A Data-Driven Framework for Walkability Measurement with Open Data: A Case Study of Triple Cities, New York
Abstract
:1. Introduction
2. Study Area and Data
3. Methodology
3.1. Web Scrapping and Measurements Calculation
3.2. Synthetic Walkability Index from the Proposed Framework
3.3. Comparative Analysis
4. Results
4.1. Results of PCA
4.2. Results of Comparative Analysis
5. Discussion
5.1. Further Comparisons with Existing Indicator
5.2. The Data-Driven Nature of this Framework
5.3. Extension of Topical Study Areas and Future Studies
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moura, F.; Cambra, P.; Gonçalves, A.B. Measuring walkability for distinct pedestrian groups with a participatory assessment method: A case study in Lisbon. Landsc. Urban Plan. 2017, 157, 282–296. [Google Scholar] [CrossRef]
- Frank, L.; Engelke, P.; Schmid, T. Health and Community Design: The Impact of the Built Environment on Physical Activity; Island Press: Washington, DC, USA, 2003. [Google Scholar]
- Cain, K.L.; Millstein, R.A.; Sallis, J.F.; Conway, T.L.; Gavand, K.A.; Frank, L.D.; Glanz, K. Contribution of streetscape audits to explanation of physical activity in four age groups based on the Microscale Audit of Pedestrian Streetscapes (MAPS). Soc. Sci. Med. 2014, 116, 82–92. [Google Scholar] [CrossRef]
- Cerin, E.; Saelens, B.E.; Sallis, J.F.; Frank, L.D. Neighborhood Environment Walkability Scale: Validity and development of a short form. Med. Sci. Sports Exerc. 2006, 38, 1682–1691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doyle, S.; Kelly-Schwartz, A.; Schlossberg, M.; Stockard, J. Active community environments and health: The relationship of walkable and safe communities to individual health. J. Am. Plan. Assoc. 2006, 72, 19–31. [Google Scholar] [CrossRef]
- Brownson, R.C.; Chang, J.J.; Eyler, A.A.; Ainsworth, B.E.; Kirtland, K.A.; Saelens, B.E.; Sallis, J.F. Measuring the environment for friendliness toward physical activity: A comparison of the reliability of 3 questionnaires. Am. J. Public Health 2004, 94, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Carr, L.J.; Dunsiger, S.I.; Marcus, B.H. Validation of Walk Score for estimating access to walkable amenities. Br. J. Sports Med. 2011, 45, 1144–1148. [Google Scholar] [CrossRef] [PubMed]
- Deanna Westby, M. A health professional’s guide to exercise prescription for people with arthritis: A review of aerobic fitness activities. Arthritis Care Res. 2001, 45, 501–511. [Google Scholar] [CrossRef]
- Vogel, T.; Brechat, P.H.; Leprêtre, P.M.; Kaltenbach, G.; Berthel, M.; Lonsdorfer, J. Health benefits of physical activity in older patients: A review. Int. J. Clin. Pract. 2009, 63, 303–320. [Google Scholar] [CrossRef]
- Warburton, D.E.; Nicol, C.W.; Bredin, S.S. Health benefits of physical activity: The evidence. Can. Med. Assoc. J. 2006, 174, 801–809. [Google Scholar] [CrossRef] [Green Version]
- Murphy, M.H.; Nevill, A.M.; Murtagh, E.M.; Holder, R.L. The effect of walking on fitness, fatness and resting blood pressure: A meta-analysis of randomised, controlled trials. Prev. Med. 2007, 44, 377–385. [Google Scholar] [CrossRef]
- US Department of Health and Human Services. The Surgeon General’s Call to Action to Prevent and Decrease Overweight and Obesity; US Department of Health and Human Services: Washington, DC, USA, 2001.
- Ogden, C.L.; Carroll, M.D.; Fryar, C.D.; Flegal, K.M. Prevalence of Obesity among Adults and Youth: United States, 2011–2014; US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics: Hyattsville, MD, USA, 2015; pp. 1–8.
- Ahima, R.S.; Lazar, M.A. The health risk of obesity—Better metrics imperative. Science 2013, 341, 856–858. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, E.A.; Trogdon, J.G.; Cohen, J.W.; Dietz, W. Annual medical spending attributable to obesity: Payer-and service-specific estimates. Health Aff. 2017, 28 (Suppl. S1), w822–w831. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). 2017. Available online: http://www.who.int/mediacentre/factsheets/fs385/en (accessed on 8 December 2016).
- Physical Activity Guidelines Advisory Committee. Physical Activity Guidelines for Americans; Department of Health and Human Services: Washington, DC, USA, 2008; pp. 15–34. [Google Scholar]
- US Department of Health and Human Services; Office of Disease Prevention and Health Promotion. Office of Disease Prevention and Health Promotion. Healthy People 2020; US Department of Health and Human Services: Washington, DC, USA, 2000.
- Frank, L.D.; Sallis, J.F.; Saelens, B.E.; Leary, L.; Cain, K.; Conway, T.L.; Hess, P.M. The development of a walkability index: Application to the Neighborhood Quality of Life Study. Br. J. Sports Med. 2010, 44, 924–933. [Google Scholar] [CrossRef] [PubMed]
- Putnam, R.D.; Leonardi, R.; Nanetti, R.Y. Making Democracy Work: Civic Traditions in Modern Italy; Princeton University Press: Princeton, NJ, USA, 1994. [Google Scholar]
- Sampson, R.J.; Morenoff, J.D.; Earls, F. Beyond social capital: Spatial dynamics of collective efficacy for children. Am. Sociol. Rev. 1999, 64, 633–660. [Google Scholar] [CrossRef]
- Rogers, S.H.; Halstead, J.M.; Gardner, K.H.; Carlson, C.H. Examining walkability and social capital as indicators of quality of life at the municipal and neighborhood scales. Appl. Res. Qual. Life 2011, 6, 201–213. [Google Scholar] [CrossRef]
- Litman, T. Economic value of walkability. World Transp. Policy Pract. 2004, 10, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Litman, T. Transportation cost and benefit analysis. Vic. Transp. Policy Inst. 2009, 31, 2–5. [Google Scholar]
- Murphy, J.; Delucchi, M. A review of the literature on the social cost of motor vehicle use in the United States. Inst. Transp. Stud. 1998, 1, 15–42. [Google Scholar]
- Boyle, A.; Barrilleaux, C.; Scheller, D. Does Walkability Influence Housing Prices? Soc. Sci. Q. 2014, 95, 852–867. [Google Scholar] [CrossRef]
- Pivo, G.; Fisher, J.D. The walkability premium in commercial real estate investments. Real Estate Econ. 2011, 39, 185–219. [Google Scholar] [CrossRef]
- Rauterkus, S.Y.; Miller, N. Residential land values and walkability. J. Sustain. Real Estate 2011, 3, 23–43. [Google Scholar]
- Cortright, J. Walking the Walk: How Walkability Raises Home Values in U.S. Cities; CEOs for Cities: Washington, DC, USA, 2009. [Google Scholar]
- Swanson, K. Bicycling and Walking in the United States: 2012 Benchmarking Report; Alliance for Biking & Walking: Washington, DC, USA, 2012. [Google Scholar]
- Garrett-Peltier, H. Pedestrian and Bicycle Infrastructure: A National Study of Employment Impacts; Political Economy Research Institute: Amherst, MA, USA, 2011. [Google Scholar]
- Transportation Alternatives. East Village Shopping Survey: A Snapshot of Travel and Spending Patterns of Residents and Visitors in the East Village; Transportation Alternatives: New York, NY, USA, 2012. [Google Scholar]
- Cervero, R.; Kockelman, K. Travel demand and the 3Ds: Density, diversity, and design. Transp. Res. Part D Transp. Environ. 1997, 2, 199–219. [Google Scholar] [CrossRef]
- Frank, L.D.; Schmid, T.L.; Sallis, J.F.; Chapman, J.; Saelens, B.E. Linking objectively measured physical activity with objectively measured urban form: Findings from SMARTRAQ. Am. J. Prev. Med. 2005, 28, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Leslie, E.; Saelens, B.; Frank, L.D.; Owen, N.; Bauman, A.; Coffee, N.; Hugo, G. Residents’ perceptions of walkability attributes in objectively different neighbourhoods: A pilot study. Health Place 2005, 11, 227–236. [Google Scholar] [CrossRef]
- Rundle, A.; Roux, A.V.D.; Freeman, L.M.; Miller, D.; Neckerman, K.M.; Weiss, C.C. The urban built environment and obesity in New York City: A multilevel analysis. Am. J. Health Promot. 2007, 21 (Suppl. S4), 326–334. [Google Scholar] [CrossRef]
- Frank, L.D.; Saelens, B.E.; Powell, K.E.; Chapman, J.E. Stepping towards causation: Do built environments or neighborhood and travel preferences explain physical activity, driving, and obesity? Soc. Sci. Med. 2007, 65, 1898–1914. [Google Scholar] [CrossRef]
- Frank, L.D.; Kerr, J.; Sallis, J.F.; Miles, R.; Chapman, J. A hierarchy of sociodemographic and environmental correlates of walking and obesity. Prev. Med. 2008, 47, 172–178. [Google Scholar] [CrossRef]
- Wolch, J.; Jerrett, M.; Reynolds, K.; McConnell, R.; Chang, R.; Dahmann, N.; Berhane, K. Childhood obesity and proximity to urban parks and recreational resources: A longitudinal cohort study. Health Place 2011, 17, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Frank, L.D.; Sallis, J.F.; Conway, T.L.; Chapman, J.E.; Saelens, B.E.; Bachman, W. Many pathways from land use to health: Associations between neighborhood walkability and active transportation, body mass index, and air quality. J. Am. Plan. Assoc. 2006, 72, 75–87. [Google Scholar] [CrossRef]
- Greenwald, M.; Boarnet, M. Built environment as determinant of walking behavior: Analyzing nonwork pedestrian travel in Portland, Oregon. Transp. Res. Rec. J. Transp. Res. Board 2001, 1780, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Lindsey, G.; Han, Y.; Wilson, J.; Yang, J. Neighborhood correlates of urban trail use. J. Phys. Act. Health 2006, 3 (Suppl. S1), S139–S157. [Google Scholar] [CrossRef]
- Kockelman, K. Travel behavior as function of accessibility, land use mixing, and land use balance: Evidence from San Francisco Bay Area. Transp. Res. Rec. J. Transp. Res. Board 1997, 1607, 116–125. [Google Scholar] [CrossRef]
- Cervero, R.; Duncan, M. Walking, bicycling, and urban landscapes: Evidence from the San Francisco Bay Area. Am. J. Public Health 2003, 93, 1478–1483. [Google Scholar] [CrossRef] [PubMed]
- Norman, G.J.; Nutter, S.K.; Ryan, S.; Sallis, J.F.; Calfas, K.J.; Patrick, K. Community design and access to recreational facilities as correlates of adolescent physical activity and body-mass index. J. Phys. Act. Health 2006, 3 (Suppl. S1), S118–S128. [Google Scholar] [CrossRef] [Green Version]
- Handy, S.L.; Boarnet, M.G.; Ewing, R.; Killingsworth, R.E. How the built environment affects physical activity: Views from urban planning. Am. J. Prev. Med. 2002, 23, 64–73. [Google Scholar] [CrossRef]
- Forsyth, A.; Hearst, M.; Oakes, J.M.; Schmitz, K.H. Design and destinations: Factors influencing walking and total physical activity. Urban Stud. 2007, 45, 1973–1996. [Google Scholar] [CrossRef]
- Davis, H.B. The Workers and the Industry; Shoes: New York, NY, USA, 1940. [Google Scholar]
- Zahari, G. Workers, Managers and Welfare Capitalism: The Shoe Workers and Tanners of Endicott-Johnson, 1890-1950; University of Illinois Press: Chicago, IL, USA, 1988. [Google Scholar]
- Klaf, S.; Legette, K.; Frazier, J.W. Diversity comes to a small city. The Case of Binghamton NY in Multicultural Geographies. The Changing Racial/Ethnic Patterns of the United States; Frazier, J.W., Margi, F.M., Eds.; SUNY Press: Albany, NY, USA, 2003. [Google Scholar]
- Weaver, R.; Bagchi-Sen, S.; Knight, J.; Frazier, A.E. Shrinking Cities, Understanding Urban Decline in the United States; Routledge, Taylor & Francis Group: New York, NY, USA, 2017. [Google Scholar]
- Duncan, D.T.; Aldstadt, J.; Whalen, J.; Melly, S.J.; Gortmaker, S.L. Validation of Walk Score for estimating neighborhood walkability: An analysis of four US metropolitan areas. Int. J. Environ. Res. Public Health 2011, 8, 4160–4179. [Google Scholar] [CrossRef]
- Duncan, D.T.; Aldstadt, J.; Whalen, J.; White, K.; Castro, M.C.; Williams, D.R. Space, race, and poverty: Spatial inequalities in walkable neighborhood amenities? Demogr. Res. 2012, 26, 409–448. [Google Scholar] [CrossRef] [Green Version]
- Saelens, B.E.; Sallis, J.F.; Black, J.B.; Chen, D. Neighborhood-based differences in physical activity: An environment scale evaluation. Am. J. Public Health 2003, 93, 1552–1558. [Google Scholar] [CrossRef]
- Saelens, B.E.; Sallis, J.F.; Frank, L.D. Environmental correlates of walking and cycling: Findings from the transportation, urban design, and planning literatures. Ann. Behav. Med. 2003, 25, 80–91. [Google Scholar] [CrossRef]
- Kligerman, M.; Sallis, J.F.; Ryan, S.; Frank, L.D.; Nader, P.R. Association of neighborhood design and recreation environment variables with physical activity and body mass index in adolescents. Am. J. Health Promot. 2007, 21, 274–277. [Google Scholar] [CrossRef]
- Hoehner, C.M.; Handy, S.L.; Yan, Y.; Blair, S.N.; Berrigan, D. Association between neighborhood walkability, cardiorespiratory fitness and body-mass index. Soc. Sci. Med. 2011, 73, 1707–1716. [Google Scholar] [CrossRef] [Green Version]
- Christian, H.E.; Bull, F.C.; Middleton, N.J.; Knuiman, M.W.; Divitini, M.L.; Hooper, P.; Giles-Corti, B. How important is the land use mix measure in understanding walking behaviour? Results from the RESIDE study. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 55. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.K.; Cody, S. Evaluating the housing unit method: A case study of 1990 population estimates in Florida. J. Am. Plan. Assoc. 1994, 60, 209–221. [Google Scholar] [CrossRef]
- Deng, C.; Wu, C.; Wang, L. Improving the housing-unit method for small-area population estimation using remote-sensing and GIS information. Int. J. Remote Sens. 2010, 31, 5673–5688. [Google Scholar] [CrossRef]
- Deng, C.; Wu, C. An integrated geographic and demographic approach. Ann. Assoc. Am. Geogr. 2013, 103, 1123–1141. [Google Scholar] [CrossRef]
- Franklin, R.S. An examination of the geography of population composition and change in the United States, 2000-2010; insights from geographical indicators and a shift-share analysis. Popul. Space Place 2014, 20, 18–36. [Google Scholar] [CrossRef]
- Franklin, R.S. The demographic burden of population loss in the U.S. Cities, 2000–2010. J. Geogr. Syst. 2019. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Deng, C.; Zhou, Z. A Semantic and Sentiment Analysis on Online Neighborhood Reviews for Understanding the Perceptions of People toward Their Living Environments. Ann. Am. Assoc. Geogr. 2019, 109, 1052–1073. [Google Scholar] [CrossRef]
Indicator | Year | Binghamton | Endicott | Johnson City |
---|---|---|---|---|
Percent Unemployed | 1980 | 4.98 | 5.61 | 4.4 |
1990 | 4.98 | 6.42 | 4.99 | |
2000 | 6.47 | 4.57 | 6.41 | |
2010 | 3.95 | 6.91 | 9.2 | |
Percent Below Poverty | 1980 | 30.73 | 13.2 | 22.88 |
1990 | 44.37 | 23.76 | 17.24 | |
2000 | 41.46 | 23.78 | 27.98 | |
2010 | 49.11 | 19.24 | 37.1 |
Generalized Categories | Detailed Levels of POIs |
---|---|
Dining services | Full Service Restaurants |
Fast food Restaurants | |
Bars, pubs and taverns | |
Food markets | Groceries |
Supermarkets | |
Shopping stores | Department stores, furniture stores, clothing stores and discount stores |
Daily services | Health services |
Banks | |
Auto services | |
Post offices | |
Bus stops | Bus stops |
Landmarks | Local landmarks |
Parks | Parks |
Variables | Communality | Communality |
---|---|---|
(15 Variables) | (11 Variables) | |
Housing density | 0.935 | 0.955 |
Population density | 0.928 | 0.951 |
Land-use mix | 0.896 | 0.905 |
Dining services | 0.884 | 0.895 |
Bus stops | 0.836 | 0.878 |
Crime density | 0.803 | 0.797 |
Intersection density | 0.789 | 0.878 |
Food markets | 0.762 | 0.787 |
Shopping stores | 0.748 | 0.71 |
Daily services | 0.745 | 0.787 |
Street density | 0.603 | 0.748 |
Parks | 0.424 | / |
Local landmarks | 0.381 | / |
Slope | 0.238 | / |
Elevation | 0.217 | / |
Component | Initial Eigenvalues | ||
---|---|---|---|
Total | % of Variance | Cumulative % | |
1 | 4.091 | 37.187 | 37.187 |
2 | 2.331 | 21.195 | 58.382 |
3 | 1.403 | 12.759 | 71.141 |
4 | 1.118 | 10.16 | 81.301 |
5 | 0.649 | 5.904 | 87.205 |
6 | 0.447 | 4.065 | 91.269 |
7 | 0.351 | 3.191 | 94.46 |
8 | 0.242 | 2.199 | 96.659 |
9 | 0.2 | 1.822 | 98.481 |
10 | 0.114 | 1.034 | 99.515 |
11 | 0.053 | 0.485 | 100 |
Variables | Components | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
Dining service | 0.904 | 0.086 | 0.262 | 0.037 |
Food markets | 0.811 | 0.028 | 0.359 | −0.008 |
Shopping stores | 0.842 | −0.015 | −0.015 | −0.002 |
Daily services | 0.879 | 0.038 | 0.134 | 0.069 |
Intersection density | 0.196 | 0.07 | 0.901 | 0.153 |
Street density | 0.076 | 0.291 | 0.753 | 0.302 |
Bus stops | 0.293 | 0.115 | 0.88 | 0.069 |
Land use mix | −0.01 | −0.173 | −0.168 | 0.807 |
Crime Density | 0.027 | 0.768 | 0.274 | 0.301 |
Housing density | 0.037 | 0.967 | 0.084 | 0.105 |
Population density | 0.041 | 0.966 | 0.081 | 0.097 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, C.; Dong, X.; Wang, H.; Lin, W.; Wen, H.; Frazier, J.; Ho, H.C.; Holmes, L. A Data-Driven Framework for Walkability Measurement with Open Data: A Case Study of Triple Cities, New York. ISPRS Int. J. Geo-Inf. 2020, 9, 36. https://doi.org/10.3390/ijgi9010036
Deng C, Dong X, Wang H, Lin W, Wen H, Frazier J, Ho HC, Holmes L. A Data-Driven Framework for Walkability Measurement with Open Data: A Case Study of Triple Cities, New York. ISPRS International Journal of Geo-Information. 2020; 9(1):36. https://doi.org/10.3390/ijgi9010036
Chicago/Turabian StyleDeng, Chengbin, Xiaoyu Dong, Huihai Wang, Weiying Lin, Hao Wen, John Frazier, Hung Chak Ho, and Louisa Holmes. 2020. "A Data-Driven Framework for Walkability Measurement with Open Data: A Case Study of Triple Cities, New York" ISPRS International Journal of Geo-Information 9, no. 1: 36. https://doi.org/10.3390/ijgi9010036
APA StyleDeng, C., Dong, X., Wang, H., Lin, W., Wen, H., Frazier, J., Ho, H. C., & Holmes, L. (2020). A Data-Driven Framework for Walkability Measurement with Open Data: A Case Study of Triple Cities, New York. ISPRS International Journal of Geo-Information, 9(1), 36. https://doi.org/10.3390/ijgi9010036