.H.; Boldt, E.M.; Laber, J.L.; Kean, J.W.; Staley, D.M. Rainfall intensity–duration thresholds for postfire debris-flow emergency-response planning. Natl. Hazards 2011, 59, 209–236. [Google Scholar] [CrossRef]
- Crosetto, M.; Tarantola, S. Uncertainty and sensitivity analysis: Tools for GIS-based model implementation. Int. J. Geogr. Inf. Syst. 2001, 15, 415–437. [Google Scholar] [CrossRef]
- Xiang, L.; Li, Y.; Chen, H.; Su, F.; Huang, X. Sensitivity analysis of debris flow along highway based on geomorphic evolution theory. Resour. Environ. Yangtze Basin 2015, 24, 1984–1992. [Google Scholar]
- cnBeta.COM. Debris Flow Began to Occur in California after the Mountain Fire Season in the United States. Available online: https://www.cnbeta.com/articles/tech/687749.htm (accessed on 28 May 2018).
- Schleuss, J.; Smith, D.; Boxall, B. Tracking a Path of Destruction from Montecito’s Mountains to the Ocean. Los Angeles Times. Available online: http://www.latimes.com/local/california/la-me-san-ysidro-damage-20180112-htmlstory.html (accessed on 2 April 2018).
- Hamilton, M.; Serna, J. Montecito Braced for Fire, But Mud Was a More Stealthy, Deadly Threat. Los Angeles Times. Available online: http://www.latimes.com/local/lanow/la-me-montecito-mudslide-main-20180112-story.html (accessed on 2 April 2018).
- Dolan, J. Search Teams Find 21st Victim of Montecito Mudslide. Los Angeles Times. Available online: http://www.latimes.com/local/lanow/la-me-montecito-death-toll-20180121-story.html (accessed on 26 April 2018).
- BBC News. California: Thirteen Dead in Montecito Rains and Mudslides. Available online: http://www.bbc.com/news/world-us-canada-42624408 (accessed on 26 April 2018).
- Robert, D.; Niehaus, I. The Economic Impacts of the Montecito Mudslides a Preliminary Assessment; Robert, D., Ed.; Niehaus Inc.; Available online: http://www.rdniehaus.com/rdn/wp-content/uploads/2018/03/RDN_Montecito_Mudslides_Impacts-1.pdf (accessed on 28 May 2018).
- Magnoli, G. County Estimates $46 Million Cost for Thomas Fire, Montecito Debris Flow Response, Repairs. Available online: https://www.noozhawk.com/article/county_estimates_46m_cost_thomas_fire_montecito_debris_flow_response (accessed on 28 May 2018).
- U.S. Coast Guard. Santa Barbara County Neighborhood Affected Mudslides—09 Jan 2018. Available online: https://commons.wikimedia.org/wiki/File:Santa_barbara_county_neighborhood_affected_mudslides_-_09_Jan_2018.jpg (accessed on 19 November 2018).
- Wiley, J. SY Ranch & Casa de Maria Debris Flow 180111-04783. Available online: https://commons.wikimedia.org/wiki/File:SY_Ranch_%26_Casa_de_Maria_Debris_Flow_180111-04783.jpg (accessed on 19 November 2018).
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef]
- Arvidson, T.; Gasch, J.; Goward, S.N. Landsat 7’s long-term acquisition plan—An innovative approach to building a global imagery archive. Remote Sens. Environ. 2001, 78, 13–26. [Google Scholar] [CrossRef]
- Fernández-Manso, A.; Fernández-Manso, O.; Quintano, C. Sentinel-2A red-edge spectral indices suitability for discriminating burn severity. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 170–175. [Google Scholar] [CrossRef]
- Harald, V.D.W.; Freek, V.D.M. Sentinel-2A MSI and Landsat 8 OLI provide data continuity for geological remote sensing. Remote Sens. 2016, 8, 883. [Google Scholar]
- Gao, K.; Cui, P.; Zhao, C.; Wei, F. Landslide hazard evaluation of Wanzhou based on GIS information value method in the three gorges reservoir. Chin. J. Rock Mech. Eng. 2006, 25, 991–996. [Google Scholar]
- Chen, X.Q.; Cui, P.; Yang, Z.; Qi, Y.Q. Change in glaciers and glacier lakes in Boiqu River basin, middle Himalayas during last 15 years. J. Glaciol. Geocryol. 2005, 27, 793–800. [Google Scholar]
- World Weather Online. Santa Barbara Historical Weather. Available online: https://www.worldweatheronline.com/santa-barbara-weather-history/california/us.aspx (accessed on 28 May 2018).
- Monitoring Forest Fire Points Using SWIR and LWIR Band of Landsat 8 Data. Available online: http://blog.sina.com.cn/s/blog_764b1e9d0102vnxr.html (accessed on 27 April 2018).
- Jiang, S.; Gong, C.L.; Yong, H.U.; Meng, P. Comparison of radiation characteristics of forest fire and background in short wave infrared absorption bands. J. Atmos. Environ. Opt. 2014, 9, 223–228. [Google Scholar]
- Veraverbeke, S.; Verstraeten, W.W.; Lhermitte, S.; Goossens, R. Evaluating landsat thematic mapper spectral indices for estimating burn severity of the 2007 Peloponnese wildfires in Greece. Int. J. Wildland Fire 2010, 19, 558–569. [Google Scholar] [CrossRef]
- Lentile, L.B.; Holden, Z.A.; Smith, A.M.; Falkowski, M.J.; Hudak, A.T.; Morgan, P.; Lewis, S.A.; Gessler, P.E.; Benson, N.C. Remote sensing techniques to assess active fire characteristics and post-fire effects. Int. J. Wildland Fire 2006, 15, 319–345. [Google Scholar] [CrossRef]
- Norton, J.M. The Use of Remote Sensing Indices to Determine Wildland Burn Severity in Semiarid Sagebrush Steppe Rangelands Using Landsat ETM+ and SPOT 5. Available online: http://giscenter.isu.edu/research/techpg/nasa_tlcc/PDF/Ch6.pdf (accessed on 30 October 2018).
- Karl, J. Normalized Burn Ratio. Available online: http://wiki.landscapetoolbox.org/doku.php/remote_sensing_methods:normalized_burn_ratio (accessed on 30 October 2018).
- Zou, Q.; Cui, P.; Zeng, C.; Tang, J.; Regmi, A.D. Dynamic process-based risk assessment of debris flow on a local scale. Phys. Geogr. 2016, 37, 132–152. [Google Scholar] [CrossRef]
- Chen, X.; Cui, P.; You, Y.; Liu, J. Post-earthquake changes and prediction of debris flow scales in Subao river valley, Beichuan county, Sichuan province, China. Environ. Earth Sci. 2012, 65, 995–1003. [Google Scholar] [CrossRef]
- Choi, C.; Cui, Y.; Au, K.; Liu, H.; Wang, J.; Liu, D.; Wang, H. Case study: Effects of a partial-debris dam on riverbank erosion in the Parlung Tsangpo river, China. Water 2018, 10, 250. [Google Scholar] [CrossRef]
- Jenson, S.K.; Domingue, J.O. Extracting topographic structure from digital elevation data for geographic information-system analysis. Photogramm. Eng. Remote Sens. 1988, 54, 1593–1600. [Google Scholar]
- O’Callaghan, J.F.; Mark, D.M. The extraction of drainage networks from digital elevation data. Comput. Vis. Graph. Image Process. 1984, 28, 323–344. [Google Scholar] [CrossRef]
- Strahler, A.N. Hypsometric (area-altitude) analysis of erosional topography. Geol. Soc. Am. Bull. 1952, 63, 1117–1142. [Google Scholar] [CrossRef]
- Pike, R.J.; Wilson, S.E. Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis. Geol. Soc. Am. Bull. 1971, 82, 1079–1083. [Google Scholar] [CrossRef]
- Chang, Z.; Wang, J.; Bai, S.; Zhang, Z. Comparison of hypsometric integral methods. J. Arid Land Resour. Environ. 2015, 29, 171–175. [Google Scholar]
- Yesilnacar, E.; Topal, T. Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Eng. Geol. 2005, 79, 251–266. [Google Scholar] [CrossRef]
- Yilmaz, I. Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: Conditional probability, logistic regression, artificial neural networks, and support vector machine. Environ. Earth Sci. 2010, 61, 821–836. [Google Scholar] [CrossRef]
- Trigila, A.; Frattini, P.; Casagli, N.; Catani, F.; Crosta, G.; Esposito, C.; Lagomarsino, D.; Mugnozza, G.S.; Segoni, S.; Spizzichino, D.; et al. Landslide susceptibility mapping at national scale: The Italian case study. In Landslide Science and Practice; Springer: Berlin/Heidelberg, Germany, 2013; pp. 287–295. [Google Scholar]
- Lee, S. Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. Int. J. Remote Sens. 2005, 26, 1477–1491. [Google Scholar] [CrossRef]
- Lee, S.; Ryu, J.H.; Kim, I.S. Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression, and artificial neural network models: Case study of Youngin, Korea. Landslides 2007, 4, 327–338. [Google Scholar] [CrossRef]
- Manzo, G.; Tofani, V.; Segoni, S.; Battistini, A.; Catani, F. GIS techniques for regional-scale landslide susceptibility assessment: The Sicily (Italy) case study. Int. J. Geogr. Inf. Sci. 2013, 27, 1433–1452. [Google Scholar] [CrossRef]
- Van Den Eeckhaut, M.; Hervás, J.; Jaedicke, C.; Malet, J.P.; Montanarella, L.; Nadim, F. Statistical modelling of Europe-wide landslide susceptibility using limited landslide inventory data. Landslides 2012, 9, 357–369. [Google Scholar] [CrossRef]
- Seal, H.L. Estimation of the probability of an event as a function of several independent variables. Biometrika 1967, 54, 167–179. [Google Scholar]
- Xu, C.; Xu, X.W. Logistic regression model and its validation for hazard mapping of landslides triggered by Yushu earthquake. J. Eng. Geol. 2012, 20, 326–333. [Google Scholar]
- USGS. Global Data Explore. Available online: https://gdex.cr.usgs.gov/gdex/ (accessed on 28 May 2018).
- Singh, O.; Sarangi, A.; Sharma, M.C. Hypsometric integral estimation methods and its relevance on erosion status of north-western lesser Himalayan watersheds. Water Resour. Manag. 2008, 22, 1545–1560. [Google Scholar] [CrossRef]
- USGS. Post-Fire Flooding and Debris Flow. Available online: https://ca.water.usgs.gov/wildfires/wildfires-debris-flow.html (accessed on 21 June 2018).
- Bui, D.T.; Nguyen, Q.P.; Hoang, N.D.; Klempe, H. A novel fuzzy K-nearest neighbor inference model with differential evolution for spatial prediction of rainfall-induced shallow landslides in a tropical hilly area using GIS. Landslides 2017, 14, 1–17. [Google Scholar]
- Fressard, M.; Thiery, Y.; Maquaire, O. Which data for quantitative landslide susceptibility mapping at operational scale? Case study of the Pays d’Auge plateau hillslopes (Normandy, France). Natl. Hazards Earth Syst. Sci. 2014, 14, 569–588. [Google Scholar] [CrossRef]
Watershed Number | Watershed Area (km2) | Accumulation Area (km2) |
---|---|---|
① | 9.35 | 0.78 |
② | 1.47 | 0.08 |
③ | 7.60 | 0.69 |
④ | 1.67 | 0.11 |
⑤ | 4.59 | 0.17 |
∆NBR | Burn Severity |
---|---|
<−0.25 | High post-fire regrowth |
−0.25 to −0.1 | Low post-fire regrowth |
−0.1 to +0.1 | Unburned |
0.1 to 0.27 | Low-severity burn |
0.27 to 0.44 | Moderate-low severity burn |
0.44 to 0.66 | Moderate-high severity burn |
>0.66 | High-severity burn |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.; Cheng, D.; Chan, D. Investigation of Post-Fire Debris Flows in Montecito. ISPRS Int. J. Geo-Inf. 2019, 8, 5. https://doi.org/10.3390/ijgi8010005
Cui Y, Cheng D, Chan D. Investigation of Post-Fire Debris Flows in Montecito. ISPRS International Journal of Geo-Information. 2019; 8(1):5. https://doi.org/10.3390/ijgi8010005
Chicago/Turabian StyleCui, Yifei, Deqiang Cheng, and Dave Chan. 2019. "Investigation of Post-Fire Debris Flows in Montecito" ISPRS International Journal of Geo-Information 8, no. 1: 5. https://doi.org/10.3390/ijgi8010005
APA StyleCui, Y., Cheng, D., & Chan, D. (2019). Investigation of Post-Fire Debris Flows in Montecito. ISPRS International Journal of Geo-Information, 8(1), 5. https://doi.org/10.3390/ijgi8010005