Adapted Rules for UML Modelling of Geospatial Information for Model-Driven Implementation as OWL Ontologies
Abstract
:1. Introduction
1.1. Geospatial Information
1.2. Geospatial Information in the Semantic Web
1.3. Contribution and Research Questions
- What are the primary challenges in conversions from UML models of geospatial information to OWL ontologies?
- How can conversion challenges be overcome with adapted rules for UML modelling?
2. Materials and Methods
2.1. Literature Search
2.2. State of the Art
2.2.1. Comparing UML and OWL
2.2.2. Conversions from UML to OWL
2.2.3. Packages
2.2.4. Classes
2.2.5. Data Types
2.2.6. Spatial Data Types
2.2.7. Enumerations
2.2.8. Code Lists
2.2.9. Unions
2.2.10. Attributes and Association Roles
2.2.11. Associations
3. Results
3.1. Semantics in UML Models for Implementation as OWL Ontologies
3.2. Extended UML Profile for Geospatial Information
3.3. Global Properties in UML
3.4. Linking to External Concepts
4. Discussion
4.1. The Scope of Ontologies for Geospatial Information
- Use in Semantic Web technology and applications only.
- Unidirectional information exchange from GIS applications to the Semantic Web.
- Bidirectional information exchange between GIS applications and the Semantic Web.
4.2. Challenges for Conversions from UML to OWL
4.3. Rules for UML Modelling
5. Conclusions and Further Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jetlund, K. Improvements in Automated Derivation of owl ontologies from geospatial uml models. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2018, XLII-4, 283–290. [Google Scholar] [CrossRef]
- Dangol, A.; Dewaelheyns, V.; Steenberghen, T. Why Geospatial Linked Open Data for Smart Mobility? In REAL CORP 2016–SMART ME UP! How to Become and How to Stay a Smart City, and Does This Improve Quality of Life? Proceedings of the 21st International Conference on Urban. Planning, Regional Development and Information Society, Hamburg, Germany, 22–24 June 2016; CORP—Competence Center of Urban and Regional Planning: Vienna, Austria, 2016. [Google Scholar]
- Prudhomme, C.; Homburg, T.; Ponciano, J.-J.; Boochs, F.; Cruz, C.; Roxin, A.-M. Interpretation and automatic integration of geospatial data into the Semantic Web. Computing 2019, 1–27. [Google Scholar] [CrossRef]
- Zhang, C.R.; Zhao, T.; Anselin, L.; Li, W.D.; Chen, K. A Map-Reduce based parallel approach for improving query performance in a geospatial semantic web for disaster response. Earth Sci. Inform. 2015, 8, 499–509. [Google Scholar] [CrossRef]
- Luiten, B.; Böhms, M.; O’Keeffe, A.; van Nederveen, S.; Bakker, J.; Wikström, L. A hybrid linked data approach to support asset management. In Life-Cycle of Engineering Systems: Emphasis on Sustainable Civil Infrastructure: Proceedings of the Fifth International Symposium on Life-Cycle Civil Engineering (IALCCE 2016); CRC Press, Taylor & Francis Group: London, UK, 2016. [Google Scholar]
- Luiten, B.; O’Keeffe, A.; Stolk, S.; Wikström, L.; Weise, M. Interlink D4. Principles for a European Road OTL; CEDR: Brussels, Belgium, 2017. [Google Scholar]
- Karan, E.P.; Irizarry, J. Extending BIM interoperability to preconstruction operations using geospatial analyses and semantic web services. Autom. Constr. 2015, 53, 1–12. [Google Scholar] [CrossRef]
- Hitzler, P.; Janowicz, K.; Krisnadhi, A.A. Ontology Modeling with Domain Experts: The GeoVocamp Experience. In Proceedings of the Diversity++@ ISWC 2015, Bethlehem, PA, USA, 12 October 2015. [Google Scholar]
- Jetlund, K.; Onstein, E.; Huang, L. Information Exchange between GIS and Geospatial ITS Databases Based on a Generic Model. Isprs Int. J. Geo Inf. 2019, 8, 141. [Google Scholar] [CrossRef]
- Coetzee, S.; Plews, R.; Brodeur, J.; Hjelmager, J.; Jones, A.; Jetlund, K.; Grillmayer, R.; Wasström, C. Standards Making Geographic Information Discoverable, Accessible and Usable for Modern Cartography. In Service-Oriented Mapping: Changing Paradigm in Map Production and Geoinformation Management; Döllner, J., Jobst, M., Schmitz, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 325–344. [Google Scholar]
- Object Management Group. Unified Modelling Language Specification Version 2.5.1; Object Management Group: Needham, MA, USA, 2017. [Google Scholar]
- ISO/TC 211. ISO 19109:2015 Geographic Information–Rules for Application Schema; ISO: Geneva, Switzerland, 2015. [Google Scholar]
- ISO/TC 211. ISO 19103:2015 Geographic Information–Conceptual Schema Language; ISO: Geneva, Switzerland, 2015. [Google Scholar]
- Object Management Group. Model Driven Architecture (MDA) Guide Rev. 2.0; Object Management Group: Needham, MA, USA, 2014. [Google Scholar]
- ISO/TC 211. ISO 19136:2007 Geographic Information–Geography Markup Language (GML); ISO: Geneva, Switzerland, 2007. [Google Scholar]
- Jeansoulin, R. Review of Forty Years of Technological Changes in Geomatics toward the Big Data Paradigm. ISPRS Int. J. Geo Inf. 2016, 5, 155. [Google Scholar] [CrossRef]
- ISO/TC 211. ISO 19128:2005 Geographic Information–Web Map Server Interface; ISO: Geneva, Switzerland, 2005. [Google Scholar]
- ISO/TC 211. ISO 19142:2010 Geographic Information–Web Feature Service; ISO: Geneva, Switzerland, 2010. [Google Scholar]
- Zhang, C.R.; Zhao, T.; Li, W.D.; Osleeb, J.P. Towards logic-based geospatial feature discovery and integration using web feature service and geospatial semantic web. Int. J. Geogr. Inf. Sci. 2010, 24, 903–923. [Google Scholar] [CrossRef]
- Iwaniak, A.; Kaczmarek, I.; Strzelecki, M.; Lukowicz, J.; Jankowski, P. Enriching and improving the quality of linked data with GIS. Open Geosci. 2016, 8, 323–336. [Google Scholar] [CrossRef] [Green Version]
- Manola, F.; Miller, E.; McBride, B. RDF 1.1 Primer. W3C Working Group Note 2014. Available online: https://www.w3.org/TR/rdf11-primer/ (accessed on 21 August 2019).
- Hitzler, P.; Krötzsch, M.; Parsia, B.; Patel-Schneider, P.F.; Rudolph, S. OWL 2 Web Ontology Language Primer (Second Edition). W3C Recomm. 2012, 27, 123. [Google Scholar]
- Hart, G.; Dolbear, C. Linked Data: A Geographic Perspective; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Aditya, T.; Kraak, M.-J. A Search Interface for an SDI: Implementation and Evaluation of Metadata Visualization Strategies. Trans. GIS 2007, 11, 413–435. [Google Scholar] [CrossRef]
- Klien, E. A Rule-Based Strategy for the Semantic Annotation of Geodata. Trans. GIS 2007, 11, 437–452. [Google Scholar] [CrossRef]
- Lutz, M.; Kolas, D. Rule-Based Discovery in Spatial Data Infrastructure. Trans. GIS 2007, 11, 317–336. [Google Scholar] [CrossRef]
- Wiemann, S.; Bernard, L. Spatial data fusion in Spatial Data Infrastructures using Linked Data. Int. J. Geogr. Inf. Sci. 2016, 30, 613–636. [Google Scholar] [CrossRef]
- Hietanen, E.; Lehto, L.; Latvala, P. Providing Geographic Datasets as Linked Data in Sdi. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 583–586. [Google Scholar] [CrossRef]
- Patroumpas, K.; Georgomanolis, N.; Stratiotis, T.; Alexakis, M.; Athanasiou, S. Exposing INSPIRE on the Semantic Web. J. Web Semant. 2015, 35, 53–62. [Google Scholar] [CrossRef]
- Ulutaş Karakol, D.; Kara, G.; Yılmaz, C.; Cömert, Ç. Semantic Linking Spatial Rdf Data to the Web Data Sources. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII–4, 639–645. [Google Scholar] [CrossRef]
- Aydinoğlu, A.Ç.; Kara, A. Modelling and publishing geographic data with model-driven and linked data approaches: Case study of administrative units in Turkey. J. Spat. Sci. 2019, 64, 11–31. [Google Scholar] [CrossRef]
- Wang, Y.D.; Qiao, M.L.; Liu, H.; Ye, X.Y. Qualitative spatial reasoning on topological relations by combining the semantic web and constraint satisfaction. Geo Spat. Inf. Sci. 2018, 21, 80–92. [Google Scholar] [CrossRef]
- Mobasheri, A. A Rule-Based Spatial Reasoning Approach for OpenStreetMap Data Quality Enrichment; Case Study of Routing and Navigation. Sensors 2017, 17, 2498. [Google Scholar] [CrossRef]
- Tand, J.; van den Brink, L.; Barnaghi, P. Spatial Data on the Web Best Practices. W3C Working Group Note 2017. Available online: https://www.w3.org/TR/2017/NOTE-sdw-bp-20170928/ (accessed on 21 August 2019).
- ISO/TC 211. ISO 19150-2:2015 Geographic Information–Ontology–Part 2: Rules for Developing Ontologies in the Web Ontology Language (OWL); ISO: Geneva, Switzerland, 2015. [Google Scholar]
- ISO/TC 211. ISO/TC 211 Group for Ontology Management. 2018. Available online: https://github.com/ISO-TC211/GOM (accessed on 15 June 2019).
- ARE3NA Project. Guidelines for the RDF Encoding of Spatial Data. 2017. Available online: http://inspire-eu-rdf.github.io/inspire-rdf-guidelines/ (accessed on 15 June 2019).
- Echterhoff, J.; Portele, C.; Birkel, P.; Nichols, D.L.; Badgley, E.D. OGC Testbed-12: ShapeChange Engineering Report; Open Geospatial Consoritum: Wayland, MA, USA, 2017. [Google Scholar]
- Echterhoff, J.; Birkel, P.; Nichols, D.L. OGC Testbed-14: Application Schema-Based Ontology Development Engineering Report; Open Geospatial Consoritum: Wayland, MA, USA, 2018. [Google Scholar]
- McGlinn, K.; Wagner, A.; Pauwels, P.; Bonsma, P.; Kelly, P.; O’Sullivan, D. Interlinking geospatial and building geometry with existing and developing standards on the web. Autom. Constr. 2019, 103, 235–250. [Google Scholar] [CrossRef]
- Debruyne, C.; Meehan, A.; Clinton, É.; McNerney, L.; Nautiyal, A.; Lavin, P.; O’Sullivan, D. Ireland’s Authoritative Geospatial Linked Data. In International Semantic Web Conference; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Debruyne, C.; Clinton, É.; McNerney, L.; Nautiyal, A.; O’Sullivan, D. Serving Ireland’s Geospatial Information as Linked Data. In Proceedings of the International Semantic Web Conference (Posters & Demos), Kobe, Japan, 17–21 October 2016. [Google Scholar]
- Ordnance Survey. Ordnance Survey Ontologies. Available online: http://data.ordnancesurvey.co.uk/ontology (accessed on 6 March 2019).
- Van den Brink, L.; Janssen, P.; Quak, W.; Stoter, J. Linking spatial data: Automated conversion of geo-information models and GML data to RDF. Int. J. Spat. Data Infrastruct. Res. 2014, 9, 59–85. [Google Scholar] [CrossRef]
- Folmer, E.; Beek, W.; Rietveld, L. Linked Data Viewing as Part of the Spatial Data Platform of the Future. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-4/W8, 49–52. [Google Scholar] [CrossRef]
- Vilches-Blázquez, L.M.; Villazón-Terrazas, B.; Corcho, O.; Gómez-Pérez, A. Integrating geographical information in the Linked Digital Earth. Int. J. Digit. Earth 2014, 7, 554–575. [Google Scholar] [CrossRef]
- Greek Linked Open Data. Available online: http://linkedopendata.gr/ (accessed on 6 March 2019).
- Allemang, D.; Hendler, J.A. Semantic Web for the Working Ontologist: Effective Modeling in RDFS and OWL, 2nd ed.; Elsevier: Burlington, MA, USA, 2011. [Google Scholar]
- Bārzdiņš, J.; Bārzdiņš, G.; Čerāns, K.; Liepiņš, R.; Sproģis, A. UML style graphical notation and editor for OWL 2. In International Conference on Business Informatics Research; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Brockmans, S.; Haase, P.; Hitzler, P.; Studer, R. A metamodel and UML profile for rule-extended OWL DL ontologies. In Semantic Web: Research and Applications, Proceedings; Sure, Y., Domingue, J., Eds.; Springer: Berlin, Germany, 2006; pp. 303–316. [Google Scholar]
- Brockmans, S.; Volz, R.; Eberhart, A.; Loffler, P. Visual modeling of OWL DL ontologies using UML. In Semantic Web Iswc 2004 Proceedings; McIlraith, S.A., Plexousakis, D., VanHarmelen, F., Eds.; Springer: Berlin, Germany, 2004; pp. 198–213. [Google Scholar]
- Cranefield, S.; Purvis, M. A UML profile and mapping for the generation of ontology-specific content languages. Knowl. Eng. Rev. 2002, 17, 21–39. [Google Scholar] [CrossRef]
- Djuric, D.; Gasevic, D.; Devedzic, V.; Damjanovic, V. UML profile for OWL. In Web Engineering, Proceedings; Koch, N., Fraternali, P., Wirsing, M., Eds.; Springer: Berlin, Germany, 2004; pp. 607–608. [Google Scholar]
- Djuric, D.; Gasevic, D.; Devedzic, V.; Damjanovic, V. A UML profile for OWL ontologies. In Model Driven Architecture; Assmann, U., Aksit, M., Rensink, A., Eds.; Springer: Berlin, Germany, 2005; pp. 204–219. [Google Scholar]
- Evermann, J.; Wand, Y. Ontological modeling rules for UML: An empirical assessment. J. Comput. Inf. Syst. 2006, 46, 14–29. [Google Scholar] [CrossRef]
- Guizzardi, G.; Wagner, G.; Guarino, N.; van Sinderen, M. An ontologically well-founded profile for UML conceptual models. In Advanced Information Systems Engineering, Proceedings; Persson, A., Stirna, J., Eds.; Springer: Berlin, Germany, 2004; pp. 112–126. [Google Scholar]
- Guizzardi, G.; Wagner, G.; Herre, H. On the foundations of UML as an ontology representation language. In Engineering Knowledge in the Age of the Semantic Web, Proceedings; Motta, E., Shadbolt, N., Stutt, A., Gibbins, N., Eds.; Springer: Berlin, Germany, 2004; pp. 47–62. [Google Scholar]
- Keet, C.M.; Fillottrani, P.R. An ontology-driven unifying metamodel of UML Class Diagrams, EER, and ORM2. Data Knowl. Eng. 2015, 98, 30–53. [Google Scholar] [CrossRef]
- Kogut, P.; Cranefield, S.; Hart, L.; Dutra, M.; Baclawski, K.; Kokar, M.; Smith, J. UML for ontology development. Knowl. Eng. Rev. 2002, 17, 61–64. [Google Scholar] [CrossRef] [Green Version]
- Object Management Group. Ontology Definition Metamodel, Version 1.0.; Object Management Group: Needham, MA, USA, 2009. [Google Scholar]
- Parreiras, F.S.; Staab, S. Using ontologies with UML class-based modeling: The TwoUse approach. Data Knowl. Eng. 2010, 69, 1194–1207. [Google Scholar] [CrossRef] [Green Version]
- Interactive Instruments GmbH, ShapeChange. Available online: http://shapechange.net (accessed on 15 June 2019).
- Bourahla, M.; Belghiat, A. UML Class Diagrams to OWL Ontologies: A Graph Transformation based Approach. Int. J. Comput. Appl. 2012, 41, 41–46. [Google Scholar] [CrossRef]
- Bourahla, M.; Belghiat, A. Transformation of UML models towards OWL ontologies. In Proceedings of the 2012 6th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications, SETIT, Sousse, Tunisia, 21–24 March 2012. [Google Scholar]
- Xu, Z.M.; Ni, Y.Y.; He, W.J.; Lin, L.L.; Yan, Q. Automatic extraction of OWL ontologies from UML class diagrams: A semantics-preserving approach. World Wide Web Internet Web Inf. Syst. 2012, 15, 517–545. [Google Scholar] [CrossRef]
- Bahaj, M.; Bakkas, J. Automatic Conversion Method of Class Diagrams to Ontologies Maintaining Their Semantic Features. Int. J. Soft Comput. Eng. (IJSCE) 2013, 2, 65–69. [Google Scholar]
- Hajjamy, O.E.; Alaoui, K.; Alaoui, L.; Bahaj, M. Mapping UML to OWL2 ontology. J. Theor. Appl. Inf. Technol. 2016, 90, 126–143. [Google Scholar]
- Gasevic, D.; Djuric, D.; Devedzic, V.; Damjanovi, V. Converting UML to OWL ontologies. In Proceedings of the 13th international World Wide Web conference on Alternate Track Papers & Posters WWW Alt. ’04, New York, NY, USA, 19–21 May 2004. [Google Scholar]
- Gherabi, N.; Bahaj, M. A New Method for Mapping UML Class into OWL Ontology. Int. J. Comput. Appl. 2012, 1, 5–9. [Google Scholar]
- Probst, F.; Bibotti, F.; Pazos, A. Connecting ISO and OGC Models to the Semantic Web | OGC Network. In Proceedings of the 3rd International Conference on Geographic Information Science: Extended Abstracts and Poster Summaries, Adelphi, MD, USA, 20–23 October 2004; pp. 181–184. [Google Scholar]
- Buccella, A.; Cechich, A.; Gendarmi, D.; Lanubile, F.; Semeraro, G.; Colagrossi, A. Building a global normalized ontology for integrating geographic data sources. Comput. Geosci. 2011, 37, 893–916. [Google Scholar] [CrossRef]
- Zedlitz, J.; Luttenberger, N. Transforming Between UML Conceptual Models And OWL 2 Ontologies. In Proceedings of the Terra Cognita Workshop on Foundations Technologies and Applications of the Geospatial Web at the 11th International Semantic Web Conference ISWC 2012, Boston, MA, USA, 12 November 2012. [Google Scholar]
- ISO/TC 211. ISO 19107:2003 Geographic Information–Spatial Schema; ISO: Geneva, Switzerland, 2003. [Google Scholar]
- Perry, M.; Herring, J. OGC GeoSPARQL-A Geographic Query Language for RDF Data; Open Geospatial Concortium: Wayland, MA, USA, 2012. [Google Scholar]
- Cox, S. An explicit OWL representation of ISO/OGC Observations and Measurements. SSN@ ISWC 2013, 1063, 1–18. [Google Scholar]
- ISO/TC 211. ISO 19125-1:2004 Geographic Information–Simple Feature Access–Part 1: Common Architecture; ISO: Geneva, Switzerland, 2004. [Google Scholar]
- Inspire. Inspire Generic Conceptual Model; INSPIRE Drafting Team “Data Specification”: Brussels, Belgium, 2013. [Google Scholar]
- ISO/TC 204. ISO 14825:2011 Intelligent Transport Systems–Geographic Data Files (GDF)–GDF5.0; ISO: Geneva, Switzerland, 2011. [Google Scholar]
- Link, V.; Lohmann, S.; Marbach, E.; Negru, S.; Wiens, V. WebVOWL. 2019. Available online: http://www.visualdataweb.de/webvowl. (accessed on 21 August 2019).
- Inspire. Inspire Data Specification on Geographical Names–Guidelines; INSPIRE Thematic Working Group Geogrphical Names: Brussels, Belgium, 2010. [Google Scholar]
- Echterhoff, J.; De Paepe, D. Encoding of Geographical Names. 2017. Available online: https://github.com/inspire-eu-rdf/inspire-rdf-guidelines/issues/28 (accessed on 17 June 2019).
- ISO/TC 37/SC 2. ISO 639-2:1998 Codes for the Representation of Names of Languages–Part 2: Alpha-3 Code; ISO: Geneva, Switzerland, 1998. [Google Scholar]
- The Library of Congress, ISO639-2 Languages. 2019. Available online: http://id.loc.gov/vocabulary/iso639-2 (accessed on 21 August 2019).
- ISO/TC 204. ISO 14823:2017 Intelligent Transport Systems–Graphic Data Dictionary; ISO: Geneva, Switzerland, 2017. [Google Scholar]
- Jetlund, K. ISO 14823 SKOS Concept Schemes. 2019. Available online: https://github.com/jetgeo/GIS2OWL/tree/master/iso14823 (accessed on 21 August 2019).
- Noy, N.F.; McGuinness, D.L. Ontology Development 101: A Guide to Creating Your First Ontology. 2001. Available online: https://protegewiki.stanford.edu/wiki/Ontology101 (accessed on 21 August 2019).
Keyword Set | Purpose—Literature Mentioning |
---|---|
| The abbreviation UML |
| The abbreviation OWL or ontologies in general. |
| Terms for geospatial information. |
| The geospatial standardization actors ISO/TC 211 and OGC. |
| Terms for conversion processes. |
| Terms for the Semantic Web and Linked Data. |
Subject | Literature Type | |||||
---|---|---|---|---|---|---|
Book or Book Section | Conference Paper or Proceedings | Journal Article | Report or Standard | Web Page | Total | |
Geospatial information in the Semantic Web | 4 | 8 | 34 | 4 | 3 | 53 |
Comparing UML and OWL | 10 | 2 | 8 | 1 | 1 | 22 |
UML to OWL conversions in general | 1 | 4 | 9 | 0 | 0 | 14 |
UML to OWL conversions for geospatial information | 1 | 5 | 6 | 2 | 1 | 15 |
UML Concept | OWL Concept | Conversion Rule Specification |
---|---|---|
Package | Ontology | Name and structure as in UML [35]. Name and structure from tagged values [37,38]. |
Class | Class | Direct conversion. Subclass of AnyFeature [35]. Mapping to external classes [38]. |
Class generalization | subclassOf | Direct conversion. |
Abstract class | Not existing | isAbstract annotation property [35,37,38]. DisjointUnion axiom [72]. |
Primitive data type | DatatypeProperty | Matched to XSD Datatypes. |
Structured data type | DatatypeProperty or ObjectProperty | Mapping to a few external types, else new class [35]. Mapping to specified external types, else new class [38]. Mapping to all similar external types, else new class [37]. |
Spatial data types | Data types defined in ISO 19107 [73] and GeoSPARQL [74] | Data types defined in the ISO 19107 ontology [35]. Mapping to GeoSPARQL data types [3,28,29,34,37,44]. Extending GeoSPARQL [31,41,42]. |
Enumeration | DataOneOf | Direct conversion. SKOS Concept Scheme [37,38]. |
Code lists | Several options | SKOS and allValuesFrom [35]. SKOS [37,38]. DataUnionOf and any value [72]. |
Union | Several options | Union [35]. Intersections and Union [37,38]. Flattening [38] Subproperty and ExactCardinality [72]. DisjointClasses [75]. |
Attribute and association role | Property | Simple conversion [68,69]. Globalization by similarity matching [71]. Globalization by prefix [35,38]. Global attributes with domain AnyFeature [35]. Globalization by manual matching [37,38]. Mapping to external properties [38,67]. |
Simple association | Domain and range | Direct conversion. |
Aggregation | Not existing | Hierarchy of properties [66]. aggregationType annotation property [35]. |
Composition | Not existing | Hierarchy of properties [66]. InverseFunctional [67]. aggregationType annotation property [35]. |
Tagged Value | Extended Concepts | Description |
---|---|---|
ontologyName | Package (ApplicationSchema) | Ontology name, if different from both package name and xsdDocument. |
URI | Class (FeatureType) DataType Enumeration CodeList PropertyType | URI for the element, for internal and external references. |
vocabulary | Class (FeatureType) DataType Enumeration CodeList | Reference to an external vocabulary that will replace the internal concept in an OWL implementation. Specified for INSPIRE and implemented in ShapeChange. |
rdfStatement | Class (FeatureType) DataType Enumeration CodeList PropertyType | One or more RDF statements for linking internal and external concepts. |
isGlobal | PropertyType | Specifies if the scope of a property is local or global. Default set to false. |
Attribute Name | Tagged Values | |
---|---|---|
isGlobal | URI | |
AttributeCatalogue.displayClass | true | gdf#displayClass |
AttributeCatalogue.accessibility | true | gdf#accessibility |
PedestrianCrossing.displayClass | true | gdf#displayClass |
PedestrianCrossing.accessibility | true | gdf#accessibility |
PedestrianCrossing.priority | false | |
PedestrianCrossing.signage | false | |
PedestrianCrossing.type | false | |
PedestrianCrossing.level | false | |
TrafficSign.displayClass | true | gdf#displayClass |
TrafficSign.signClass | false | |
TrafficSign.signSymbol | false | |
TrafficSign.signText | false | |
TrafficSign.signValue | false | |
TrafficSign.directionCategory | false | |
TrafficSign.exitNumber | false | |
TrafficSign.destinationInfo | false | |
TrafficSign.otherTextContent | false | |
StopPoint.accessibility | true | gdf#accessibility |
StopPoint.publicTransportMode | false | |
StopPoint.undergroundFlag | false |
Class or Attribute Name | Tagged Value “rdfStatement” |
---|---|
LanguageCodedText | owl:equivalentClass rdf:resource = “rdfs:Literal” |
TrafficSign | |
TrafficSign.displayClass | |
TrafficSign.signClass | |
TrafficSign.signSymbol | |
TrafficSign.signText | owl:equivalentProperty rdf:resource = “rdfs:label” |
TrafficSign.signValue | |
TrafficSign.directionCategory | |
TrafficSign.exitNumber | owl:equivalentProperty rdf:resource = “rdfs:label” |
TrafficSign.destinationInfo | |
TrafficSign.otherTextContent | owl:equivalentProperty rdf:resource = “rdfs:label” |
Class Name | Tagged Value “Vocabulary” |
---|---|
LanguageCode | http://id.loc.gov/vocabulary/iso639-2 |
TrafficSignClassValue | https://git.io/fjwVy |
TrafficSignSymbolValue | https://git.io/fjwVS |
Concept | Level of Information Flow | Description | Discussion |
---|---|---|---|
Abstract classes | 1 and 2 | No restrictions needed. | The information given by the “isAbstract” annotation in ISO 19150-2 will be satisfactory. |
3 | Restrictions must prevent instances of the classes. | None of the described conversion rules maintains the restrictions. Only the properties from the abstract class should be implemented in OWL, and not the class itself. The domain of the properties should then be set to a union of the subclasses, similar to our suggested solution for reused properties. | |
Unions | 1 and 2 | No restrictions needed. | The OWL “union” defined in ISO 19150-2 will be satisfactory. |
3 | Restrictions are needed to define valid data types. | Conversion of UML unions may be the most complex challenge for implementation in OWL, and several methods have been suggested. The method described in the INSPIRE Guidelines and OGC Testbed 12 maintains the restrictions of a union, but it has a complicated representation in OWL. It was questioned in OGC Testbed 12 whether Semantic Web software could handle the complexity of the solution. Two alternative and simplified solutions were suggested in OGC Testbed 12 as well. Existing literature is not clear regarding what situations the different solutions should be used for. Further studies may be needed to achieve experiences from implementations and give recommendations for when to use different solutions. | |
Compositions | 1 and 2 | No restrictions needed. | The informative “aggregationType” annotation defined in ISO 19150-2 will be satisfactory. |
3 | Restrictions are needed to ensure that a part instance is related to only one whole instance. | A stricter conversion with an “InverseFunctional” restriction was suggested in [67], while [66] defined a hierarchy of association types. Combining the approaches from [66] and [67] with the annotation from ISO 19150-2 may be a better solution for maintaining the implicit restrictions. | |
Code lists | 1 and 2 | No restrictions needed. | The open approach defined in OGC Testbed 12 and implemented in INSPIRE, with an informative reference to a vocabulary statement, will be satisfactory. |
3 | Restrictions should refer to valid predefined values in the model or an external vocabulary, but also be open for using other values. | The ISO/TC 211 ontologies exclude additional values, while the INSPIRE ontologies have a very open approach. The approach in INSPIRE is very flexible as the resource can be anything, but the flexibility comes with the cost of reduced possibilities for the direct use of the predefined values. A possible improvement is to combine the union approach from [72] with a closer binding to clearly defined external SKOS Concept Schemes. |
Concept | Level of Information Flow | Description | Discussion |
---|---|---|---|
Global properties | All | Attributes that are identical in several UML classes should be converted to global properties in OWL. | Original definitions of such attributes should be maintained in one specific and abstract UML class. The class is called “AttributeCatalogue” in this study. The global attributes are reused in individual classes as copies of the original from “AttributeCatalogue”. The class shall not be implemented in OWL, but the attributes in the class are implemented as global properties. A specific class for attributes that can be reused in other classes is a valuable approach independently of implementation in OWL as well. Models become easier to understand and implement when identical characteristics of different real-world features are defined in a harmonized manner. |
All | Identification of globally defined attributes. | The tagged value “isGlobal” shall identify the attribute as global. The tagged value “URI” shall be used to uniquely identify each attribute and link originals and reused copies. | |
3 | Restrictions must ensure that properties are assigned to specific classes. | Properties shall be linked to specific classes through a domain which is restricted to a union of the involved classes. | |
All | Names are converted to URIs in OWL. UML property names are unique within each class, while OWL properties are globally scoped. | Properties (attributes and association roles) should have unique names within a UML package that shall be implemented as an ontology. This recommendation is stated in ISO 19109 with identifier /rec/general/property-name as well. | |
All | Names are converted to URIs in OWL, and URIs are not always treated as case-sensitive. | Names of properties and classes should be non-case-sensitive unique. An example from the UML model used in the study is that the code lists have been given a suffix “Value” (e.g., “DisplayClassValue” for the attribute “displayClass”). | |
Reuse of external concepts | All | Reuse of existing concepts is a vital part of information modelling for the Semantic Web [86]. | Information modelling in UML is conducted in a closed environment and depends on concepts available in the model. However, reuse of existing concepts is a good practice that should be applied to UML models as well. Existing concepts can be duplicated in the UML models, and links to existing externals vocabularies can be added as tagged values. |
All | Links to external concepts. | The tagged value “rdfStatement” shall be used for linking internal and external concepts through a valid RDF statement. | |
All | Mapping to external concepts. | The tagged value “vocabulary” shall be used for identifying the URI of external concepts that the internal concept shall be mapped to. | |
3 | Precise concepts are needed. | Mapping to external concepts should be done with care at this level. The mapping might lead to a loss of information in an exchange, due to differences between UML data types and external data types. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jetlund, K.; Onstein, E.; Huang, L. Adapted Rules for UML Modelling of Geospatial Information for Model-Driven Implementation as OWL Ontologies. ISPRS Int. J. Geo-Inf. 2019, 8, 365. https://doi.org/10.3390/ijgi8090365
Jetlund K, Onstein E, Huang L. Adapted Rules for UML Modelling of Geospatial Information for Model-Driven Implementation as OWL Ontologies. ISPRS International Journal of Geo-Information. 2019; 8(9):365. https://doi.org/10.3390/ijgi8090365
Chicago/Turabian StyleJetlund, Knut, Erling Onstein, and Lizhen Huang. 2019. "Adapted Rules for UML Modelling of Geospatial Information for Model-Driven Implementation as OWL Ontologies" ISPRS International Journal of Geo-Information 8, no. 9: 365. https://doi.org/10.3390/ijgi8090365
APA StyleJetlund, K., Onstein, E., & Huang, L. (2019). Adapted Rules for UML Modelling of Geospatial Information for Model-Driven Implementation as OWL Ontologies. ISPRS International Journal of Geo-Information, 8(9), 365. https://doi.org/10.3390/ijgi8090365