Could Crime Risk Be Propagated across Crime Types?
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Knox Test
3.2. Knox Test for Interaction between Two Crime Types
3.3. Hotspot-Based Knox Test
3.4. Modification of Hotspot-Based Knox Test
3.5. Validity Threats
4. Study Area and Crime Data
4.1. Study Area
4.2. Data Resources
5. Analysis
5.1. Distribution of Hotspots of PP and VMVT
5.2. Space-Time Interaction within Crime Type
5.3. Space-Time Interaction across Crime Type
5.4. Impact of Hotspots across Crime Types
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Anderson, D.; Chenery, S.; Pease, K. Biting Back: Tackling Repeat Burglary and Car Crime; Home Office Police Research Group: London, UK, 1995. Available online: https://www.ncjrs.gov/App/Publications/abstract.aspx?ID=154489 (accessed on 4 May 2019).
- Farrell, G.; Pease, K. Once Bitten, Twice Bitten: Repeat Victimisation and Its Implications for Crime Prevention. Crown Copyright. 1993. Available online: https://dspace.lboro.ac.uk/dspace-jspui/bitstream/2134/2149/1/Once_Bitten.pdf (accessed on 4 May 2019).
- Bowers, K.J.; Johnson, S.D. Who Commits Near Repeats? A Test of the Boost Explanation. West. Criminol. Rev. 2004, 5, 12–24. [Google Scholar]
- Ratcliffe, J.H.; Rengert, G.F. Near-repeat patterns in Philadelphia shootings. Secur. J. 2008, 21, 58–76. [Google Scholar] [CrossRef]
- Haberman, C.P.; Ratcliffe, J.H. The predictive policing challenges of near repeat armed street robberies. Policing J. Policy Pract. 2012, 6, 151–166. [Google Scholar] [CrossRef]
- Jochelson, R. Crime and Place: An Analysis of Assaults and Robberies in Inner Sydney. NSW Bureau of Crime Statistics and Research, Attorney General’s Department. 1997. Available online: https://www.bocsar.nsw.gov.au/Documents/r43.pdf (accessed on 4 May 2019).
- Townsley, M.; Homel, R.; Chaseling, J. Infectious burglaries. A test of the near repeat hypothesis. Br. J. Criminol. 2003, 43, 615–633. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, X. Analysis of burglary hot spots and near-repeat victimization in a large Chinese city. ISPRS Int. J. Geo-Inf. 2017, 6, 148. [Google Scholar] [CrossRef]
- Nakaya, T.; Yano, K. Visualising crime clusters in a space-time cube: An exploratory data-analysis approach using space-time kernel density estimation and scan statistics. Trans. GIS 2010, 14, 223–239. [Google Scholar] [CrossRef]
- Johnson, S.D.; Summers, L.; Pease, K. Offender as forager? A direct test of the boost account of victimization. J. Quant. Criminol. 2009, 25, 181–200. [Google Scholar] [CrossRef]
- Clarke, R.V.; Harris, P.M. Auto theft and its prevention. Crime Justice 1992, 16, 1–54. [Google Scholar] [CrossRef]
- Clarke, R.V.; Harris, P.M. A rational choice perspective on the targets of automobile theft. Crim. Behav. Ment. Health 1992, 2, 25–42. [Google Scholar] [CrossRef]
- Pease, K. Repeat Victimisation: Taking Stock; Home Office Police Research Group: London, UK, 1998. Available online: https://www.ncjrs.gov/App/abstractdb/AbstractDBDetails.aspx?id=177325 (accessed on 4 May 2019).
- Johnson, S.D. Repeat burglary victimisation: A tale of two theories. J. Exp. Criminol. 2008, 4, 215–240. [Google Scholar] [CrossRef]
- Wu, L.; Xu, X.; Ye, X. Repeat and near-repeat burglaries and offender involvement in a large Chinese city. Cartogr. Geogr. Inf. Sci. 2015, 42, 178–189. [Google Scholar] [CrossRef]
- Bernasco, W. Them again? Same-offender involvement in repeat and near repeat burglaries. Eur. J. Criminol. 2008, 5, 411–431. [Google Scholar] [CrossRef]
- Brantingham, P.L.; Brantingham, P.J. Nodes, paths and edges: Considerations on the complexity of crime and the physical environment. J. Environ. Psychol. 1993, 13, 3–28. [Google Scholar] [CrossRef]
- Kinney, J.B.; Brantingham, P.L.; Wuschke, K. Crime attractors, generators and detractors: Land use and urban crime opportunities. Build Environ. 2008, 34, 62–74. [Google Scholar] [CrossRef]
- Cohen, L.E.; Felson, M. Social change and crime rate trends: A routine activity approach. Am. Sociol. Rev. 1979, 44, 588–608. [Google Scholar] [CrossRef]
- Bernasco, W. Foraging strategies of homo criminals: Lessons from behavioral ecology. Crime Patterns Anal. 2009, 2, 5–16. [Google Scholar]
- Etherington, N. Natal’s black rape scare of the 1870s. J. Southern Afr. Stud. 1988, 15, 36–53. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Y. A theft was changed to robbery after the car was stolen. Leg. Syst. Econol. 2008, 9, 46. [Google Scholar]
- Eck, J. The threat of crime displacement. Crim. Justice Abstr. 1993, 25, 527–546. [Google Scholar]
- Henry, L.M.; Bryan, B.A. Visualising the Spatio-Temporal Patterns of Motor Vehicle Theft in Adelaide, South Australia. Available online: https://digital.library.adelaide.edu.au/dspace/bitstream/2440/36277/1/henry.pdf (accessed on 4 May 2019).
- Lu, Y. Getting away with the stolen vehicle: An investigation of journey-after-crime. Prof. Geogr. 2003, 55, 422–433. [Google Scholar] [CrossRef]
- Johnson, S.D.; Summers, L.; Pease, K. Vehicle Crime: Communicating Spatial and Temporal Patterns. UCL JILL DANDO Institute of Crime Science. 2006. Available online: http://discovery.ucl.ac.uk/1430754/1/2006_JDI_Vehicle_Crime.pdf (accessed on 4 May 2019).
- Lockwood, B. The presence and nature of a near-repeat pattern of motor vehicle theft. Secur. J. 2012, 25, 38–56. [Google Scholar] [CrossRef]
- Plouffe, N.; Sampson, R. Auto theft and theft from autos in parking lots in Chula Vista, CA: Crime analysis for local and regional action. Underst. Prev. Car Theft Crime Prev. Stud. 2004, 17, 147–171. [Google Scholar]
- Rengert, G.F.; Piquero, A.R.; Jones, P.R. Distance decay reexamined. Criminology 1999, 37, 427–446. [Google Scholar] [CrossRef]
- Sallybanks, J.; Brown, R. Vehicle Crime Reduction: Turning the Corner; Home Office, Policing and Reducing Crime Unit, Research, Development and Statistics Directorate: London, UK, 1999; Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.514.3654&rep=rep1&type=pdf (accessed on 4 May 2019).
- Levine, N.; Wachs, M.; Shirazi, E. Crime at bus stops: A study of environmental factors. J. Archit. Plan. Res. 1986, 3, 339–361. [Google Scholar]
- De Albuquerque, K.; McElroy, J. Tourism and crime in the Caribbean. Ann. Tour. Res. 1999, 26, 968–984. [Google Scholar] [CrossRef] [Green Version]
- Bunting, R.J.; Chang, O.Y.; Cowen, C. Spatial patterns of larceny and aggravated assault in Miami–Dade County, 2007–2015. Prof. Geogr. 2018, 70, 34–46. [Google Scholar] [CrossRef]
- Shannon, L.W. The spatial distribution of criminal offenses by states. J. Crim. Law Criminol. Police Sci. 1954, 45, 264–273. [Google Scholar] [CrossRef]
- Song, G.; Liu, L.; Bernasco, W. Testing indicators of risk populations for theft from the person across space and time: The significance of mobility and outdoor activity. Ann. Am. Assoc. Geograph. 2018, 108, 1370–1388. [Google Scholar] [CrossRef]
- Liu, L.; Feng, J.; Ren, F. Examining the relationship between neighborhood environment and residential locations of juvenile and adult migrant burglars in China. Cities 2018, 82, 10–18. [Google Scholar] [CrossRef]
- Liu, L.; Jiang, C.; Zhou, S. Impact of public bus system on spatial burglary patterns in a Chinese urban context. Appl. Geogr. 2017, 89, 142–149. [Google Scholar] [CrossRef]
- Knox, G. The detection of space-time interactions. Appl. Stat. 1964, 13, 25–29. [Google Scholar] [CrossRef]
- Johnson, S.D.; Bowers, K.J. Burglary prediction: Theory, flow and friction. In Imagination for Crime Prevention: Essays in Honour of Ken Pease, Vol. 21 of Crime Prevention Studies; Farrell, G., Bowers, K.J., Johnson, S.D., Townsley, M., Eds.; Criminal Justice Press: Monsey, NY, USA, 2007; pp. 203–223. Available online: http://discovery.ucl.ac.uk/76545/ (accessed on 4 May 2019).
- Chainey, S.P.; Braulio, F.A.da.S. Examining the extent of repeat and near repeat victimisation of domestic burglaries in Belo Horizonte, Brazil. Crime Sci. 2016, 5, 1. [Google Scholar] [CrossRef]
- Shiode, S.; Shiode, N. Network-based space-time search-window technique for hotspot detection of street-level crime incidents. Int. J. Geogr. Inf. Sci. 2013, 27, 866–882. [Google Scholar] [CrossRef]
- Farrell, G.; Bouloukos, A.C. International overview: A cross-national comparison of rates of repeat victimization. Crime Prev. Stud. 2001, 12, 5–26. [Google Scholar]
- Chainey, S.P. Examining the Extent to Which Hotspot Analysis Can Support Spatial Predictions of Crime; UCL (University College London): London, UK, 2014; Available online: http://discovery.ucl.ac.uk/1458643/1/SChainey%20PhD%20Final%20Version.pdf (accessed on 4 May 2019).
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Ord, J.K.; Getis, A. Local spatial autocorrelation statistics: Distributional issues and an application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Short, M.B.; D’orsogna, M.R.; Brantingham, P.J.; Tita, G.E. Measuring and modeling repeat and near-repeat burglary effects. J. Quant. Criminol. 2009, 25, 325–339. [Google Scholar] [CrossRef]
- Johnson, S.D.; Bernasco, W.; Bowers, K.J. Space–time patterns of risk: A cross national assessment of residential burglary victimization. J. Quant. Criminol. 2007, 23, 201–219. [Google Scholar] [CrossRef]
- Melo, S.N.; Andresen, M.A.; Matias, L.F. Repeat and near-repeat victimization in Campinas, Brazil: New explanations from the Global South. Secur. J. 2018, 31, 364–380. [Google Scholar] [CrossRef]
- Glasner, P.; Johnson, S.D.; Leitner, M. A comparative analysis to forecast apartment burglaries in Vienna, Austria, based on repeat and near repeat victimization. Crime Sci. 2018, 7, 9. [Google Scholar] [CrossRef] [PubMed]
Distance (meters) | 0–7 days | 8–14 days | 15–21 days | 22–28 days | 29–35 days | 36–42 days | >43 days |
---|---|---|---|---|---|---|---|
Same location | 3.09 ** | 2.66 ** | 2.45 ** | 2.27 ** | 2.13 ** | 1.82 ** | 1.55 ** |
1–100 | 1.59 ** | 1.43 ** | 1.36 ** | 1.30 ** | 1.22 ** | 1.18 ** | 1.08 * |
101–200 | 1.34 ** | 1.26 ** | 1.22 ** | 1.14 ** | 1.12 ** | 1.10 ** | 1.01 |
201–300 | 1.32 ** | 1.24 ** | 1.20 ** | 1.13 ** | 1.12 ** | 1.06 ** | 1.02 |
301–400 | 1.30 ** | 1.23 ** | 1.18 ** | 1.17 ** | 1.12 ** | 1.06 ** | 1.01 |
401–500 | 1.23 ** | 1.19 ** | 1.13 ** | 1.10 * | 1.07 ** | 1.06 ** | 1.01 |
501–600 | 1.25 ** | 1.20 ** | 1.16 ** | 1.12 ** | 1.10 ** | 1.05 ** | 0.99 |
601–700 | 1.27 ** | 1.20 ** | 1.16 ** | 1.11 * | 1.07 * | 1.05 ** | 1.01 |
701–800 | 1.23 ** | 1.14 ** | 1.11 ** | 1.08 * | 1.04 * | 1.03 * | 0.98 |
801–900 | 1.25 ** | 1.19 ** | 1.15 ** | 1.10 * | 1.08 ** | 1.03 * | 0.98 |
901–1000 | 1.24 ** | 1.17 ** | 1.14 ** | 1.11 ** | 1.07 * | 1.02 | 0.98 |
>1000 | 1.21 ** | 1.17 * | 1.12 * | 1.10 * | 1.07 * | 1.03 * | 0.98 |
Distance (meters) | 0–7 days | 8–14 days | 15–21 days | 22–28 days | 29–35 days | 36–42 days | >43 days |
---|---|---|---|---|---|---|---|
Same location | 2.22 ** | 2.08 ** | 1.95 ** | 1.86 ** | 1.71 ** | 1.68 ** | 1.54 ** |
1–100 | 1.32 ** | 1.26 ** | 1.21 ** | 1.19 ** | 1.17 ** | 1.15 ** | 1.15 * |
101–200 | 1.08 ** | 1.07 ** | 1.03 * | 1.01 | 1.03 * | 1.03 | 1.02 |
201–300 | 1.05 * | 1.04 * | 1.04 * | 1.04 * | 1.05 * | 1.05 * | 1.04 * |
301–400 | 1.05 * | 1.05 * | 1.06 * | 1.03 * | 1.05 * | 1.05 * | 1.04 * |
401–500 | 1.04 * | 1.04 * | 1.04 * | 1.02 * | 1.03 * | 1.03 * | 1.04 * |
501–600 | 1.07 ** | 1.05 * | 1.04 * | 1.05 * | 1.03 * | 1.03 * | 1.05 * |
601–700 | 1.05 * | 1.05 * | 1.06 * | 1.04 * | 1.03 * | 1.04 * | 1.05 * |
701–800 | 1.05 * | 1.04 * | 1.03 * | 1.03 * | 1.03 * | 1.04 * | 1.03 * |
801–900 | 1.05 * | 1.03 * | 1.03 * | 1.04 * | 1.02 * | 1.03 * | 1.05 * |
901–1000 | 1.05 * | 1.03 * | 1.03 * | 1.02 * | 1.03 * | 1.04 * | 1.03 * |
>1000 | 1.04 * | 1.03 * | 1.03 * | 1.03 * | 1.03 * | 1.03 * | 1.04 * |
Distance (meters) | 0–7 days | 8–14 days | 15–21 days | 22–28 days | 29–35 days | 36–42 days | >43 days |
---|---|---|---|---|---|---|---|
Same location | 2.47 ** | 2.32 ** | 2.27 ** | 2.39 ** | 2.17 ** | 2.12 ** | 2.21 ** |
1–100 | 1.15 ** | 1.13 ** | 1.16 ** | 1.12 ** | 1.14 ** | 1.12 ** | 1.15 ** |
101–200 | 0.98 | 0.95 | 0.94 | 0.95 | 0.96 | 0.97 | 0.96 |
201–300 | 0.98 | 0.97 | 0.97 | 0.97 | 0.96 | 0.98 | 0.97 |
301–400 | 0.99 | 0.99 | 0.99 | 1.03 | 1.00 | 1.00 | 1.02 |
401–500 | 0.97 | 0.97 | 0.97 | 0.99 | 0.96 | 0.97 | 0.98 |
501–600 | 0.99 | 1.00 | 0.99 | 1.00 | 0.97 | 1.00 | 0.98 |
601–700 | 0.99 | 0.99 | 1.01 | 1.02 * | 1.00 | 1.00 | 1.02 |
701–800 | 0.98 | 0.98 | 0.97 | 0.99 | 0.98 | 0.99 | 1.00 |
801–900 | 0.99 | 0.98 | 1.00 | 1.03 | 1.01 | 1.00 | 1.01 |
901–1000 | 0.99 | 0.99 | 0.98 | 1.01 | 0.99 | 1.00 | 1.00 |
> 1000 | 0.98 | 0.97 | 0.98 | 0.99 | 0.98 | 0.98 | 0.98 |
Distance (meters) | 0–7 days | 8–14 days | 15–21 days | 22–28 days | 29–35 Days | 36–42 days | >43 days |
---|---|---|---|---|---|---|---|
Same location | 2.52 ** | 2.29 ** | 2.1 ** | 1.88 ** | 1.92 ** | 1.71 ** | 1.53 ** |
1–100 | 1.16 ** | 1.11 ** | 1.12 ** | 1.12 ** | 1.09 ** | 1.08 ** | 1.08 ** |
101–200 | 1.00 * | 0.97 | 0.93 | 0.92 | 0.96 | 0.93 | 0.96 |
201–300 | 0.96 | 0.98 | 0.96 | 0.94 | 0.95 | 0.96 | 0.98 |
301–400 | 1.00 | 0.98 | 0.98 | 0.97 | 0.96 | 0.98 | 0.99 |
401–500 | 0.96 | 0.97 | 0.97 | 0.95 | 0.95 | 0.96 | 0.98 |
501–600 | 0.99 | 0.98 | 0.98 | 0.97 | 0.99 | 0.98 | 0.98 |
601–700 | 1.00 | 1.00 | 0.99 | 0.98 | 0.99 | 0.97 | 1.00 |
701–800 | 0.98 | 0.98 | 0.96 | 0.96 | 0.96 | 0.98 | 0.98 |
801–900 | 1.00 | 1.00 | 0.99 | 0.99 | 0.98 | 0.98 | 0.99 |
901–1000 | 0.99 | 0.99 | 0.97 | 0.96 | 0.95 | 0.98 | 1.00 |
>1000 | 0.98 | 0.97 | 0.97 | 0.96 | 0.96 | 0.97 | 0.98 |
Distance (meters) | Past (day) | Same Time | Future (day) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
>42 | 36–42 | 29–35 | 22–28 | 15–21 | 8–14 | 0–7 | 0–7 | 8–14 | 15–21 | 22–28 | 20–35 | 36–42 | >42 | ||
Same location | 0.33 | 0.96 | 1.21 ** | 1.46 ** | 1.63 ** | 1.99 ** | 2.26 ** | 2.66 ** | 2.50 ** | 2.41 ** | 2.52 ** | 2.63 ** | 2.31 ** | 2.31 ** | 2.54 ** |
1–100 | 0.74 | 0.92 | 1.10 | 1.14 * | 1.19 ** | 1.23 ** | 1.28 ** | 1.39 ** | 1.38 ** | 1.42 ** | 1.45 ** | 1.43 ** | 1.42 ** | 1.50 ** | 1.60 ** |
101–200 | 0.96 | 0.79 | 0.76 | 0.82 | 0.81 | 0.84 | 0.88 | 1.02 | 0.87 | 0.89 | 0.89 | 1.00 | 1.07 | 1.05 * | 1.06 |
201–300 | 0.94 | 0.80 | 0.73 | 0.77 | 0.87 | 0.88 | 0.92 | 0.95 | 1.01 | 0.98 | 0.98 | 1.00 | 1.04 | 1.07 | 1.08 * |
301–400 | 0.90 | 0.90 | 0.87 | 0.86 | 0.93 | 1.00 | 1.00 | 1.03 | 1.05 * | 1.05 * | 1.13 ** | 1.18 ** | 1.12 ** | 1.14 ** | 1.19 ** |
401–500 | 0.92 | 0.85 | 0.81 | 0.85 | 0.84 | 0.90 | 0.89 | 0.93 | 0.98 | 0.99 | 1.03 | 1.05 | 1.08 ** | 1.10 ** | 1.04 |
501–600 | 0.88 | 0.84 | 0.89 | 0.93 | 1.02 | 0.97 | 1.04 | 1.02 | 1.10 * | 1.14 ** | 1.17 ** | 1.13 ** | 1.16 ** | 1.18 ** | 1.11 ** |
601–700 | 0.84 | 0.94 | 0.90 | 0.96 | 0.99 | 1.07 | 1.07 ** | 1.11 ** | 1.08 ** | 1.17 ** | 1.20 ** | 1.17 ** | 1.12 ** | 1.22 ** | 1.19 ** |
701–800 | 0.90 | 0.81 | 0.86 | 0.87 | 0.89 | 0.86 | 0.94 | 0.98 | 0.96 | 1.05 | 1.03 | 1.07 ** | 1.09 ** | 1.14 ** | 1.15 ** |
801–900 | 0.87 | 0.87 | 0.92 | 0.99 | 1.01 | 1.04 | 1.08 ** | 1.16 ** | 1.16 ** | 1.16 ** | 1.20 ** | 1.27 ** | 1.21 ** | 1.20 ** | 1.22 ** |
901–1000 | 0.90 | 0.84 | 0.83 | 0.88 | 0.90 | 0.99 | 0.99 | 1.05 | 1.10 ** | 1.14 ** | 1.13 ** | 1.19 ** | 1.14 ** | 1.15 ** | 1.14 ** |
>1000 | 0.89 | 0.84 | 0.87 | 0.90 | 0.93 | 0.96 | 0.99 | 1.04 ** | 1.07 ** | 1.10 ** | 1.13 ** | 1.16 ** | 1.16 ** | 1.16 ** | 1.16 ** |
Distance (meters) | Past (day) | Same Time | Future (day) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
>42 | 36–42 | 29–35 | 22–28 | 15–21 | 8–14 | 0–7 | 0–7 | 8–14 | 15–21 | 22–28 | 20–35 | 36–42 | >42 | ||
Same location | 0.54 | 1.78 ** | 1.74 ** | 1.98 ** | 2.22 ** | 2.25 ** | 2.24 ** | 2.35 ** | 2.53 ** | 2.29 ** | 2.11 ** | 1.90 ** | 1.89 ** | 1.59 ** | 1.51 ** |
1–100 | 0.81 | 1.35 ** | 1.32 ** | 1.30 ** | 1.30 ** | 1.37 ** | 1.32 ** | 1.32 ** | 1.25 ** | 1.21 ** | 1.22 ** | 1.23 ** | 1.16 ** | 1.23 ** | 1.17 ** |
101–200 | 1.00 | 1.02 | 1.01 | 0.94 | 0.91 | 0.90 | 0.89 | 0.92 | 0.92 | 0.91 | 0.83 | 0.87 | 0.87 | 0.90 | 0.91 |
201–300 | 0.98 | 1.03 | 1.00 | 0.97 | 1.00 | 0.96 | 0.95 | 0.93 | 0.93 | 0.92 | 0.92 | 0.88 | 0.89 | 0.91 | 0.94 |
301–400 | 0.94 | 1.11 ** | 1.13 ** | 1.07 ** | 1.09 ** | 1.02 ** | 1.00 | 0.96 | 1.01 | 0.99 | 0.98 | 0.95 | 0.94 | 0.99 | 0.98 |
401–500 | 0.97 | 1.04 | 1.05 | 1.03 | 1.00 | 0.97 | 0.96 | 0.94 | 0.89 | 0.94 | 0.94 | 0.89 | 0.92 | 0.94 | 0.98 |
501–600 | 0.94 | 1.08 * | 1.11 ** | 1.03 | 1.07 ** | 1.05 ** | 1.03 | 1.02 | 1.02 | 0.98 | 1.00 | 1.00 | 1.00 | 1.02 | 0.99 |
601–700 | 0.91 | 1.16 ** | 1.08 | 1.08 * | 1.07 ** | 1.04 ** | 1.04 | 1.04 | 1.05 * | 1.02 | 1.03 | 1.03 * | 1.00 | 0.99 | 1.05 |
701–800 | 0.95 | 1.06 * | 1.06 | 0.99 | 1.00 | 0.99 | 0.96 | 0.94 | 0.98 | 0.95 | 0.92 | 0.94 | 0.96 | 0.98 | 0.97 |
801–900 | 0.92 | 1.12 ** | 1.08 | 1.06 * | 1.09 ** | 1.05 ** | 1.02 | 1.03 | 1.03 | 1.06 ** | 1.01 | 1.04 | 0.98 | 1.01 | 0.99 |
901–1000 | 0.94 | 1.10 ** | 1.13 ** | 1.07 ** | 1.06 * | 1.01 | 1.00 | 0.96 | 0.96 | 0.99 | 0.95 | 0.92 | 0.94 | 0.97 | 1.01 |
>1000 | 0.96 | 1.08 ** | 1.06 ** | 1.05 ** | 1.04 ** | 1.02 ** | 0.99 | 0.97 | 0.96 | 0.95 | 0.94 | 0.93 | 0.94 | 0.94 | 0.96 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Zhang, H. Could Crime Risk Be Propagated across Crime Types? ISPRS Int. J. Geo-Inf. 2019, 8, 203. https://doi.org/10.3390/ijgi8050203
Wang Z, Zhang H. Could Crime Risk Be Propagated across Crime Types? ISPRS International Journal of Geo-Information. 2019; 8(5):203. https://doi.org/10.3390/ijgi8050203
Chicago/Turabian StyleWang, Zengli, and Hong Zhang. 2019. "Could Crime Risk Be Propagated across Crime Types?" ISPRS International Journal of Geo-Information 8, no. 5: 203. https://doi.org/10.3390/ijgi8050203
APA StyleWang, Z., & Zhang, H. (2019). Could Crime Risk Be Propagated across Crime Types? ISPRS International Journal of Geo-Information, 8(5), 203. https://doi.org/10.3390/ijgi8050203