Diachronic Reconstruction and Visualization of Lost Cultural Heritage Sites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Historical Sources
- Historical photographs.
- Maps.
- Written testimonies.
2.2. Geomatics Techniques
2.3. 4D Reconstruction Methodology
- 3D recording of the current remains of the Alcázar gate by means of a MLS.
- Reverse modeling of the current state of the Alcázar gate and its intramural and extramural sections.
- Diachronic reconstruction or 4D modeling of the Alcázar gate based on the historical documents for two different temporal intervals.
- Diachronic reconstruction or 4D modeling of the extramural and intramural buildings of the Alcázar gate prior to their demolishment.
2.4. 4D Visualization Methodology
- It must be possible to visualize data in a three-dimensional environment in known file formats.
- The data of each file must be organized through a system of layers, which can be displayed and hidden easily.
- A dedicated tool that helps see the data in different epochs of history, namely the fourth dimension, must be available.
- 3D models may have hotspots to provide additional information about the element selected.
- The viewer must be a web application in order to be consulted by different types of users and experts through the Internet.
- The capacity of rendering dynamically 3D environments.
- Hardware acceleration to render a complex environment in a quicker way.
- Compatibility with most of the desktop and mobile web browsers.
3. Results
3.1. Case Study
3.2. Intramural Buildings
3.3. Extramural Buildings
3.4. Reconstruction Assessment
3.4.1. Diachronic Reconstruction
3.4.2. Current State
3.5. Visualization through Time
3.5.1. Improving the User Experience: Blending Geometrical and Non-Geometrical Data
3.5.2. Performance Assessment
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rodríguez-Gonzálvez, P.; Cardozo Mamani, S.; Guerra Campo, A.; Sánchez-Aparicio, L.J.; del Pozo, S.; Muñoz-Nieto, A.; González-Aguilera, D. Diachronic reconstruction of lost cultural heritage sites. Study case of the medieval wall of Avila (Spain). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-2, 975–981. [Google Scholar] [CrossRef]
- Fieber, K.D.; Mills, J.P.; Peppa, M.V.; Haynes, I.; Turner, S.; Turner, A.; Douglas, M.; Bryan, P.G. Cultural Heritage Through Time: A Case Study at Hadrian’s Wall, United Kingdom. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W3, 297–302. [Google Scholar] [CrossRef]
- Nocerino, E.; Menna, F.; Morabito, D.; Remondino, F.; Toschi, I.; Abate, D.; Ebolese, D.; Farella, E.; Fiorillo, F.; Minto, S.; et al. The Vast Project: Valorisation of History and Landscape for Promoting the Memory of WWI. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, IV-2/W2, 179–186. [Google Scholar] [CrossRef]
- Georgopoulos, A. 3D virtual reconstruction of archaeological monuments. Mediterr. Archaeol. Archaeom. 2014, 14, 155–164. [Google Scholar]
- Torres-Martínez, J.; Seddaiu, M.; Rodríguez-Gonzálvez, P.; Hernández-López, D.; González-Aguilera, D. A Multi-Data Source and Multi-Sensor Approach for the 3D Reconstruction and Web Visualization of a Complex Archaelogical Site: The Case Study of “Tolmo De Minateda”. Remote Sens. 2016, 8, 550. [Google Scholar] [CrossRef]
- Guidi, G.; Russo, M.; Ercoli, S.; Remondino, F.; Rizzi, A.; Menna, F. A multi-resolution methodology for the 3D modeling of large and complex archeological areas. Int. J. Archit. Comput. 2009, 7, 39–55. [Google Scholar] [CrossRef]
- Remondino, F.; Gruen, A.; von Schwerin, J.; Eisenbeiss, H.; Rizzi, A.; Sauerbier, M.; Richards-Rissetto, H. Multi-sensor 3D documentation of the Maya site of Copan. In Proceedings of the 22nd CIPA Symposium, Kyoto, Japan, 11–15 October 2009; pp. 241–248. [Google Scholar]
- Guidi, G.; Russo, M.; Angheleddu, D. Digital Reconstruction of an Archaeological Site Based on the Integration of 3D Data and Historical Sources. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, XL-5/W1, 99–105. [Google Scholar] [CrossRef]
- Hanke, K.; Moser, M.; Rampold, R. Historic photos and TLS data fusion for the 3D reconstruction of a monastery altar ensemble. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-5/W7, 201–206. [Google Scholar] [CrossRef]
- Ramos, M.M.; Remondino, F. Data fusion in Cultural Heritage—A Review. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-5/W7, 359–363. [Google Scholar] [CrossRef]
- Chen, B.; Huang, B.; Xu, B. Multi-source remotely sensed data fusion for improving land cover classification. ISPRS J. Photogramm. Remote Sens. 2017, 124, 27–39. [Google Scholar] [CrossRef]
- Hess, M.; Petrovic, V.; Meyer, D.; Rissolo, D.; Kuester, F. Fusion of multimodal three-dimensional data for comprehensive digital documentation of cultural heritage sites. In Proceedings of the 2015 Digital Heritage International Congress (DigitalHeritage), Granada, Spain, 28 September–2 October 2015; pp. 595–602. [Google Scholar] [CrossRef]
- Frohlich, R.; Kato, Z.; Tremeau, A.; Tamas, L.; Shabo, S.; Waksman, Y. Region based fusion of 3D and 2D visual data for Cultural Heritage objects. In Proceedings of the 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016; pp. 2404–2409. [Google Scholar] [CrossRef]
- Dore, C.; Murphy, M. Integration of Historic Building Information Modeling (HBIM) and 3D GIS for recording and managing cultural heritage sites. In Proceedings of the 18th International Conference on Virtual Systems and Multimedia, Milan, Italy, 2–5 September 2012; pp. 369–376. [Google Scholar]
- Gonzalez-Aguilera, D.; Del Pozo, S.; Lopez, G.; Rodriguez-Gonzalvez, P. From point cloud to CAD models: Laser and optics geotechnology for the design of electrical substations. Opt. Laser Technol. 2012, 44, 1384–1392. [Google Scholar] [CrossRef]
- Reilly, P. Towards a virtual archaeology. In Computer Applications and Quantitative Methods in Archaeology 1990; BAR International Series 565; Tempus Reparatum: Oxford, UK, 1991; pp. 133–139. [Google Scholar]
- Remondino, F. Heritage Recording and 3D Modeling with Photogrammetry and 3D Scanning. Remote Sens. 2011, 3, 1104–1138. [Google Scholar] [CrossRef] [Green Version]
- Nocerino, E.; Menna, F.; Toschi, I.; Morabito, D.; Remondino, F.; Rodríguez-Gonzálvez, P. Valorisation of history and landscape for promoting the memory of WWI. J. Cult. Herit. 2018, 29, 113–122. [Google Scholar] [CrossRef]
- Micoli, L.; Guidi, G.; Angheleddu, D.; Russo, M. A multidisciplinary approach to 3D survey and reconstruction of historical buildings. In Proceedings of the 2013 Digital Heritage International Congress (DigitalHeritage), Marseille, France, 28 October–1 November 2013; pp. 241–248. [Google Scholar]
- Münster, S.; Kröber, C.; Hegel, W.; Pfarr-Harfst, M.; Prechtel, N.; Uhlemann, R.; Henze, F. First experiences of applying a model classification for digital 3D reconstruction in the context of humanities research. In Proceedings of the Euro-Mediterranean Conference (EuroMed 2016), Nicosia, Cyprus, 18–21 December 2016; pp. 477–490. [Google Scholar] [CrossRef]
- Guidi, G.; Russo, M. Diachronic 3D reconstruction for lost cultural heritage. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2011, XXXVIII-5/W16, 371–376. [Google Scholar] [CrossRef]
- Cipriani, L.; Fantini, F. Digitalization Culture VS Archaeological Visualization: Integration of Pipelines and Open Issues. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W3, 195–202. [Google Scholar] [CrossRef]
- Rodríguez-Gonzálvez, P.; Muñoz-Nieto, A.L.; del Pozo, S.; Sanchez-Aparicio, L.J.; Gonzalez-Aguilera, D.; Micoli, L.; Gonizzi Barsanti, S.; Guidi, G.; Mills, J.; Fieber, K.; et al. 4D Reconstruction and Visualization of Cultural Heritage: Analyzing our Legacy Through Time. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W3, 609–616. [Google Scholar] [CrossRef]
- Aguilera, D.G.; Lahoz, J.G. sv3DVision: Didactical photogrammetric software for single image-based modeling. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2006, XXXVI-Part 6, 171–178. [Google Scholar]
- Garcia-Gago, J.; Gomez-Lahoz, J.; Rodríguez-Méndez, J.; González-Aguilera, D. Historical single image-based modeling: The case of Gobierna Tower, Zamora (Spain). Remote Sens. 2014, 6, 1085–1101. [Google Scholar] [CrossRef]
- Levoy, M.; Pulli, K.; Curless, B.; Rusinkiewicz, S.; Koller, D.; Pereira, L.; Ginzton, M.; Anderson, S.; Davis, J.; Ginsberg, J.; et al. The digital Michelangelo project: 3D scanning of large statues. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, New Orleans, LA, USA, 25–27 July 2000; pp. 131–144. [Google Scholar] [CrossRef]
- Barber, D.M.; Dallas, R.W.; Mills, J.P. Laser scanning for architectural conservation. J. Archit. Conserv. 2006, 12, 35–52. [Google Scholar] [CrossRef]
- Remondino, F.; Rizzi, A. Reality-based 3D documentation of natural and cultural heritage sites—Techniques, problems, and examples. Appl. Geomat. 2010, 2, 85–100. [Google Scholar] [CrossRef]
- Xiao, W.; Mills, J.; Guidi, G.; Rodríguez-Gonzálvez, P.; Gonizzi Barsanti, S.; González-Aguilera, D. Geoinformatics for the conservation and promotion of cultural heritage in support of the UN Sustainable Development Goals. ISPRS J. Photogramm. Remote Sens. 2018, 142, 389–406. [Google Scholar] [CrossRef]
- González-Aguilera, D.; Rodríguez-Gonzálvez, P. Drones—An Open Access Journal. Drones 2017, 1, 1. [Google Scholar] [CrossRef]
- Stylianidis, E.; Remondino, F. 3D Recording, Documentation and Management of Cultural Heritage; Whittles Publishing: Dunbeath, Scotland, UK, 2016. [Google Scholar]
- Toschi, I.; Rodríguez-Gonzálvez, P.; Remondino, F.; Minto, S.; Orlandini, S.; Fuller, A. Accuracy evaluation of a mobile mapping system with advanced statistical methods. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-5/W4, 245–253. [Google Scholar] [CrossRef]
- Rodríguez-Gonzálvez, P.; Jiménez Fernández-Palacios, B.; Muñoz-Nieto, Á.; Arias-Sanchez, P.; Gonzalez-Aguilera, D. Mobile LiDAR System: New Possibilities for the Documentation and Dissemination of Large Cultural Heritage Sites. Remote Sens. 2017, 9, 189. [Google Scholar] [CrossRef]
- Chu, C.H.; Chiang, K.W. The performance of a tight INS/GNSS/photogrammetric integration scheme for land based MMS applications in GNSS denied environments. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, XXXIX-B1, 479–484. [Google Scholar] [CrossRef]
- Nocerino, E.; Menna, F.; Remondino, F.; Toschi, I.; Rodríguez-Gonzálvez, P. Investigation of indoor and outdoor performance of two portable mobile mapping systems. In Proceedings of the SPIE Optical Metrology, Munich, Germany, 25–29 June 2017. [Google Scholar] [CrossRef]
- Cabo, C.; Del Pozo, S.; Rodríguez-Gonzálvez, P.; Ordóñez, C.; González-Aguilera, D. Comparing Terrestrial Laser Scanning (TLS) and Wearable Laser Scanning (WLS) for Individual Tree Modeling at Plot Level. Remote Sens. 2018, 10, 540. [Google Scholar] [CrossRef]
- Rodríguez-Gonzálvez, P.; González-Aguilera, D.; Gómez-Lahoz, J. From Point Cloud to Surface: Modeling Structures in Laser Scanner Point Clouds. In Proceedings of the ISPRS Workshop on Laser Scanning 2007 and Silvilaser 2007, Espoo, Finland, 12–14 September 2007; pp. 338–343. [Google Scholar]
- Cultural Heritage through Time. Available online: http://cht2-project.eu/ (accessed on 3 November 2018).
- Tejeda-Sánchez, C.; Muñoz-Nieto, A.; Rodríguez-Gonzálvez, P. Geomatic Archaeological Reconstruction and a Hybrid Viewer for the Archaelogical Site of Cáparra (Spain). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-2, 1105–1111. [Google Scholar] [CrossRef]
- Evans, A.; Romeio, M.; Bahrehmand, A.; Agenjo, J.; Blat, J. 3D graphics on the web: A survey. Comput. Graph. 2014, 41, 43–61. [Google Scholar] [CrossRef]
- Potenziani, M.; Callieri, M.; Dellepiane, M.; Corsini, M.; Ponchio, F.; Scopigno, R. 3DHOP: 3D heritage online presenter. Comput. Graph. 2015, 52, 129–141. [Google Scholar] [CrossRef]
- Schütz, M. Potree: Rendering Large Point Clouds in Web Browsers; Technische Universität Wien: Wien, Austria, 2016. [Google Scholar]
- Esri CityEngine. Available online: https://www.esri.com/es-pa/store/city-engine (accessed on 3 November 2018).
- Nocerino, E.; Menna, F.; Remondino, F. GNSS/INS aided precise re-photographing. In Proceedings of the 18th International Conference on Virtual Systems and Multimedia, Milan, Italy, 2–5 September 2012; pp. 235–242. [Google Scholar] [CrossRef]
- CloudCompare. Version 2.9.1. [GPL Software]. Available online: http://www.cloudcompare.org/ (accessed on 3 November 2018).
- Rodríguez-Gonzálvez, P.; Garcia-Gago, J.; Gomez-Lahoz, J.; González-Aguilera, D. Confronting Passive and Active Sensors with Non-Gaussian Statistics. Sensors 2014, 14, 13759–13777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Höhle, J.; Höhle, M. Accuracy assessment of digital elevation models by means of robust statistical methods. ISPRS J. Photogramm. Remote Sens. 2009, 64, 398–406. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Gonzálvez, P.; Nocerino, E.; Menna, F.; Minto, S.; Remondino, F. 3D Surveying & modeling of underground passages in WWI fortifications. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-5/W4, 17–24. [Google Scholar] [CrossRef]
- De Naeyer, A.; Arroyo, S.P.; Blanco, J.R. Krakow Charter 2000: Principles for Conservation and Restoration of Built Heritage; Bureau Krakow: Krakow, Poland, 2000. [Google Scholar]
- The Nara Document on Authenticity. Available online: https://whc.unesco.org/document/116018 (accessed on 30 December 2018).
Parameter | Value |
---|---|
X, Y position | 0.020 m |
Z position | 0.050 m |
Roll and pitch | 0.005° |
True heading | 0.015° |
Measuring principle | Time of Flight (ToF) |
Maximum range | 200 m |
Range precision | 8 mm, (1σ) |
Range accuracy | ±10 mm, (1σ) |
Laser measurement rate | 75–500 kHz |
Measurement per laser pulse | Up to 4 simultaneous |
Scan frequency | 80–200 Hz |
Laser wavelength | 1550 nm (near infrared) |
Scanner field of view | 360° |
Operating temperature | 10–40 °C |
Angular resolution | 0.001° |
Parral (1749) | Parral (1749b) | Moreau (1750) | Cossín (1864) and González (1911) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Distance invariant | North courtyard | North | −4.0 m | (8.2%) | 6.7 m | (13.8%) | 0.4 m | (0.9%) | −3.5 m | (7.2%) |
East | 0.4 m | (2.1%) | 4.7 m | (26.7%) | 7.6 m | (42.8%) | 0.0 m | (0.1%) | ||
South | −2.8 m | (5.8%) | 8.0 m | (16.9%) | 1.4 m | (3.0%) | 0.3 m | (0.6%) | ||
West | −6.1 m | (25.2%) | −1.7 m | (7.2%) | 0.7 m | (3.0%) | 0.1 m | (0.4%) | ||
South courtyard | North | −2.4 m | (5.2%) | 2.3 m | (4.9%) | –5.6 m | (12.0%) | 0.0 m | (0.1%) | |
East | −2.7 m | (13.1%) | −3.8 m | (18.5%) | −2.2 m | (10.5%) | 3.0 m | (14.7%) | ||
South | −6.0 m | (12.0%) | −2.8 m | (5.6%) | −8.4 m | (16.7%) | 0.5 m | (1.0%) | ||
West | 2.7 m | (17.6%) | 2.7 m | (17.7%) | 3.2 m | (21.2%) | 2.9 m | (18.7%) | ||
Guardhouse courtyard | North | - | - | - | - | - | - | - | - | |
East | - | - | - | - | - | - | - | - | ||
South | 1.8 m | (9.6%) | −3.5 m | (18.4%) | - | - | 0.0 m | (0.0%) | ||
West | −1.7 m | (14.6%) | −1.6 m | (13.8%) | −2.6 m | (23.1%) | 0.0 m | (0.0%) | ||
Exterior limits | North | 5.3 m | (9.4%) | 6.2 m | (11.0%) | −0.9 m | (1.7%) | 0.7 m | (1.2%) | |
East | −3.6 m | (5.1%) | 2.4 m | (3.5%) | −13.1 m | (18.9%) | −3.1 m | (4.4%) | ||
South | −6.0 m | (8.9%) | −1.1 m | (1.6%) | −2.6 m | (3.8%) | 3.8 m | (5.6%) | ||
West | −7.1 m | (10.4%) | −2.3 m | (3.3%) | −2.7 m | (4.0%) | −0.1 m | (0.1%) | ||
Corridors | North | −1.9 m | (19.8%) | −0.9 m | (8.9%) | −2.6 m | (26.3%) | −1.8 m | (17.9%) | |
In-between | −1.5 m | (15.6%) | −0.9 m | (9.4%) | −2.4 m | (25.1%) | 0.0 m | (0.4%) | ||
East | −0.6 m | (5.9%) | −0.2 m | (2.0%) | −2.4 m | (24.0%) | −1.1 m | (11.6%) | ||
South | −2.0 m | (17.8%) | 4.2 m | (37.9%) | −4.0 m | (36.1%) | −2.9 m | (26.3%) | ||
West | −0.1 m | (1.6%) | −0.2 m | (2.8%) | −1.1 m | (13.9%) | −0.1 m | (1.5%) | ||
Wall width | Gate | - | - | −0.7 m | (24.0%) | - | - | - | - | |
Dividing | - | - | −0.6 m | (22.3%) | −1.7 m | (69.3%) | - | - | ||
Area | Courtyards | North | −145.3 m2 | (15.4%) | 304.8 m2 | (32.3%) | 270.5 m2 | (28.7%) | 26.4 m2 | (2.8%) |
South | −159.3 m2 | (18.6%) | −62.0 m2 | (7.2%) | −116.6 m2 | (13.6%) | 148.2 m2 | (17.3%) | ||
Guardhouse | −16.1 m2 | (7.4%) | −61.7 m2 | (28.6%) | - | - | 0.9 m2 | (0.4%) | ||
Angular invariants | North courtyard | NE corner | −9.4° | (9.5%) | −9.4° | (9.5%) | −9.4° | (9.5%) | 0.6° | (0.6%) |
SE corner | 1.2° | (1.4%) | 1.2° | (1.4%) | 1.2° | (1.4%) | −0.8° | (0.9%) | ||
SW corner | 8.1° | (9.9%) | 8.1° | (9.9%) | 8.1° | (9.9%) | 3.1° | (3.8%) | ||
NW corner | 0.0° | (0.0%) | 0.0° | (0.0%) | 0.0° | (0.0%) | −3.0° | (3.3%) | ||
South courtyard | NE corner | −3.0° | (3.2%) | −4.0° | (4.3%) | −4.0° | (4.3%) | 0.0° | (0.0%) | |
SE corner | 10.9° | (13.8%) | 11.9° | (15.0%) | 11.9° | (15.0%) | 0.9° | (1.1%) | ||
SW corner | 2.3° | (2.6%) | 2.3° | (2.6%) | 2.3° | (2.6%) | 2.3° | (2.6%) | ||
NW corner | −8.3° | (8.4%) | −8.3° | (8.4%) | −7.3° | (7.4%) | −1.3° | (1.3%) | ||
Guardhouse courtyard | NE corner | - | - | - | - | - | - | - | - | |
SE corner | −3.2° | (3.4%) | −3.2° | (3.4%) | - | - | −2.2° | (2.4%) | ||
SW corner | 0.0° | (0.0%) | 0.0° | (0.0%) | 0.0° | (0.0%) | 2.0° | (2.2%) | ||
NW corner | - | - | - | - | - | - | - | - | ||
Exterior limits | NE corner | −10.4° | (10.5%) | −9.4° | (9.5%) | −9.4° | (9.5%) | −2.4° | (2.4%) | |
SE corner | 10.9° | (13.8%) | 10.9° | (13.8%) | 10.9° | (13.8%) | −0.1° | (0.1%) | ||
SW corner | 0.4° | (0.4%) | −0.6° | (0.7%) | 0.4° | (0.4%) | −0.6° | (0.7%) | ||
NW corner | 0.0° | (0.0%) | 1.0° | (1.1%) | 0.0° | (0.0%) | 0.0° | (0.0%) |
Discrepancy | Parral (1749) | Parral (1749b) | Moreau (1750) | Cossín (1864) and Gonzalez (1911) | |
---|---|---|---|---|---|
Length | Min. | −7.1 m | −3.8 m | −13.1 m | −3.5 m |
Mean | −2.3 m | 1.1 m | −1.9 m | 0.3 m | |
Max. | 5.3 m | 8.0 m | 7.6 m | 3.8 m | |
Width | Min. | −2.0 m | −0.9 m | −4.0 m | −2.9 m |
Mean | −1.2 m | 0.1 m | −2.4 m | −1.2 m | |
Max. | −0.1 m | 4.2 m | −1.1 m | 0.0 m | |
Area | Min. | −159.3 m2 | −62.0 m2 | −116.6 m2 | 0.9 m2 |
Mean | −106.9 m2 | 60.4 m2 | 77.0 m2 | 58.5 m2 | |
Max. | −16.1 m2 | 304.8 m2 | 270.5 m2 | 148.2 m2 | |
Angle | Min. | −10.4° | −9.4° | −9.4° | −3.0° |
Mean | 0.0° | 0.0° | 0.4° | −0.1° | |
Max. | 10.9° | 11.9° | 11.9° | 3.1° |
Parameter | Value | |
---|---|---|
Number of points | 1,122,289 | |
Gaussian assessment | Mean | −0.026 m |
Standard deviation | ±0.121 m | |
Kurtosis | 2.65 | |
Skewness | 0.11 | |
Robust assessment | Median | −0.036 m |
MAD | ±0.053 m | |
NMAD | ±0.078 m | |
Sqrt (BWMV) | ±0.096 m | |
Quartile 0.25 | −0.084 m | |
Quartile 0.75 | 0.024 m | |
Percentile 0.025 | −0.303 m | |
Percentile 0.975 | 0.266 m | |
Interpercentile range 95% | 0.570 m |
Scenario | 3D Models | Size of the OBJ Models (Mb) | Total Size (Mb) | ||
---|---|---|---|---|---|
Geometry | Texture | Total | |||
A | Pavement | 0.1 | 0.3 | 0.4 | 2.2 |
Real Alcázar | 1.7 | 0.1 | 1.8 | ||
B | Pavement | 0.1 | 0.3 | 0.4 | 6.8 |
Fort Alcázar | 0.9 | 0.4 | 1.3 | ||
Alhondiga house | 2.4 | 2.7 | 5.1 | ||
C | Pavement | 0.1 | 0.3 | 0.4 | 30.7 |
Fort Alcázar | 0.9 | 0.4 | 1.3 | ||
Alhondiga house | 2.4 | 2.7 | 5.1 | ||
House I | 0.1 | 5.8 | 5.9 | ||
House II | 2.3 | 1.3 | 3.6 | ||
House III | 3.0 | 1.4 | 4.4 | ||
House IV | 9.1 | 0.9 | 10.0 | ||
D | Pavement | 0.1 | 0.3 | 0.4 | 55.0 |
Medieval Wall_1 | 2.2 | 19.5 | 21.7 | ||
Medieval Wall_2 | 0.3 | 0.3 | 0.6 | ||
House IV | 9.1 | 0.9 | 10.0 | ||
Cadaster and park | 3.7 | 18.6 | 22.3 |
Bandwidth | Loading Time (s) | |||
---|---|---|---|---|
Scenario A | Scenario B | Scenario C | Scenario D | |
10.0 Mb/s | 3.0 (0.7)/0.9 (2.4) | 8.5 (0.8)/1.2 (5.8) | 20.7 (1.5)/1.3 (23.3) | 39.2 (1.4)/1.2 (46.2) |
20.0 Mb/s | 1.9 (1.2)/0.9 (2.5) | 4.6 (1.5)/1.1 (6.1) | 10.0 (2.9)/1.3 (23.8) | 20.0 (2.7)/1.2 (45.5) |
40.0 Mb/s | 1.2 (1.9)/0.9 (2.6) | 2.7 (2.5)/1.0 (6.8) | 5.8 (5.3)/1.3 (24.2) | 11.0 (5.0)/1.2 (45.3) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Gonzálvez, P.; Guerra Campo, Á.; Muñoz-Nieto, Á.L.; Sánchez-Aparicio, L.J.; González-Aguilera, D. Diachronic Reconstruction and Visualization of Lost Cultural Heritage Sites. ISPRS Int. J. Geo-Inf. 2019, 8, 61. https://doi.org/10.3390/ijgi8020061
Rodríguez-Gonzálvez P, Guerra Campo Á, Muñoz-Nieto ÁL, Sánchez-Aparicio LJ, González-Aguilera D. Diachronic Reconstruction and Visualization of Lost Cultural Heritage Sites. ISPRS International Journal of Geo-Information. 2019; 8(2):61. https://doi.org/10.3390/ijgi8020061
Chicago/Turabian StyleRodríguez-Gonzálvez, Pablo, Ángel Guerra Campo, Ángel L. Muñoz-Nieto, Luis J. Sánchez-Aparicio, and Diego González-Aguilera. 2019. "Diachronic Reconstruction and Visualization of Lost Cultural Heritage Sites" ISPRS International Journal of Geo-Information 8, no. 2: 61. https://doi.org/10.3390/ijgi8020061
APA StyleRodríguez-Gonzálvez, P., Guerra Campo, Á., Muñoz-Nieto, Á. L., Sánchez-Aparicio, L. J., & González-Aguilera, D. (2019). Diachronic Reconstruction and Visualization of Lost Cultural Heritage Sites. ISPRS International Journal of Geo-Information, 8(2), 61. https://doi.org/10.3390/ijgi8020061