Shoreline Changes Along the Coast of Mainland China—Time to Pause and Reflect?
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
2.2.1. Delineation and Classification of Shorelines
2.2.2. Calculation of Changes in Shoreline Types
2.2.3. Error Estimation
3. Results
3.1. Changes in Shoreline Types
3.2. Changes between Shoreline Types
3.3. A Case Study
4. Discussion
4.1. The Length of the Shorelines
4.2. Changes in Shoreline Types
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pernetta, J.C.; Milliman, J.D. Land-ocean interactions in the coastal zone: Implementation plan. Oceanogr. Lit. 1995, 9, 801. [Google Scholar]
- Bartlett, D.; Smith, J. GIS for Coastal Zone Management; CRC Press: New York, NY, USA, 2004; p. 27. [Google Scholar]
- Fu, Y.; Guo, Q.; Wu, X.; Fang, H.; Pan, Y. Analysis and prediction of changes in coastline morphology in the Bohai Sea, China, using remote sensing. Sustainability 2017, 9, 900. [Google Scholar] [CrossRef] [Green Version]
- Qiao, G.; Mi, H.; Wang, W.; Tong, X.; Li, Z.; Li, T.; Liu, S.; Hong, Y. 55-year (1960–2015) spatiotemporal shoreline change analysis using historical DISP and Landsat time series data in Shanghai. Int. J. Appl. Earth Obs. 2018, 68, 238–251. [Google Scholar] [CrossRef]
- Fan, Q.; Liang, L.; Liang, F.; Sun, X. Research progress on coastline change in China. J. Coast. Res. 2020, 99, 289–295. [Google Scholar] [CrossRef]
- Valderrama-Landeros, L.H.; Martell-Dubois, R.; Ressl, R.; Silva-Casarín, R.; Cruz-Ramírez, C.J.; Muñoz-Pérez, J.J. Dynamics of coastline changes in Mexico. J. Geogr. Sci. 2019, 29, 1637–1654. [Google Scholar] [CrossRef] [Green Version]
- Solomon, S.M. Spatial and temporal variability of shoreline change in the Beaufort-Mackenzie region, northwest territories, Canada. Geo-Mar. Lett. 2005, 25, 127–137. [Google Scholar] [CrossRef]
- Kuleli, T.; Guneroglu, A.; Karsli, F.; Dihkan, M. Automatic detection of shoreline change on coastal Ramsar wetlands of Turkey. Ocean Eng. 2011, 38, 1141–1149. [Google Scholar] [CrossRef]
- Nassar, K.; Fath, H.; Mahmod, W.E.; Masria, A.; Nadaoka, K.; Negm, A. Automatic detection of shoreline change: Case of North Sinai coast, Egypt. J. Coast. Conserv. 2018, 22, 1057–1083. [Google Scholar] [CrossRef]
- Zeinali, S.; Talebbeydokhti, N.; Dehghani, M. Spatiotemporal shoreline change in Boushehr Province coasts, Iran. J. Oceanol. Limnol. 2020, 38, 707–721. [Google Scholar] [CrossRef]
- Nassar, K.; Mahmod, W.E.; Fath, H.; Masria, A.; Nadaoka, K.; Negm, A. Shoreline change detection using DSAS technique: Case of North Sinai coast, Egypt. Mar. Georesour. Geotechnol. 2019, 37, 81–95. [Google Scholar] [CrossRef]
- Ai, B.; Zhang, R.; Zhang, H.; Ma, C.; Gu, F. Dynamic process and artificial mechanism of coastline change in the Pearl River Estuary. Reg. Stud. Mar. Sci. 2019, 30, 100715. [Google Scholar] [CrossRef]
- Ding, X.; Shan, X.; Chen, Y.; Jin, X.; Muhammed, F.R. Dynamics of shoreline and land reclamation from 1985 to 2015 in the Bohai Sea, China. J. Geogr. Sci. 2019, 29, 2031–2046. [Google Scholar] [CrossRef] [Green Version]
- Chu, Z.; Yang, X.; Feng, X.; Fan, D.; Li, Y.; Shen, X.; Miao, A. Temporal and spatial changes in coastline movement of the Yangtze delta during 1974–2010. J. Asian Earth Sci. 2013, 66, 166–174. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, Y.; Liu, D. Shoreline mapping with cellular automata and the shoreline progradation analysis in Shanghai, China from 1979 to 2008. Arab. J. Geosci. 2015, 8, 4337–4351. [Google Scholar] [CrossRef]
- Li, J.; Ye, M.; Pu, R.; Liu, Y.; Guo, Q.; Feng, B.; Huang, R.; He, G. Spatiotemporal change patterns of coastlines in Zhejiang Province, China, over the last twenty-five years. Sustainability 2018, 10, 477. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Wu, X.; Cao, X.; Wu, G. Analysis of coastline changes and the socio-economic driving mechanisms in Shenzhen, China. Mar. Geod. 2017, 40, 378–403. [Google Scholar] [CrossRef] [Green Version]
- Wang, K. Evolution of Yellow River Delta coastline based on remote sensing from 1976 to 2014, China. Chinese Geogr. Sci. 2019, 29, 181–191. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Liu, Y.; Ling, F.; Liu, Y.; Fang, F. Spatio-temporal change detection of Ningbo coastline using Landsat time-series images during 1976–2015. ISPRS Int. J. Geo-Inf. 2017, 6, 68. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Yang, Z.; Zhang, Y.; Ji, Y.; Wang, H.; Lv, K.; Lu, Z. Spatial and temporal shoreline changes of the southern Yellow River (Huanghe) Delta in 1976–2016. Mar. Geol. 2018, 395, 188–197. [Google Scholar] [CrossRef]
- Li, J.; Pu, R.; Yuan, Q.; Liu, Y.; Feng, B.; Guo, Q.; Jiang, Y.; Ye, M. Spatiotemporal change patterns of coastlines in Xiangshan Harbor (Zhejiang, China) during the past 40 years. J. Coast. Res. 2018, 34, 1418–1428. [Google Scholar] [CrossRef]
- Wu, X.; Liu, C.; Wu, G. Spatial-temporal analysis and stability investigation of coastline changes: A case study in Shenzhen, China. IEEE J.-STARS 2018, 11, 45–56. [Google Scholar] [CrossRef]
- Hou, X.; Wu, T.; Hou, W.; Chen, Q.; Wang, Y.; Yu, L. Characteristics of coastline changes in mainland China since the early 1940s. Sci. China Earth Sci. 2016, 59, 1791–1802. [Google Scholar] [CrossRef]
- Xu, N.; Gong, P. Significant coastline changes in China during 1991–2015 tracked by Landsat data. Sci. Bull. 2018, 63, 883–886. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Hou, X.; Xu, X. Spatio-temporal characteristics of the mainland coastline utilization degree over the last 70 years in China. Ocean Coast. Manag. 2014, 98, 150–157. [Google Scholar] [CrossRef]
- Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward, A.S.; Cohen, W.B.; et al. Current status of Landsat program, science, and applications. Remote Sens. Environ. 2019, 225, 127–147. [Google Scholar] [CrossRef]
- Mitra, S.S.; Mitra, D.; Santra, A. Performance testing of selected automated coastline detection techniques applied on multispectral satellite imageries. Earth Sci. Inform. 2017, 10, 321–330. [Google Scholar] [CrossRef]
- Ghosh, M.K.; Kumar, L.; Roy, C. Monitoring the coastline change of Hatiya Island in Bangladesh using remote sensing techniques. ISPRS J. Photogramm. 2015, 101, 137–144. [Google Scholar] [CrossRef]
- Li, W.; Gong, P. Continuous monitoring of coastline dynamics in western Florida with a 30-year time series of Landsat imagery. Remote Sens. Environ. 2016, 179, 196–209. [Google Scholar] [CrossRef]
- Viaña-Borja, S.; Ortega-Sánchez, M. Automatic methodology to detect the coastline from Landsat images with a new water index assessed on three different Spanish Mediterranean Deltas. Remote Sens. 2019, 11, 2186. [Google Scholar] [CrossRef] [Green Version]
- Masria, A.; Nadaoka, K.; Negm, A.; Iskander, M. Detection of shoreline and land cover changes around Rosetta Promontory, Egypt, based on remote sensing analysis. Land 2015, 4, 216–230. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Yang, X.; Hu, S.; Su, F. Extraction of coastline in aquaculture coast from multispectral remote sensing images: Object-based region growing integrating edge detection. Remote Sens. 2013, 5, 4470–4487. [Google Scholar] [CrossRef] [Green Version]
- Xu, N. Research on Spatial and Temporal Variation of China Mainland Coastline and Coastal Engineering; Yantai Insititute of Coastal Zone Research CAS: Yantai, China, 2016. [Google Scholar]
- Potere, D. Horizontal positional accuracy of Google Earth’s high-resolution imagery archive. Sensors 2008, 8, 7973–7981. [Google Scholar] [CrossRef] [PubMed]
- Pulighe, G.; Baiocchi, V.; Lupia, F. Horizontal accuracy assessment of very high resolution Google Earth images in the city of Rome, Italy. Int. J. Digit. Earth 2015, 9, 342–362. [Google Scholar] [CrossRef]
- Sunder, S.; Ramsankaran, R.; Ramakrishnan, B. Inter-comparison of remote sensing sensing-based shoreline mapping techniques at different coastal stretches of India. Environ. Monit. Assess. 2017, 189, 290. [Google Scholar] [CrossRef] [PubMed]
- Mandelbrot, B. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 1967, 156, 636–638. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Liu, D.; Chen, Y. Random fractal characters and length uncertainty of the continental coastline of China. J. Earth. Syst. Sci. 2016, 125, 1615–1621. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.S.; Sun, T.; Shao, D.D. Impact of land reclamation on the evolution of shoreline change and nearshore vegetation distribution in Yangtze River Estuary. Wetlands 2016, 36, 11–17. [Google Scholar] [CrossRef]
- Xu, N.; Gao, Z.; Ning, J. Analysis of the characteristics and causes of coastline variation in the Bohai Rim (1980–2010). Environ. Earth Sci. 2016, 75, 719. [Google Scholar] [CrossRef]
- Zhang, X.; Pan, D.; Chen, J.; Zhao, J.; Zhu, Q.; Huang, H. Evaluation of coastline changes under human intervention using multi-temporal high-resolution images: A case study of the Zhoushan Islands, China. Remote Sens. 2014, 6, 9930–9950. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Chen, Y.; Melville, D.S.; Fan, J.; Liu, J.; Dong, J.; Tan, K.; Cheng, X.; Fuller, R.A.; Xiao, X.; et al. Changes in area and number of nature reserves in China. Conserv. Biol. 2019, 33, 1066–1075. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Ranasinghe, R.; Mentaschi, L.; Plomaritis, T.A.; Athanasiou, P.; Luijendijk, A.; Feyen, L. Sandy coastlines under threat of erosion. Nat. Clim. Chang. 2020, 10, 260–263. [Google Scholar] [CrossRef]
- Selvan, S.C.; Kankara, R.S.; Prabhu, K.; Rajan, B. Shoreline change along Kerala, south-west coast of India, using geo-spatial techniques and field measurement. Nat. Hazards 2020, 100, 17–38. [Google Scholar] [CrossRef]
- Neumann, B.; Vafeidis, A.T.; Zimmermann, J.; Nicholls, R.J. Future coastal population growth and exposure to sea-level rise and coastal flooding a global assessment. PLoS ONE 2015, 10, e118571. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, R.J.; Cazenave, A. Sea-level rise and its impact on coastal zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
Path/Row | Satellite/Sensor | Resolution (m) | Acquisition Date | Path/Row | Satellite/Sensor | Resolution (m) | Acquisition Date |
---|---|---|---|---|---|---|---|
118/032 | Landsat5/TM | 30 | 15 September 1990 | 118/032 | Landsat8/OLI | 30 | 27 June 2019 |
118/033 | Landsat5/TM | 30 | 20 October 1991 | 119/032 | Landsat5/TM | 30 | 13 September 2010 |
119/032 | Landsat7/ETM+ | 30 | 09 September 2000 | 119/032 | Landsat8/OLI | 30 | 01 May 2019 |
119/033 | Landsat5/TM | 30 | 12 November 1991 | 119/033 | Landsat8/OLI | 30 | 21 August 2019 |
120/032 | Landsat5/TM | 30 | 13 September 1990 | 120/032 | Landsat8/OLI | 30 | 28 August 2019 |
120/033 | Landsat5/TM | 30 | 13 September 1990 | 120/033 | Landsat8/OLI | 30 | 28 August 2019 |
121/032 | Landsat5/TM | 30 | 19 August 1990 | 121/032 | Landsat8/OLI | 30 | 31 May 2019 |
121/033 | Landsat5/TM | 30 | 15 May 1990 | 121/033 | Landsat8/OLI | 30 | 22 October 2019 |
122/033 | Landsat5/TM | 30 | 13 September 1990 | 122/033 | Landsat8/OLI | 30 | 06 May 2019 |
121/034 | Landsat5/TM | 30 | 15 May 1991 | 121/034 | Landsat8/OLI | 30 | 19 August 2019 |
120/034 | Landsat5/TM | 30 | 13 September 1990 | 120/034 | Landsat8/OLI | 30 | 28 August 2019 |
119/034 | Landsat5/TM | 30 | 02 June 1990 | 119/034 | Landsat8/OLI | 30 | 01 May 2019 |
119/035 | Landsat5/TM | 30 | 28 December 1991 | 119/035 | Landsat8/OLI | 30 | 08 October 2019 |
120/035 | Landsat5/TM | 30 | 15 October 1990 | 120/035 | Landsat8/OLI | 30 | 28 August 2019 |
120/036 | Landsat5/TM | 30 | 08 May 1990 | 120/036 | Landsat8/OLI | 30 | 28 August 2019 |
119/037 | Landsat5/TM | 30 | 15 April 1990 | 119/037 | Landsat8/OLI | 30 | 21 August 2019 |
118/038 | Landsat5/TM | 30 | 04 December 1990 | 118/038 | Landsat8/OLI | 30 | 29 July 2019 |
118/039 | Landsat5/TM | 30 | 14 August 1990 | 118/039 | Landsat8/OLI | 30 | 14 August 2019 |
118/040 | Landsat5/TM | 30 | 11 June 1990 | 118/040 | Landsat8/OLI | 30 | 14 August 2019 |
118/041 | Landsat5/TM | 30 | 13 July 1990 | 118/041 | Landsat8/OLI | 30 | 14 August 2019 |
118/042 | Landsat5/TM | 30 | 22 February 1991 | 118/042 | Landsat8/OLI | 30 | 15 September 2019 |
119/041 | Landsat5/TM | 30 | 27 October 1991 | 119/041 | Landsat8/OLI | 30 | 30 March 2019 |
119/042 | Landsat5/TM | 30 | 30 July 1990 | 119/042 | Landsat8/OLI | 30 | 06 September 2019 |
119/043 | Landsat5/TM | 30 | 20 July 1990 | 119/043 | Landsat8/OLI | 30 | 06 September 2019 |
119/044 | Landsat5/TM | 30 | 24 August 1991 | 119/044 | Landsat8/OLI | 30 | 22 September 2019 |
120/044 | Landsat5/TM | 30 | 04 February 1991 | 120/044 | Landsat8/OLI | 30 | 15 October 2019 |
121/044 | Landsat5/TM | 30 | 19 October 1989 | 121/044 | Landsat8/OLI | 30 | 18 July 2019 |
121/045 | Landsat5/TM | 30 | 09 October 1991 | 121/045 | Landsat8/OLI | 30 | 20 September 2019 |
122/044 | Landsat5/TM | 30 | 13 October 1990 | 122/044 | Landsat8/OLI | 30 | 29 October 2019 |
122/045 | Landsat5/TM | 30 | 14 September 1991 | 122/045 | Landsat8/OLI | 30 | 19 March 2019 |
123/045 | Landsat5/TM | 30 | 02 September 1990 | 123/045 | Landsat8/OLI | 30 | 08 April 2019 |
124/045 | Landsat5/TM | 30 | 11 October 1990 | 124/045 | Landsat8/OLI | 30 | 25 September 2019 |
124/046 | Landsat5/TM | 30 | 08 August 1990 | 124/046 | Landsat8/OLI | 30 | 09 September 2019 |
125/045 | Landsat5/TM | 30 | 19 September 1991 | 125/045 | Landsat8/OLI | 30 | 15 August 2019 |
Level Ⅰ | Level Ⅱ | Symbol | Description |
---|---|---|---|
Natural shoreline | Rocky shoreline | ROC | Composed of gravel or cliffs |
Sandy shoreline | SAN | Composed of different kinds of sands | |
Muddy shoreline | MUD | Composed of mud | |
Biological shoreline | BIO | Composed of mangroves, reeds, etc. | |
Artificial shoreline | Aquaculture shoreline | AQU | Composed of aquaculture facilities |
Salt pan shoreline | SAL | Composed of salt pans | |
Farmland shoreline | FAR | Composed of farmland | |
Construction shoreline | CON | Composed of build-up area for settlement or factories | |
Quay shoreline | QUA | Composed of harbors, shipping wharves, etc. | |
Traffic shoreline | TRA | Composed of embankments for traffic facilities | |
Revetment and seawall shoreline | REV | Composed of revetments or seawalls | |
Dike and jetty shoreline | DIK | Composed of dikes or jetties | |
Estuarine shoreline | Estuarine shoreline | EST | Composed of estuaries |
Sea | Type at Level Ⅰ | Length (km) in ~1990 | Length (%) in ~1990 | Length (km) in 2019 | Length (%) in 2019 |
---|---|---|---|---|---|
Bohai Sea | Natural shoreline | 1202.8 | 56.9 | 537.4 | 18.1 |
Artificial shoreline | 896.7 | 42.4 | 2423.1 | 81.5 | |
Estuarine shoreline | 14.6 | 0.7 | 14.3 | 0.5 | |
Yellow Sea | Natural shoreline | 1425.1 | 52.5 | 788.6 | 25.3 |
Artificial shoreline | 1272.3 | 46.8 | 2303.9 | 73.9 | |
Estuarine shoreline | 18.5 | 0.7 | 24.0 | 0.8 | |
East China Sea | Natural shoreline | 2470.8 | 55.1 | 1596.3 | 39.0 |
Artificial shoreline | 1975.4 | 44.0 | 2442.1 | 59.7 | |
Estuarine shoreline | 40.3 | 0.9 | 53.9 | 1.3 | |
South China Sea | Natural shoreline | 2558.7 | 58.9 | 1816.6 | 41.0 |
Artificial shoreline | 1744.2 | 40.1 | 2565.1 | 57.9 | |
Estuarine shoreline | 43.6 | 1.0 | 46.5 | 1.0 |
In 2019 | ||||
---|---|---|---|---|
Natural Shoreline | Artificial Shoreline | Estuarine Shoreline | ||
In ~1990 | Natural shoreline | 4290.2 (51.5%) | 4000.2 (48.0%) | 37.1 (0.4%) |
Artificial shoreline | 411.7 (6.6%) | 5806.5 (92.6%) | 55.3 (0.9%) | |
Estuarine shoreline | 18.0 (11.7%) | 66.4 (43.2%) | 69.2 (45.0%) |
In 2019 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ROC | SAN | MUD | BIO | AQU | SAL | FAR | CON | QUA | TRA | REV | DIK | EST | ||
In ~1990 | ROC | 54.7 | 6.6 | 0.0 | 0.6 | 11.9 | 0.0 | 0.7 | 15.2 | 6.2 | 1.5 | 1.0 | 0.3 | 1.2 |
SAN | 2.8 | 57.2 | 0.0 | 1.4 | 16.3 | 0.0 | 0.6 | 13.0 | 6.4 | 1.3 | 0.3 | 0.3 | 0.4 | |
MUD | 0.3 | 2.3 | 15.4 | 7.5 | 38.3 | 3.5 | 3.8 | 11.0 | 6.1 | 1.3 | 1.9 | 0.2 | 8.6 | |
BIO | 0.9 | 1.2 | 0.0 | 37.3 | 40.4 | 0.0 | 1.0 | 10.0 | 3.1 | 0.6 | 1.8 | 0.0 | 3.6 | |
AQU | 0.7 | 1.7 | 0.9 | 3.9 | 61.1 | 1.0 | 1.6 | 15.1 | 6.6 | 2.0 | 1.2 | 0.0 | 4.3 | |
SAL | 0.5 | 0.0 | 1.5 | 3.9 | 41.9 | 9.5 | 2.7 | 31.1 | 4.5 | 1.9 | 1.5 | 0.0 | 1.1 | |
FAR | 1.3 | 1.7 | 2.3 | 6.0 | 31.5 | 0.0 | 14.5 | 26.7 | 6.0 | 0.7 | 0.9 | 0.0 | 8.5 | |
CON | 2.2 | 3.3 | 1.5 | 1.3 | 9.5 | 0.0 | 0.5 | 50.1 | 24.2 | 2.8 | 2.2 | 0.2 | 2.1 | |
QUA | 0.8 | 1.8 | 0.0 | 0.1 | 1.1 | 0.0 | 0.0 | 11.0 | 82.5 | 0.4 | 1.0 | 0.7 | 0.5 | |
TRA | 0.0 | 1.8 | 0.0 | 4.1 | 2.2 | 0.0 | 0.0 | 30.6 | 0.0 | 61.3 | 0.0 | 0.0 | 0.0 | |
REV | 0.3 | 0.0 | 2.3 | 0.0 | 0.0 | 0.0 | 58.1 | 2.0 | 0.0 | 4.2 | 5.1 | 0.0 | 28.1 | |
DIK | 0.0 | 5.4 | 0.0 | 0.0 | 17.8 | 0.0 | 0.0 | 25.8 | 25.1 | 0.0 | 0.0 | 23.9 | 1.9 | |
EST | 0.1 | 3.4 | 1.7 | 1.5 | 12.7 | 1.1 | 0.0 | 9.1 | 1.6 | 0.0 | 0.0 | 0.2 | 68.6 |
In 2019 | |||||
---|---|---|---|---|---|
Natural Shoreline | Artificial Shoreline | Estuarine Shoreline | |||
In ~1990 | Bohai Sea | Natural shoreline | 459.6 | 728.1 | 15.2 |
Artificial shoreline | 27.1 | 859.9 | 9.8 | ||
Estuarine shoreline | 2.2 | 6.2 | 6.2 | ||
Yellow Sea | Natural shoreline | 687.2 | 720.7 | 17.2 | |
Artificial shoreline | 90.2 | 1172.6 | 9.5 | ||
Estuarine shoreline | 0.0 | 1.5 | 16.9 | ||
East China Sea | Natural shoreline | 1443.7 | 961.4 | 65.7 | |
Artificial shoreline | 145.5 | 1667.2 | 162.8 | ||
Estuarine shoreline | 0.5 | 11.1 | 28.7 | ||
South China Sea | Natural shoreline | 1658.2 | 845.8 | 54.7 | |
Artificial shoreline | 179.6 | 1495.9 | 68.7 | ||
Estuarine shoreline | 5.2 | 10.0 | 28.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, H.; Xu, K.; Goes, J.I.; Liu, Q.; Gomes, H.d.R.; Yang, M. Shoreline Changes Along the Coast of Mainland China—Time to Pause and Reflect? ISPRS Int. J. Geo-Inf. 2020, 9, 572. https://doi.org/10.3390/ijgi9100572
Tian H, Xu K, Goes JI, Liu Q, Gomes HdR, Yang M. Shoreline Changes Along the Coast of Mainland China—Time to Pause and Reflect? ISPRS International Journal of Geo-Information. 2020; 9(10):572. https://doi.org/10.3390/ijgi9100572
Chicago/Turabian StyleTian, Hongzhen, Kai Xu, Joaquim I. Goes, Qinping Liu, Helga do Rosario Gomes, and Mengmeng Yang. 2020. "Shoreline Changes Along the Coast of Mainland China—Time to Pause and Reflect?" ISPRS International Journal of Geo-Information 9, no. 10: 572. https://doi.org/10.3390/ijgi9100572
APA StyleTian, H., Xu, K., Goes, J. I., Liu, Q., Gomes, H. d. R., & Yang, M. (2020). Shoreline Changes Along the Coast of Mainland China—Time to Pause and Reflect? ISPRS International Journal of Geo-Information, 9(10), 572. https://doi.org/10.3390/ijgi9100572