The Measurement of Mobility-Based Accessibility—The Impact of Floods on Trips of Various Length and Motivation
Abstract
:1. Introduction
- traffic volumes and speeds are assumed to correspond to regional (or even national) average statistics,
- a road is assumed to be completely closed when its crown is covered by water, regardless of depth,
- traffic on open roads continues to flow smoothly, perhaps at a slightly reduced maximum speed,
- traffic volumes do not exceed the design capacity of a road,
- traffic conditions do not change over the course of the day, or seasonally; and,
- diversion routes, and changes (or not) to driver behaviour as a result of the flood, are often assumed without any clear rationale [12].
2. Materials and Methods
2.1. The Research Area
2.2. Source Materials
2.3. The Research Methods
- –transport accessibility of a given transport region
- –function of weight attractiveness (here: linear function)
- –weights available within a given transport region (here: the number of people)
- –distance decay (here: exponential function)
- –the total temporal distance related to a trip from region i to region j (here: distance measured along the transport network).
- –distance decay
- –travel time between transport regions
- –beta parameter.
3. Results and Discussion
3.1. Traffic Distribution
3.2. Changes in Accessibility
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Radosavljevic, V.; Belojevic, G.; Pavlovic, N. Tool for decision-making regarding general evacuation during a rapid river flood. Public Health 2017, 146, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Leng, G.; Peng, J. Recent changes in the occurrences and damages of floods and droughts in the United States. Water 2018, 10, 1109. [Google Scholar] [CrossRef]
- DfT, D.T. Transport Resilience Review. A Review of the Resilience of the Transport Network to Extreme Weather Events; Department for Transport: London, UK, 2014. [Google Scholar]
- Dawson, R.J.; Thompson, D.; Johns, D.; Gosling, S.; Chapman, L.; Darch, G.; Watson, G.; Powrie, W.; Bell, S.; Paulson, K.; et al. Infrastructure. In UK Climate Change Risk Assessment Evidence Report; Report Prepared for the Adaptation Sub-Committee of the Committee on Climate Change; Adaptation Sub-Committee of the Committee on Climate Change: London, UK, 2016. [Google Scholar]
- Pregnolato, M.; Ford, A.; Robson, C.; Glenis, V.; Barr, S.; Dawson, R. Assessing urban strategies for reducing the impacts of extreme weather on infrastructure networks. R. Soc. Open Sci. 2016, 3, 160023. [Google Scholar] [CrossRef] [PubMed]
- Borowska-Stefańska, M.; Domagalski, A.; Wiśniewski, S. Changes concerning commute traffic distribution on a road network following the occurrence of a natural disaster—The example of a flood in the Mazovian Voivodeship (Eastern Poland). Transp. Res. Part D Transp. Environ. 2018, 65, 116–137. [Google Scholar] [CrossRef]
- Borowska-Stefańska, M.; Wiśniewski, S. Changes in transport accessibility as a result of flooding: A case study of the Mazovia Province (Eastern Poland). Environ. Hazards 2018, 17, 56–83. [Google Scholar] [CrossRef]
- Petersen, M.S. Impacts of Flash Floods; Gruntfest, E., Handmer, J., Eds.; Springer: Dordrecht, The Netherlands, 2001; ISBN 978-0-7923-6826-7. [Google Scholar]
- Singh, P.; Sinha, V.S.P.; Vijhani, A.; Pahuja, N. Vulnerability assessment of urban road network from urban flood. Int. J. Disaster Risk Reduct. 2018, 28, 237–250. [Google Scholar] [CrossRef]
- Brown, S.; Dawson, R. Building network-level resilience to resource disruption from flooding: Case studies from the Shetland Islands and Hurricane Sandy. E3S Web Conf. 2016, 7, 04008. [Google Scholar] [CrossRef]
- Hammond, M.J.; Chen, A.S.; Djordjević, S.; Butler, D.; Mark, O. Urban flood impact assessment: A state-of-the-art review. Urban Water J. 2015, 12, 14–29. [Google Scholar] [CrossRef]
- Pregnolato, M.; Ford, A.; Wilkinson, S.M.; Dawson, R.J. The impact of flooding on road transport: A depth-disruption function. Transp. Res. Part D Transp. Environ. 2017, 55, 67–81. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, X.C.; Zhang, G. Non-recurrent congestion analysis using data-driven spatiotemporal approach for information construction. Transp. Res. Part C Emerg. Technol. 2016, 71, 19–31. [Google Scholar] [CrossRef]
- Żochowska, R.; Karoń, G. Przegląd literatury na temat zjawiska kongestii i zakłóceń ruchu w systemie transportowym miasta w aspekcie modelowania podróży. Zeszyty Naukowo Techniczne Stowarzyszenia Inżynierów i Techników Komunikacji w Krakowie Seria Materiały Konferencyjne 2012, 98, 251–276. [Google Scholar]
- Skabardonis, A.; Varaiya, P.P.; Petty, K. Measuring recurrent and non-recurrent traffic congestion. Transp. Res. Rec. 2013, 1856, 118–124. [Google Scholar] [CrossRef]
- Taylor, M.A.P. Susilawati Remoteness and accessibility in the vulnerability analysis of regional road networks. Transp. Res. Part A Policy Pract. 2012, 46, 761–771. [Google Scholar] [CrossRef]
- Adey, P. If mobility is everything then it is nothing: Towards a relational politics of (im) mobilities. Mobilities 2006, 1, 75–94. [Google Scholar] [CrossRef]
- Hannam, K.; Sheller, M.; Urry, J. Editorial: Mobilities, immobilities and moorings. Mobilities 2006, 1, 1–22. [Google Scholar] [CrossRef]
- Komornicki, T. Przemiany Mobilności Codziennej Polaków na tle Rozwoju Motoryzacji; IGiPZ PAN: Warszawa, Poland, 2011; ISBN 9788361590170. [Google Scholar]
- Chen, A.; Yang, C.; Kongsomsaksakul, S.; Lee, M. Network-based accessibility measures for vulnerability analysis of degradable transportation networks. Netw. Spat. Econ. 2007, 7, 241–256. [Google Scholar] [CrossRef]
- Wiśniewski, S. Dostępność transportowa Uniejowa–ujęcie regionalne. Biuletyn Uniejowski 2014, 3, 67–84. [Google Scholar]
- Bartosiewicz, B.; Pielesiak, I. Powiązania transportowe w Łódzkim Obszarze Metropolitalnym. Studia KPZK PAN 2012, 147, 105–137. Available online: http://dspace.uni.lodz.pl/xmlui/bitstream/handle/11089/6050/Transport_Bartosz_Bartosiewicz_Iwona_Pielesiak.pdf?sequence=1&isAllowed=y (accessed on 26 November 2019).
- Rosik, P.; Śleszyński, P. Wpływ zaludnienia w otoczeniu drogi, ukształtowania powierzchni terenu oraz natężenia ruchu na średnią prędkość jazdy samochodem osobowym. Transport Miejski i Regionalny 2009, 10, 26–31. [Google Scholar]
- Komornicki, T.; Śleszyński, P.; Rosik, P.; Pomianowski, W. Dostępność Przestrzenna Jako Przesłanka Kształtowania Polskiej Polityki Transportowej; KPZK PAN: Warsaw, Poland, 2009. [Google Scholar]
- Wiśniewski, S. Teoretyczna i rzezcywista wewnętrzna dostępność transportowa Łodzi. Prace i Studia Geograficzne 2016, 61, 95–108. [Google Scholar]
- Borowska-Stefańska, M.; Kowalski, M.; Wiśniewski, S. Wewnętrzna samochodowa dostępność transportowa Łodzi w świetle pomiarów z inteligentnych systemów transportowych. Prace geograficzne. 2019, 159. in print. [Google Scholar]
- Church, R.L.; Cova, T.J. Mapping evacuation risk on transportation networks using a spatial optimization model. Transp. Res. Part C Emerg. Technol. 2000, 8, 321–336. [Google Scholar] [CrossRef]
- Borowska-Stefańska, M.; Wiśniewski, S.; Andrei, M.-T. Accessibility to places of evacuation for inhabitants of flood-prone areas in Mazovia province. Geomat. Environ. Eng. 2017, 11, 31. [Google Scholar] [CrossRef]
- Hsu, Y.T.; Peeta, S. Risk-based spatial zone determination problem for stage-based evacuation operations. Transp. Res. Part C Emerg. Technol. 2014, 41, 73–89. [Google Scholar] [CrossRef]
- Kongsomsaksakul, S.; Yang, C.; Chen, A. Shelter location-allocation model for flood evacuation planning. J. East. Asia Soc. Transp. Stud. 2005, 6, 4237–4252. [Google Scholar]
- Borowska-Stefańska, M.; Kowalski, M.; Wiśniewski, S. The impact of flood-related changes to mobility on potential accessibility in the region of Greater Poland. 2019; in review. [Google Scholar]
- TRB. HCM 2010: Highway Capacity Manual. National Research Council (U.S.); TRB: Washington, DC, USA, 2010. [Google Scholar]
- Shand, T.D.; Cox, R.J.; Blacka, M.J. Australian Rainfall and Runoff (AR&R). Revision Project 10: Appropriate Safety Criteria for Vehicles; Report Number: P10/S2/020; Water Research Laboratory, The University of New South Wales: Manly Vale, Australia, 2011. [Google Scholar]
- Penning-Rowsell, E.; Priest, S.; Parker, D.; Morris, J.; Tunstall, S.; Viavattene, C.; Chatteron, J.; Owen, D. Flood and Coastal Erosion Risk Management: A Manual for Economic Appraisal; Routledge: Abingdon, UK, 2013; ISBN 9780415815154. [Google Scholar]
- Śleszyński, P. Dostępność czasowa i jej zastosowania. Prz. Geogr. 2014, 86, 171–215. [Google Scholar] [CrossRef]
- Rosik, P. Dostępność Lądowa Przestrzeni Polski W Wymiarze Europejskim; IGiPZ PAN: Warsaw, Poland, 2012; ISBN 9788578110796. [Google Scholar]
- Stepniak, M.; Rosik, P. Accessibility improvement, territorial cohesion and spillovers: A multidimensional evaluation of two motorway sections in Poland. J. Transp. Geogr. 2013, 31, 154–163. [Google Scholar] [CrossRef]
- Nelson, A. Travel Time to Major Cities: A Global Map of Accessibility: Poster + Datasets; Office for Official Publications of the European Communities: Luxembourg, Luxembourg, 2008. [Google Scholar]
- Wegner, M. (Ed.) Overview of Land Use Transport Models: Handbook of Transport Geography and Spatial Systems; Elsevier: Oxford, UK, 2004. [Google Scholar]
- Hunt, J.D.; Kriger, D.S.; Miller, E.J. Current operational urban land-use-transport modelling frameworks: A review. Transp. Rev. 2005, 25, 329–376. [Google Scholar] [CrossRef]
- Hackney, J.K.; Bernard, M.; Bindra, S.; Axhausen, K.W. Predicting road system speeds using spatial structure variables and network characteristics. J. Geogr. Syst. 2007, 9, 397–417. [Google Scholar] [CrossRef]
- The Act of 20 July 2017 on Water Law. Dz.U. 2018 poz. 2268; Poland, 2018. Available online: http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20180002268 (accessed on 26 November 2019).
- PGWWP Państwowe Gospodarstwo Wodne Wody Polskie. 2019.
- GUS Główny Urząd Statystyczny. 2017. Available online: https://stat.gov.pl/ (accessed on 26 November 2019).
- Commission of the European Communities. Directive 2007/60/EC of the European parliament and of the council of 23 October 2007 on the assessment and management of flood risks. Off. J. Eur. Union 2007, 288, 27–34. [Google Scholar]
- GDDKiA Generalna Dyrekcja Dróg Krajowych i Autostrad. 2007.
- Borowska-Stefańska, M. Zagospodarowanie terenów zagrożonych powodziami w gminach województwa łódzkiego. Przegląd Geograficzny 2015, 87, 535–553. [Google Scholar]
- Borowska-Stefańska, M. Zagospodarowanie Terenów Zagrożonych Powodziami w Województwie Łódzkim; Łódź University Press: Łódź, Poland, 2015. [Google Scholar]
- Gutry-Korycka, M.; Magnuszewski, A.; Suchozebrski, J.; Jaworski, W.; Marcinkowski, M.; Szydlowski, M. Numerical estimation of flood zones in the Vistula River valley, Warsaw, Poland. IAHS-AISH Publ. 2006, 308, 191–195. [Google Scholar]
- Chang, H.; Lafrenz, M.; Jung, I.W.; Figliozzi, M.; Platman, D.; Pederson, C. Potential impacts of climate change on Flood-Induced Travel Disruptions: A Case Study of Portland, Oregon, USA. Ann. Assoc. Am. Geogr. 2010, 100, 938–952. [Google Scholar] [CrossRef]
- Sohn, J. Evaluating the significance of highway network links under the flood damage: An accessibility approach. Transp. Res. Part A Policy Pract. 2006, 40, 491–506. [Google Scholar] [CrossRef]
- Suarez, P.; Anderson, W.; Mahal, V.; Lakshmanan, T.R. Impacts of flooding and climate change on urban transportation: A systemwide performance assessment of the Boston Metro Area. Transp. Res. Part D Transp. Environ. 2005, 10, 231–244. [Google Scholar] [CrossRef]
- Brassel, K.E.; Reif, D. A procedure to generate thiessen polygons. Geogr. Anal. 1979, 11, 289–303. [Google Scholar] [CrossRef]
- Fiedler, F.R. Simple, practical method for determining station weights using Thiessen polygons and isohyetal maps. J. Hydrol. Eng. 2003, 8, 219–221. [Google Scholar] [CrossRef]
- Han, D.; Bray, M. Automated Thiessen polygon generation. Water Resour. Res. 2006, 42, 2–6. [Google Scholar] [CrossRef]
- Gissing, A.; Opper, S.; Tofa, M.; Coates, L.; McAneney, J. Influence of road characteristics on flood fatalities in Australia. Environ. Hazards 2019, 7891, 1–12. [Google Scholar] [CrossRef]
- Albano, R.; Sole, A.; Adamowski, J.; Mancusi, L. A GIS-based model to estimate flood consequences and the degree of accessibility and operability of strategic emergency response structures in urban areas. Nat. Hazards Earth Syst. Sci. 2014, 14, 2847–2865. [Google Scholar] [CrossRef]
- Pyatkova, K.; Chen, A.S.; Djordjević, S.; Butler, D.; Vojinović, Z.; Abebe, Y.A.; Hammond, M. Flood impacts on road transportation using microscopic traffic modelling techniques. In Simulating Urban Traffic Scenarios. Lecture Notes in Mobility; Behrisch, M., Weber, M., Eds.; Springer: Cham, Switzerland, 2019; pp. 115–126. ISBN 9783319336145. [Google Scholar]
- Yin, J.; Yu, D.; Yin, Z.; Liu, M.; He, Q. Evaluating the impact and risk of pluvial flash flood on intra-urban road network: A case study in the city center of Shanghai, China. J. Hydrol. 2016, 537, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Jacyna, M.; Wasiak, M.; Kłodawski, M.; Lewczuk, K. Simulation model of transport system of Poland as a tool for developing sustainable transport. Arch. Transp. 2014, 31, 23–35. [Google Scholar] [CrossRef]
- Kowalski, M.; Wiśniewski, S. Transport accessibility and mobility: A forecast of changes in the face of planned development of the network of expressways and motorways in Poland. Eur. Spat. Res. Policy 2019, 26. in print. [Google Scholar]
- Fotheringham, A.S. A new set of spatial-interaction models: The theory of competing destinations. Environ. Plan. A Econ. Space 1983, 15, 15–36. [Google Scholar] [CrossRef]
- Spiekermann, K.; Schürmann, C. Update of Selected Potential Accessibility Indicators. Final Report for the ESPON 2006 Programme; Spiekermann & Wegener Stadt- und Regionalforschung: Dortmund, Germany, 2007. [Google Scholar]
- Ingram, D.R. The concept of accessibility: A search for an operational form. Reg. Stud. 1971, 5, 101–107. [Google Scholar] [CrossRef]
- Geurs, K.T.; Ritsema van Eck, J.R. Accessibility Measures: Review and Applications. Evaluation of Accessibility Impacts of Land-Use Transportation Scenarios, and Related Social and Economic Impact; RIVM Report 408505 006; National Institute of Public Health and the Environment: Bilthoven, The Netherlands, 2001. [Google Scholar]
- Gil, J.; Steinbach, P. From flood risk to indirect flood impact: Evaluation of street network performance for effective management, response and repair. In Proceedings of the WIT Transactions on Ecology and the Environment; WIT Press: Southampton, UK, 2008; Volume 118, pp. 335–344. [Google Scholar]
- Goodwin, L.C. Weather Impacts on Arterial Traffic Flow; Mitretek Systems Inc.: Falls Church, VA, USA, 2002. [Google Scholar]
- Penning-Rowsell, E.; Johnson, C.; Tunstall, S.; Tapsell, S.; Morris, J.; Chatteron, J.; Green, C. The Benefits of Flood and Coastal Risk Management: A Handbook of Assessment Techniques; Middlesex University Press: London, UK, 2005. [Google Scholar]
- Helbing, D.; Hennecke, A.; Shvetsov, V.; Treiber, M. Micro-and macro-simulation of freeway traffic. Math. Comput. Model. 2002, 35, 517–547. [Google Scholar] [CrossRef]
- Kerner, B.S.; Klenov, S.L. Microscopic theory of spatial-temporal congested traffic patterns at highway bottlenecks. Phys. Rev. E 2003, 68, 36130. [Google Scholar] [CrossRef] [Green Version]
- Garbutt, K.; Ellul, C.; Fujiyama, T. Mapping social vulnerability to flood hazard in Norfolk, England. Environ. Hazards 2015, 14, 156–186. [Google Scholar] [CrossRef]
- Coles, D.; Yu, D.; Wilby, R.L.; Green, D.; Herring, Z. Beyond ‘flood hotspots’: Modelling emergency service accessibility during flooding in York, UK. J. Hydrol. 2017, 546, 419–436. [Google Scholar] [CrossRef] [Green Version]
- Borowska-Stefańska, M.; Kowalski, M.; Turoboś, F.; Wiśniewski, S. Optimisation patterns for the process of a planned evacuation in the event of a flood. Environ. Hazards 2019, 18, 335–360. [Google Scholar] [CrossRef]
- Siqueira-Gay, J.; Giannotti, M.A.; Tomasiello, D.B. Accessibility and flood risk spatial indicators as measures of vulnerability. Revista Brasileira de Cartografia 2016, 69, 869–880. [Google Scholar]
- Keay, K.; Simmonds, I. The association of rainfall and other weather variables with road traffic volume in Melbourne, Australia. Accid. Anal. Prev. 2005, 37, 109–124. [Google Scholar] [CrossRef] [PubMed]
- Al Hassan, Y.; Barker, D.J. The impact of unseasonable or extreme weather on traffic activity within Lothian region, Scotland. J. Transp. Geogr. 1999, 7, 209–213. [Google Scholar] [CrossRef]
- Doll, C.; Trinks, C.; Sedlacek, N.; Pelikan, V.; Comes, T.; Schultmann, F. Adapting rail and road networks to weather extremes: Case studies for southern Germany and Austria. Nat. Hazards 2014, 72, 63–85. [Google Scholar] [CrossRef] [Green Version]
- Nokkala, M.; Leviäkangas, P.; Oiva, K. The Costs of Extreme Weather for the European Transport Systems. EWENT Project D4; VTT Technical Research Centre of Finland: Espoo, Finland, 2012; ISBN 9789513878535. [Google Scholar]
- Gautam, K.P.; van der Hoek, E.E. Literature Study on Environmental Impact of Floods; Delft Cluster: Delft, The Netherlands, 2003. [Google Scholar]
Catchment Area | Water Region | 10% (a Ten-Year Flood) | 1% (a One-Hundred-Year Flood) | 1M% (a One-Hundred-Year Sea Flood) | PZ – Complete Destruction of Protective Structures within Service Strip | WZ– Complete Destruction of Stopbanks |
---|---|---|---|---|---|---|
surface [ha] | ||||||
Oder | Lower Oder and Western Coastal Strip | 26,059.7 | 30,250.1 | 30,368.4 | 14,555.21 | 15,873.3 |
Noteć | 26,471.8 | 39,389.4 | - | - | 12,914 | |
Warta | 75,341.3 | 101,169.5 | - | - | 99,659.4 | |
Middle Oder | 90,382.1 | 157,914.8 | - | - | 139,786.4 | |
Upper Oder | 16,973.6 | 36,101.2 | - | - | 12,563.04 |
Catchment Area | Water Region | 10% (a Ten-Year Flood) | 1% (a One-Hundred-Year Flood) | 1M% (a One-Hundred-Year Sea Flood) | PZ – Complete Destruction of Protective Structures Within Service Strip | WZ– Complete Destruction of Stopbanks |
---|---|---|---|---|---|---|
number of residents | ||||||
Oder | Lower Oder and Western Coastal Strip | 203 | 1,817 | 4,203 | 1,033 | 730 |
Upper Oder | 2,097 | 20,101 | - | - | 22,471 | |
Noteć | 285 | 741 | - | - | 873 | |
Middle Oder | 9,733 | 82,471 | - | - | 117,909 | |
Warta | 972 | 5,341 | - | - | 35,255 |
Section Type | Road Status | Road Type | Area | Cross Section |
---|---|---|---|---|
1 | National | Motorway | Urban | 2 × 3 |
2 | National | Motorway | Urban | 2 × 2 |
4 | National | Motorway (a section with tollbooths) | Extra-urban | 2 × 3 |
6 | National | Motorway (a section with tollbooths) | Extra-urban | 2 × 2 |
10 | National | Expressway | Urban | 2 × 3 |
11 | National | Expressway | Urban | 2 × 2 |
12 | National | Expressway | Urban | 1 × 2 |
13 | National | Expressway | Extra-urban | 2 × 3 |
14 | National | Expressway | Extra-urban | 2 × 2 |
15 | National | Expressway | Extra-urban | 1 × 2 |
20, 22, 23 | National | Dual-carriageway road | Extra-urban | 2 × 2 |
21 | Voivodeship | Dual-carriageway road | Extra-urban | 2 × 2 |
24 | National | 2 + 1 road | Extra-urban | 2 + 1 |
25 | Voivodeship | 2 + 1 road | Extra-urban | 2 + 1 |
30 | National | Single-carriageway road | Extra-urban | 1 × 2, carriageway width > 12m |
31, 33, 34, 36 | National | Single-carriageway road | Extra-urban | 1 × 2, carriageway width 9–12m |
32, 35, 94 | National | Single-carriageway road | Extra-urban | 1 × 2, carriageway width 7–9m |
40 | National | Single-carriageway road | Extra-urban | 1 × 2, carriageway width 6–7m |
50 | National | Single-carriageway road | Extra-urban | 1 × 2, carriageway width <6m |
60 | Voivodeship | Single-carriageway road | Extra-urban | 1 × 2, carriageway width > 12m |
61 | Voivodeship | Single-carriageway road | Extra-urban | 1 × 2, carriageway width 9–12m |
62 | Voivodeship | Single-carriageway road | Extra-urban | 1 × 2, carriageway width 7.5–9m |
63 | Voivodeship | Single-carriageway road | Extra-urban | 1 × 2, carriageway width 6–7.5m |
64 | Voivodeship | Single-carriageway road | Extra-urban | 1 × 2, carriageway width 5–6m |
65 | Voivodeship | Single-carriageway road | Extra-urban | 1 × 2, carriageway width <5m |
66 | Voivodeship | Urban, fast traffic trunk road (completely collision-free) | Urban | 2 × 3 |
67 | Voivodeship | Urban, fast traffic trunk road (completely collision-free) | Urban | 2 × 2 |
68 | Voivodeship | Urban, fast traffic trunk road | Urban | 2 × 3 |
69 | Voivodeship | Urban, fast traffic trunk road | Urban | 2 × 2 |
70 | Voivodeship | Urban, trunk road | Urban | 2 × 2 |
71 | Voivodeship | Urban, trunk road | Urban | 1 × 4 |
72 | Voivodeship | Urban, service road | Urban | 2 × 2 |
73 | Voivodeship | Urban, fast traffic trunk road | Urban | 1 × 2 |
74 | Voivodeship | Urban, fast traffic trunk road | Urban | 1 × 2 |
75 | Voivodeship | Urban, service road | Urban | 1 × 2 |
76 | Voivodeship | Urban, service road | Urban | 1 × 4 |
80 | National | Urban, fast traffic trunk road (completely collision-free) | Urban | 2 × 3 |
81 | National | Urban, fast traffic trunk road (completely collision-free) | Urban | 2 × 2 |
82, 87 | National | Urban, fast traffic trunk road | Urban | 2 × 3 |
83 | National | Urban, fast traffic trunk road | Urban | 2 × 2 |
84 | National | Urban, trunk road | Urban | 2 × 2 |
85 | National | Urban, trunk road | Urban | 1 × 4 |
86 | National | Urban, service road | Urban | 2 × 2 |
90 | National | Urban, fast traffic trunk road | Urban | 1 × 2 |
91 | National | Urban, trunk road | Urban | 1 × 2 |
92 | National | Urban, service road | Urban | 1 × 2 |
93 | National | Urban, service road | Urban | 1 × 4 |
Matrix No. | Traffic Type | Vehicle Type | Trip Motivation |
---|---|---|---|
1 | National (internal) | Passenger car | Home-workplace |
2 | Business | ||
3 | Tourism | ||
4 | Other | ||
5 | Light commercial vehicle | ||
6 | Truck | ||
7 | Articulated lorry | ||
8 | International (external) | Passenger car | Home-workplace |
9 | Business | ||
10 | Tourism | ||
11 | Other | ||
12 | Light commercial vehicle | ||
13 | Truck | ||
14 | Articulated lorry |
Section Type | No. of Sections | Maximum Speed Decrease [km/h] |
---|---|---|
12 | 8 | −16 |
8 | 33 | −20 |
73 | 20 | −33 |
6 | 41 | −15 |
74 | 78 | −29 |
62 | 23 | −45 |
40 | 158 | −32 |
63 | 583 | −47 |
65 | 12 | −26 |
35 | 105 | −38 |
31 | 102 | −13 |
14 | 129 | −12 |
30 | 9 | −7 |
15 | 1 | −3 |
90 | 72 | −19 |
91 | 35 | −9 |
5 | 65 | −12 |
64 | 72 | −12 |
76 | 12 | −8 |
81 | 3 | −2 |
83 | 10 | −3 |
75 | 54 | −8 |
50 | 57 | −8 |
20 | 23 | −3 |
84 | 3 | −2 |
68 | 11 | −3 |
82 | 4 | −2 |
70 | 18 | −7 |
1 | 4 | −1 |
11 | 2 | −1 |
2 | 4 | −1 |
25 | 1 | −1 |
60 | 2 | −1 |
61 | 11 | −1 |
66 | 1 | −1 |
71 | 1 | −1 |
Section Type | No. of Sections | Maximum Speed Increase [km/h] | Average Speed Increase [km/h] |
---|---|---|---|
31 | 99 | 31 | 8.5 |
90 | 59 | 45 | 6.9 |
30 | 6 | 14 | 6.8 |
15 | 4 | 6 | 6.0 |
12 | 1 | 5 | 5.0 |
73 | 17 | 18 | 4.6 |
91 | 15 | 13 | 3.7 |
35 | 45 | 15 | 3.6 |
74 | 35 | 25 | 3.4 |
50 | 21 | 13 | 3.2 |
62 | 31 | 8 | 3.0 |
40 | 149 | 22 | 2.6 |
75 | 17 | 20 | 2.4 |
63 | 296 | 15 | 2.3 |
6 | 10 | 4 | 2.0 |
60 | 1 | 2 | 2.0 |
14 | 22 | 4 | 1.8 |
68 | 4 | 4 | 1.8 |
84 | 4 | 2 | 1.8 |
64 | 39 | 3 | 1.3 |
65 | 13 | 3 | 1.2 |
61 | 9 | 2 | 1.1 |
70 | 16 | 1 | 1.0 |
5 | 2 | 1 | 1.0 |
76 | 2 | 1 | 1.0 |
83 | 2 | 1 | 1.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borowska-Stefańska, M.; Kowalski, M.; Wiśniewski, S. The Measurement of Mobility-Based Accessibility—The Impact of Floods on Trips of Various Length and Motivation. ISPRS Int. J. Geo-Inf. 2019, 8, 534. https://doi.org/10.3390/ijgi8120534
Borowska-Stefańska M, Kowalski M, Wiśniewski S. The Measurement of Mobility-Based Accessibility—The Impact of Floods on Trips of Various Length and Motivation. ISPRS International Journal of Geo-Information. 2019; 8(12):534. https://doi.org/10.3390/ijgi8120534
Chicago/Turabian StyleBorowska-Stefańska, Marta, Michał Kowalski, and Szymon Wiśniewski. 2019. "The Measurement of Mobility-Based Accessibility—The Impact of Floods on Trips of Various Length and Motivation" ISPRS International Journal of Geo-Information 8, no. 12: 534. https://doi.org/10.3390/ijgi8120534
APA StyleBorowska-Stefańska, M., Kowalski, M., & Wiśniewski, S. (2019). The Measurement of Mobility-Based Accessibility—The Impact of Floods on Trips of Various Length and Motivation. ISPRS International Journal of Geo-Information, 8(12), 534. https://doi.org/10.3390/ijgi8120534