Drainage Network Analysis and Structuring of Topologically Noisy Vector Stream Data
Abstract
:1. Introduction
2. Algorithm Description
2.1. Stream Networks and Graphs
2.2. Determining Flow Directions
- A vector stream network, in the Shapefile file format [42],
- A raster DEM,
- The snap-distance used to identify nearby but non-overlapping end-vertices, and
- An optional vector file that contains lake polygons.
2.3. Network Analysis Indices
3. Case Studies
3.1. Test Sites and Data
3.2. Results
4. Discussion
5. Conclusions
- Stream nodes are disjoint (i.e., stream arcs are not connected end-to-end),
- Channel heads from adjacent basins are joined,
- Lakes have not been replaced with their centerline representation, and
- Individual arcs in the streams layer have been digitized heterogeneously in both upstream-downstream and downstream-upstream within the same dataset.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smart, J.S. The analysis of drainage network composition. Earth Surf. Process. 1978, 3, 129–170. [Google Scholar] [CrossRef]
- Horton, R.E. Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. GSA Bull. 1945, 56, 275–370. [Google Scholar] [CrossRef]
- Kirkby, M.J. Tests of the random network model, and its application to basin hydrology. Earth Surf. Process. 1976, 1, 197–212. [Google Scholar] [CrossRef]
- Naden, P.S. Spatial variability in flood estimation for large catchments: The exploitation of channel network structure. Hydrol. Sci. J. 1992, 37, 53–71. [Google Scholar] [CrossRef]
- Rice, J.S.; Emanuel, R.E.; Vose, J.M. The influence of watershed characteristics on spatial patterns of trends in annual scale streamflow variability in the continental U.S. J. Hydrol. 2016, 540, 850–860. [Google Scholar] [CrossRef]
- Rodriguez-Iturbe, I.; Valdés, J.B.; Rodríguez-Iturbe, I. The geomorphologic structure of hydrologic response. Water Resour. Res. 1979, 15, 1409–1420. [Google Scholar] [CrossRef] [Green Version]
- Stenger-Kovács, C.; Tóth, L.; Tóth, F.; Hajnal, E.; Padisák, J. Stream order-dependent diversity metrics of epilithic diatom assemblages. Hydrobiologia 2014, 721, 67–75. [Google Scholar] [CrossRef]
- Vannote, R.L.; Minshall, G.W.; Cummins, K.W.; Sedell, J.R.; Cushing, C.E. The river continuum concept. Can. J. Fish. Aquat. Sci. 1980, 37, 130–137. [Google Scholar] [CrossRef]
- Strahler, A.N. Quantitative analysis of watershed geomorphology. Trans. Am. Geophys. Union 1957, 38, 913–920. [Google Scholar] [CrossRef]
- Shreve, R.L. Statistical law of stream numbers. J. Geol. 1966, 74, 17–37. [Google Scholar] [CrossRef]
- Hack, J.T. Studies of Longitudinal Stream Profiles in Virginia and Maryland; US Government Printing Office: Washington, DC, USA, 1957; Volume 294.
- Dawson, F.; Hornby, D.; Hilton, J. A method for the automated extraction of environmental variables to help the classification of rivers in Britain. Aquat. Conserv. Mar. Freshw. Ecosyst. 2002, 12, 391–403. [Google Scholar] [CrossRef]
- Lanfear, K.J. A fast algorithm for automatically computing strahler stream order 1. JAWRA J. Am. Water Resour. Assoc. 1990, 26, 977–981. [Google Scholar] [CrossRef]
- Band, L.E. Extraction of Channel Networks and Topographic Parameters from Digital Elevation Data. In Channel Network Hydrology; Bevin, K., Kirkby, M.J., Eds.; Wiley: New York, NY, USA, 1993; pp. 13–42. [Google Scholar]
- O’Callaghan, J.F.; Mark, D.M. The extraction of drainage networks from digital elevation data. Comput. Vis. Graph. Image Process. 1984, 28, 323–344. [Google Scholar] [CrossRef]
- Seibert, J.; McGlynn, B.L. A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models. Water Resour. Res. 2007, W04501. [Google Scholar] [CrossRef]
- Tarboton, D.G. A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resour. Res. 1997, 33, 309–319. [Google Scholar] [CrossRef] [Green Version]
- Tarboton, D.; Ames, D.P. Advances in the Mapping of Flow Networks from Digital Elevation Data. In Proceedings of the World Water and Environmental Resources Congress, Orlando, FL, USA, 20–24 May 2001; pp. 1–10. [Google Scholar]
- Jenson, S.K.; Domingue, J.O. Extracting topographic structure from digital elevation data for geographic information system analysis. Photogramm. Eng. Remote Sens. 1988, 54, 1593–1600. [Google Scholar]
- Band, L.E. A terrain-based watershed information system. Hydrol. Process. 1989, 3, 151–162. [Google Scholar] [CrossRef]
- Lin, W.T.; Chou, W.C.; Lin, C.Y.; Huang, P.H.; Tsai, J.S. Automated suitable drainage network extraction from digital elevation models in Taiwan’s upstream watersheds. Hydrol. Process. 2006, 20, 289–306. [Google Scholar] [CrossRef]
- Istanbulluoglu, E.; Tarboton, D.; Pack, R.T.; Luce, C. A probabilistic approach for channel initiation. Water Resour. Res. 2002, 38, 61-1–61-14. [Google Scholar] [CrossRef]
- McMaster, K.J. Effects of digital elevation model resolution on derived stream network positions. Water Resour. Res. 2002, 38, 13-1–13-8. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Foufoula-Georgiou, E.; Foufoula-Georgiou, E. Channel network source representation using digital elevation models. Water Resour. Res. 1993, 29, 3925–3934. [Google Scholar] [CrossRef]
- Lindsay, J.B. Sensitivity of channel mapping techniques to uncertainty in digital elevation data. Int. J. Geogr. Inf. Sci. 2006, 20, 669–692. [Google Scholar] [CrossRef]
- Lindsay, J.B.; Evans, M.G. The influence of elevation error on the morphometrics of channel networks extracted from DEMs and the implications for hydrological modelling. Hydrol. Process. 2008, 22, 1588–1603. [Google Scholar] [CrossRef]
- Saunders, W.; Maidment, D. Grid-Based Watershed and Stream Network Delineation for the San Antonio-Nueces Coastal Basin. In Proceedings of the Proceedings of Texas Water ’95: A Component Conference of the First International Conference of Water Resources Engineering, San Antonio, TX, USA, 14–18 August 1995. [Google Scholar]
- Garbrecht, J.; Martz, L.W. The assignment of drainage direction over flat surfaces in raster digital elevation models. J. Hydrol. 1997, 193, 204–213. [Google Scholar] [CrossRef]
- Nardi, F.; Grimaldi, S.; Santini, M.; Petroselli, A.; Ubertini, L. Hydrogeomorphic properties of simulated drainage patterns using digital elevation models: The flat area issue. Hydrol. Sci. J. 2008, 53, 1176–1193. [Google Scholar] [CrossRef]
- Grimaldi, S.; Nardi, F.; Di Benedetto, F.; Istanbulluoglu, E.; Bras, R.L. A physically-based method for removing pits in digital elevation models. Adv. Water Resour. 2007, 30, 2151–2158. [Google Scholar] [CrossRef]
- Kenny, F.; Matthews, B.; Todd, K. Routing overland flow through sinks and flats in interpolated raster terrain surfaces. Comput. Geosci. 2008, 34, 1417–1430. [Google Scholar] [CrossRef]
- Woodrow, K.; Lindsay, J.B.; Berg, A.A. Evaluating DEM conditioning techniques, elevation source data, and grid resolution for field-scale hydrological parameter extraction. J. Hydrol. 2016, 540, 1022–1029. [Google Scholar] [CrossRef]
- Gleyzer, A.; Denisyuk, M.; Rimmer, A.; Salingar, Y. A fast recursive gis algorithm for computing strahler stream order in braided and nonbraided networks. JAWRA J. Am. Water Resour. Assoc. 2004, 40, 937–946. [Google Scholar] [CrossRef]
- Hornby, D. RivEX. Available online: http://www.rivex.co.uk/ (accessed on 5 September 2019).
- Holloway, R. Using RivEX and National Hydro Network Data to Classify Water Quality Stations by Strahler Stream Order; Government of Newfoundland and Labrador: St. John’s, NL, Canada, 2009.
- Pradhan, M.P. Automatic Association of Stream Order for Vector Hydrograph using Spiral Traversal Technique. IOSR J. Comput. Eng. 2012, 1, 9–12. [Google Scholar] [CrossRef]
- Barnes, R.; Lehman, C.; Mulla, D. Priority-flood: An optimal depression-filling and watershed-labeling algorithm for digital elevation models. Comput. Geosci. 2014, 62, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Soille, P.; Gratin, C. An Efficient Algorithm for Drainage Network Extraction on DEMs. J. Vis. Commun. Image Represent. 1994, 5, 181–189. [Google Scholar] [CrossRef]
- Heckmann, T.; Schwanghart, W.; Phillips, J.D. Graph theory—Recent developments of its application in geomorphology. Geomorphology 2015, 243, 130–146. [Google Scholar] [CrossRef]
- Peckham, S.D.; Gupta, V.K. A reformulation of Horton’s laws for large river networks in terms of statistical self-similarity. Water Resour. Res. 1999, 35, 2763–2777. [Google Scholar] [CrossRef]
- Lindsay, J. Whitebox GAT: A case study in geomorphometric analysis. Comput. Geosci. 2016, 95, 75–84. [Google Scholar] [CrossRef]
- ESRI Shapefile Technical Description: ESRI White Paper. Available online: https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf (accessed on 17 September 2019).
- Lindsay, J.B. Efficient hybrid breaching-filling sink removal methods for flow path enforcement in digital elevation models. Hydrol. Process. 2016, 30, 846–857. [Google Scholar] [CrossRef]
- Tadono, T.; Ishida, H.; Oda, F.; Naito, S.; Minakawa, K.; Iwamoto, H. Precise Global DEM Generation by ALOS PRISM. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 2, 71–76. [Google Scholar] [CrossRef]
- Santillan, J.; Makinano-Santillan, M. Vertical accuracy assessment of 30-m resolution alos, aster, and srtm global dems over northeastern mindanao, philippines. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 149–156. [Google Scholar] [CrossRef]
- Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. Hole-filled SRTM for the globe Version 4. 2008. Available online: http://srtm. csi. cgiar. org (accessed on 17 September 2019).
- Lai, Z.; Li, S.; Lv, G.; Pan, Z.; Fei, G. Watershed delineation using hydrographic features and a DEM in plain river network region. Hydrol. Process. 2016, 30, 276–288. [Google Scholar] [CrossRef]
- Lindsay, J.B.; Lindsay, J. The practice of DEM stream burning revisited. Earth Surf. Process. 2016, 41, 658–668. [Google Scholar] [CrossRef]
Index Name | Description |
---|---|
OUTLET | Unique outlet identifying value, used as basin identifier |
TRIB_ID | Unique tributary identifying value |
DIST2MOUTH | Distance to outlet (i.e., mouth node) |
DS_NODES | Number of downstream nodes |
TUCL | Total upstream channel length; the channel equivalent to catchment area |
MAXUPSDIST | Maximum upstream distance |
HORTON | Horton stream order |
STRAHLER | Strahler stream order |
SHREVE | Shreve stream magnitude |
HACK | Hack main stream order |
MAINSTREAM | Boolean value indicating whether link is the main stream trunk of its basin |
DISCONT | Boolean value indicating whether link is disconnected, i.e., does not drain to the edge of the DEM and no outlet could be identified |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lindsay, J.B.; Yang, W.; Hornby, D.D. Drainage Network Analysis and Structuring of Topologically Noisy Vector Stream Data. ISPRS Int. J. Geo-Inf. 2019, 8, 422. https://doi.org/10.3390/ijgi8090422
Lindsay JB, Yang W, Hornby DD. Drainage Network Analysis and Structuring of Topologically Noisy Vector Stream Data. ISPRS International Journal of Geo-Information. 2019; 8(9):422. https://doi.org/10.3390/ijgi8090422
Chicago/Turabian StyleLindsay, John B., Wanhong Yang, and Duncan D. Hornby. 2019. "Drainage Network Analysis and Structuring of Topologically Noisy Vector Stream Data" ISPRS International Journal of Geo-Information 8, no. 9: 422. https://doi.org/10.3390/ijgi8090422
APA StyleLindsay, J. B., Yang, W., & Hornby, D. D. (2019). Drainage Network Analysis and Structuring of Topologically Noisy Vector Stream Data. ISPRS International Journal of Geo-Information, 8(9), 422. https://doi.org/10.3390/ijgi8090422