A 3D Geodatabase for Urban Underground Infrastructures: Implementation and Application to Groundwater Management in Milan Metropolitan Area
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Implementation of a 3D Geodatabase for Underground Infrastructures
3.1.1. Private Car Parks
3.1.2. Public Car Parks
3.1.3. Subway Lines and Underground Railway
3.2. Reconstruction of the Groundwater Table
3.3. Calculation of Infrastructure Volumes below the Water Table
3.4. Evaluation of the Impact of Groundwater on Non-Waterproofed Infrastructures in a Pilot Area
4. Results
4.1. 3D GDB Implementation and Analysis
4.2. GW Table
4.3. Infrastructure Volumes below the Water Table
4.4. Impact of Groundwater on Non-Waterproofed Infrastructures in a Pilot Area
5. Discussion
6. Conclusions
- Create a detailed inventory of the underground infrastructures through a standardized 3D geodatabase, to manage the existing data and incorporate new information in an efficient and easy way. This was realized using open data as the main source of information.
- Identify the main areas where infrastructural volumes lie below the groundwater table, and to evaluate how this situation has varied among time according to groundwater trends, with attention to non-waterproofed infrastructures. This, to the best of our knowledge, has been done for the first time both for private and public car parks.
- Provide to the decision-makers and stakeholders a useful tool to properly plan and manage the future urban underground development of Milan metropolitan area, in relation also to groundwater aspects.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Koziatek, O.; Dragićević, S. iCity 3D: A geosimualtion method and tool for three-dimensional modeling of vertical urban development. Landsc. Urban Plan. 2017, 167, 356–367. [Google Scholar] [CrossRef]
- Zhang, X.Q. The trends, promises and challenges of urbanisation in the world. Habitat Int. 2016, 54, 241–252. [Google Scholar] [CrossRef]
- Guastella, G.; Oueslati, W.; Pareglio, S. Patterns of urban spatial expansion in European Cities. Sustainability 2019, 11, 2247. [Google Scholar] [CrossRef] [Green Version]
- Utudjian, E. L’urbanisme Souterrain; Presses Universitaires de France: Paris, France, 1972. [Google Scholar]
- Barles, S.; Guillerme, A. L’urbanisme Souterrain; FeniXX: Paris, France, 1995; ISBN 2705916261. [Google Scholar]
- Bélanger, P. Underground landscape: The urbanism and infrastructure of Toronto’s downtown pedestrian network. Tunn. Undergr. Space Technol. 2007, 22, 272–292. [Google Scholar] [CrossRef]
- Parriaux, A.; Tacher, L.; Kaufmann, V.; Blunier, P. Underground Resources and Sustainable Development in Urban Areas; The Geological Society of London: London, UK, 2006. [Google Scholar]
- Sterling, R.; Admiraal, H.; Bobylev, N.; Parker, H.; Godard, J.-P.; Vähäaho, I.; Rogers, C.D.F.; Shi, X.; Hanamura, T. Sustainability issues for underground space in urban areas. Proc. Inst. Civ. Eng. Des. Plan. 2012, 165, 241–254. [Google Scholar] [CrossRef]
- Un-Habitat. State of the World’s Cities 2008/9: Harmonious Cities; Routledge: Abingdon-on-Thames, UK, 2012; ISBN 1136556729. [Google Scholar]
- Li, H.-Q.; Parriaux, A.; Thalmann, P.; Li, X.-Z. An integrated planning concept for the emerging underground urbanism: Deep City Method Part 1 concept, process and application. Tunn. Undergr. Space Technol. 2013, 38, 559–568. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Parriaux, A.; Thalmann, P. An integrated planning concept for the emerging underground urbanism: Deep City Method Part 2 case study for resource supply and project valuation. Tunn. Undergr. Space Technol. 2013, 38, 569–580. [Google Scholar] [CrossRef]
- Bobylev, N. Mainstreaming sustainable development into a city’s Master plan: A case of Urban Underground Space use. Land Use Policy 2009, 26, 1128–1137. [Google Scholar] [CrossRef]
- Bobylev, N. Transitions to a High Density Urban Underground Space. Procedia Eng. 2016, 165, 184–192. [Google Scholar] [CrossRef]
- Vähäaho, I. An introduction to the development for urban underground space in Helsinki. Tunn. Undergr. Space Technol. 2016, 55, 324–328. [Google Scholar] [CrossRef]
- Vähäaho, I. Underground space planning in Helsinki. J. Rock Mech. Geotech. Eng. 2014, 6, 387–398. [Google Scholar] [CrossRef]
- Rein, J. AMFORA Amsterdam_alternative multifunctional subterranean development Amsterdam. In Proceedings of the 45th ISOCARP Congress, Porto, Portugal, 18–22 October 2009. [Google Scholar]
- Boisvert, M. Extensions of Indoor walkways into the public domain—A partnership experiment. In Proceedings of the 11th ACUUS Conference: Underground Space: Expanding the Frontiers, Athens, Greece, 10–13 September 2007; pp. 519–525. [Google Scholar]
- Nishioka, S.; Tannaka, Y.; Minemura, T. Deep underground usage for effective executing of city facility construction. In Proceedings of the 11th ACUUS Conference: Underground Space: Expanding the Frontiers, Athens, Greece, 10–13 September 2007; pp. 291–295. [Google Scholar]
- Parriaux, A.; Blunier, P.; Maire, P.; Tacher, L. The DEEP CITY Project: A Global Concept for a Sustainable Urban Underground Management. In Proceedings of the 11th ACUUS Conference: Underground Space: Expanding the Frontiers, Athens, Greece, 10–13 September 2007; pp. 255–260. [Google Scholar]
- Hunt, D.V.L.; Makana, L.O.; Jefferson, I.; Rogers, C.D.F. Liveable cities and urban underground space. Tunn. Undergr. Space Technol. 2016, 55, 8–20. [Google Scholar] [CrossRef]
- Parriaux, A.; Tacher, L.; Joliquin, P. The hidden side of cities—Towards three-dimensional land planning. Energy Build. 2004, 36, 335–341. [Google Scholar] [CrossRef]
- Attard, G.; Rossier, Y.; Winiarski, T.; Eisenlohr, L. Urban underground development confronted by the challenges of groundwater resources: Guidelines dedicated to the construction of underground structures in urban aquifers. Land Use Policy 2017, 64, 461–469. [Google Scholar] [CrossRef]
- Blunier, P.; Tacher, L.; Parriaux, A. Systemic approach of urban underground resources exploitation. In Proceedings of the 11th ACUUS Conference: Underground Space: Expanding the Frontiers, Athens, Greece, 10–13 September 2007; pp. 43–48. [Google Scholar]
- Li, H.Q. Sustainable 3D Urban Governance: Creating a “Deep City” for Our Modern City; EPFL: Lausanne, Switzerland, 2011; pp. 1–14. [Google Scholar]
- Vázquez-Suñé, E.; Sánchez-Vila, X.; Carrera, J.; Marizza, M.; Arandes, R. Rising groundwater levels in Barcelona: Evolution and effects on urban structures. In Groundwater in the Urban Environment, Proceedings of the XXVII IAH Congress on Groundwater in the Urban Environment, Nottingham, UK, 21–27 September 1997; Balkema: Rotterdam, The Netherlands; Brookfield, VT, USA, 1997; pp. 267–271. [Google Scholar]
- Wilkinson, W. Rising groundwater levels in London and possible effects on engineering structures. In Proceedings of the 18th Congress of the International Association of Hydrogeologists, Cambridge, UK, 8–13 September 1985; pp. 145–157. [Google Scholar]
- Lamé, A. Modélisation Hydrogéologique des Aquifères de Paris et Impacts des Aménagements du sous-sol sur les Écoulements Souterrains; MINES ParisTech: Paris, France, 2013. [Google Scholar]
- Hayashi, T.; Tokunaga, T.; Aichi, M.; Shimada, J.; Taniguchi, M. Effects of human activities and urbanization on groundwater environments: An example from the aquifer system of Tokyo and the surrounding area. Sci. Total Environ. 2009, 407, 3165–3172. [Google Scholar] [CrossRef]
- Hernández, M.A.; González, N.; Chilton, J. Impact of rising piezometric levels on Greater Buenos Aires due to partial changing of water services infrastructure. In Groundwater in the Urban Environment, Proceedings of the XXVII IAH Congress on Groundwater in the Urban Environment, Nottingham, UK, 21–27 September 1997; Balkema: Rotterdam, The Netherlands; Brookfield, VT, USA, 1997. [Google Scholar]
- Ducci, D.; Sellerino, M. Groundwater Mass Balance in Urbanized Areas Estimated by a Groundwater Flow Model Based on a 3D Hydrostratigraphical Model: The Case Study of the Eastern Plain of Naples (Italy). Water Resour. Manag. 2015, 29, 4319–4333. [Google Scholar] [CrossRef]
- George, D.J. Rising groundwater: A problem of development in some urban areas of the Middle East. In Geohazards; Springer: Berlin, Germany, 1992; pp. 171–182. [Google Scholar]
- Mudd, G.M.; Deletic, A.; Fletcher, T.D.; Wendelborn, A. A review of urban groundwater in Melbourne: Considerations for WSUD. In Proceedings of the 2004 International Conference on Water Sensitive Urban Design, Adelaide SA, Australia, 21–25 November 2004; p. 428. [Google Scholar]
- Culshaw, M.G.; Price, S.J. The 2010 Hans Cloos lecture. Bull. Eng. Geol. Environ. 2011, 70, 333–376. [Google Scholar] [CrossRef] [Green Version]
- Vázquez-Suñé, E.; Marazuela, M.Á.; Velasco, V.; Diviu, M.; Pérez-Estaún, A.; Álvarez-Marrón, J. A geological model for the management of subsurface data in the urban environment of Barcelona and surrounding area. Solid Earth 2016, 7, 1317–1329. [Google Scholar] [CrossRef] [Green Version]
- Alawadhi, S.; Aldama-Nalda, A.; Chourabi, H.; Gil-Garcia, J.R.; Leung, S.; Mellouli, S.; Nam, T.; Pardo, T.A.; Scholl, H.J.; Walker, S. Building understanding of smart city initiatives. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7443, pp. 40–53. [Google Scholar]
- Fitch, P.; Brodaric, B.; Stenson, M.; Booth, N. Integrated groundwater data management. In Integrated Groundwater Management; Springer: Cham, Switzerland, 2016; pp. 667–692. [Google Scholar]
- Janssen, M.; Charalabidis, Y.; Zuiderwijk, A. Benefits, Adoption Barriers and Myths of Open Data and Open Government. Inf. Syst. Manag. 2012, 29, 258–268. [Google Scholar] [CrossRef] [Green Version]
- Zurada, J.; Karwowski, W. Knowledge discovery through experiential learning from business and other contemporary data sources: A review and reappraisal. Inf. Syst. Manag. 2011, 28, 258–274. [Google Scholar] [CrossRef]
- Arzberger, P.; Schroeder, P.; Beaulieu, A.; Bowker, G.; Casey, K.; Laaksonen, L.; Moorman, D.; Uhlir, P.; Wouters, P. An international framework to promote access to data. Policy Forum 2004, 303, 1777–1779. [Google Scholar]
- Beretta, G.P.; Avanzini, M.; Pagotto, A. Managing groundwater rise: Experimental results and modelling of water pumping from a quarry lake in Milan urban area (Italy). Environ. Geol. 2004, 45, 600–608. [Google Scholar] [CrossRef]
- Colombo, L.; Gattinoni, P.; Scesi, L. Stochastic modelling of groundwater flow for hazard assessment along the underground infrastructures in Milan (northern Italy). Tunn. Undergr. Space Technol. 2018, 79, 110–120. [Google Scholar] [CrossRef]
- Gattinoni, P.; Scesi, L. The groundwater rise in the urban area of Milan (Italy) and its interactions with underground structures and infrastructures. Tunn. Undergr. Space Technol. 2017, 62, 103–114. [Google Scholar] [CrossRef]
- De Caro, M.; Crosta, G.B.; Previati, A. Modelling the interference of underground structures with groundwater flow and remedial solutions in Milan. Eng. Geol. 2020, 272, 105652. [Google Scholar] [CrossRef]
- Jurado, J.M.; Feito, L.O.F.R. 3D GIS based on WebGL for the management of underground utilities. In Spanish Computer Graphics Conference (CEIG); The Eurographics Association: Geneve, Switzerland, 2017; pp. 61–64. [Google Scholar] [CrossRef]
- Attard, G.; Cuvillier, L.; Eisenlohr, L.; Rossier, Y.; Winiarski, T. Deterministic modelling of the cumulative impacts of underground structures on urban groundwater flow and the definition of a potential state of urban groundwater flow: Example of Lyon, FranceModélisation déterministe des impacts cumulés des structures so. Hydrogeol. J. 2016, 24, 1213–1229. [Google Scholar] [CrossRef]
- Carneiro, J.; Carvalho, J.M. Groundwater modelling as an urban planning tool: Issues raised by a small-scale model. Q. J. Eng. Geol. Hydrogeol. 2010, 43, 157–170. [Google Scholar] [CrossRef]
- Istat. L’italia del Censimento. Struttura Demografica e Processo di Rilevazione, Lombardia; Istat: Via Cesare Balbo, Roma, 2011. [Google Scholar]
- Bonomi, T. Database development and 3D modeling of textural variations in heterogeneous, unconsolidated aquifer media: Application to the Milan plain. Comput. Geosci. 2009, 35, 134–145. [Google Scholar] [CrossRef]
- Regione Lombardia. Regione Lombardia Piano di Tutela ed Uso delle Acque (PTUA); Regione Lombardia: Milano, Italy, 2016. [Google Scholar]
- Bonomi, T. Groundwater level evolution in the Milan area: Natural and human issues. In Proceedings of the IUGG 99 Symposium HS5, Birmingham, UK, 19–30 July 1999; pp. 195–202. [Google Scholar]
- Cavallin, A.; Bonomi, T. Application of a hydrogeological model to analyze and manage groundwater processes in the urban environment: A case study in the Milan area, Italy. In Groundwater in the Urban Environment; Balkema: Rotterdam, The Netherlands, 1997; pp. 91–96. [Google Scholar]
- Sterling, R.L. Urban underground space use planning: A growing dilemma. Urban Plan. Int. 2007, 6, 4. [Google Scholar]
- Bobylev, N. Strategic environmental assessment of urban underground infrastructure development policies. Tunn. Undergr. Space Technol. 2006, 21, 469. [Google Scholar] [CrossRef]
- Milan Metropolitan City. Documento di Piano Milano 2030 Visione, Costruzione, Strategie, Spazi; Comune di Milano: Milano, Italy, 2019. [Google Scholar]
- Milan Metropolitan City. Decimetro: Sistema Decisionale Città Metropolitana di Milano. Available online: https://www.cittametropolitana.mi.it/DeCiMetro/DBT/index.html (accessed on 15 June 2020).
- ESRI. ArcMAP Desktop, Release 10.5.1; ESRI: Redlands, CA, USA, 2013. [Google Scholar]
- Pappa, M.; Benardos, A. Comparative evaluation of alternative methods for the construction of underground car parks. In Proceedings of the 11th ACUUS Conference: Underground Space: Expanding the Frontiers, Athens, Greece, 10–13 September 2007; pp. 487–492. [Google Scholar]
- Bonomi, T.; Cavallin, A.; De Amicis, M.; Rizzi, S.; Tizzone, R.; Trefiletti, P. Evoluzione della dinamica piezometrica nell’area milanese in funzione di alcuni aspetti socio-economici. In Proceedings of the Atti della Giornata Mondiale dell’Acqua “Acque Sotterranee: Risorsa Invisibile”, Rome, Italy, 23 March 1998; pp. 9–17. [Google Scholar]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press on Demand: Oxford, UK, 1997; ISBN 0195115384. [Google Scholar]
- Isaaks, E.H.; Srivastava, R.M. An Introduction to Applied Geostatistics; Oxford University Press: New York, UK, USA, 1989. [Google Scholar]
- Kitanidis, P.K. Introduction to Geostatistics: Applications in Hydrogeology; Cambridge University Press: Cambridge, UK, 1997; ISBN 0521587476. [Google Scholar]
- Webster, R.; Oliver, M.A. Cross-correlation, co-regionalization, and co-kriging. In Geostatistics for Environmental Scientists; John Wiley Sons: Chichester, UK, 2001. [Google Scholar]
- Beretta, G.P.; Avanzini, M. La gestione sostenibile del sollevamento della falda a Milano ed hinterland. In L’Acqua; Rivista bimestrale dell’Associazione Idrotecnica Italiana: Roma, Italy, 1998. [Google Scholar]
- De Luca, D.A.; Destefanis, E.; Forno, M.G.; Lasagna, M.; Masciocco, L. The genesis and the hydrogeological features of the Turin Po Plain fontanili, typical lowland springs in Northern Italy. Bull. Eng. Geol. Environ. 2014, 73, 409–427. [Google Scholar] [CrossRef]
- Colombo, A. Milano e l’innalzamento della falda. Cave e Cantieri 1999, 2, 26–36. [Google Scholar]
- de Rienzo, F.; Oreste, P.; Pelizza, S. 3D GIS supporting underground urbanisation in the City of Turin (Italy). Geotech. Geol. Eng. 2009, 27, 539–547. [Google Scholar] [CrossRef]
- Delmastro, C.; Lavagno, E.; Schranz, L. Underground urbanism: Master Plans and Sectorial Plans. Tunn. Undergr. Space Technol. 2016, 55, 103–111. [Google Scholar] [CrossRef]
- Directive, I. Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 establishing an Infrastructure for Spatial Information in the European Community (INSPIRE). Off. J. Eur. Union L 2007, 108, 1–14. [Google Scholar]
- Airoldi, R.; Peterlongo, G.; Casati, P.; De Amicis, M. Oscillazioni del livello della falda idrica sotterranea milanese nel periodo 1990–1995. Acque Sotter. Ital. J. Groundw. 1997, 53, 41–49. [Google Scholar]
- Beretta, G.; Cavallin, A.; Francani, V.; Mazzarella, S.; Pagotto, A. Primo Bilancio Idrogeologico della Pianura Milanese; Consorzio per l’Acqua Potabile ai Comuni della Provincia di Milano: Milano, Italy, 1985. [Google Scholar]
- Airoldi, R.; Casati, P. Le Falde Idriche del Sottosuolo di Milano; Comune di Milano: Milano, Italy, 1989. [Google Scholar]
- Francani, V.; Beretta, G.P.; Avanzini, M.; Nespoli, M. Indagine Preliminare Sull’uso Sostenibile delle Falde Profonde nella Provincia di Milano; Consorzio Acqua Potabile: Milano, Italy, 1994; Available online: http://hdl.handle.net/11311/505392 (accessed on 15 June 2020).
- Bonomi, T.; Fumagalli, M.; Dotti, N. Fenomeno di inquinamento da solventi in acque sotterranee sfruttate ad uso potabile nel nord-ovest della provincia di Milano. G. Geol. Appl. 2009, 12, 43–59. [Google Scholar]
- Bhattacharjee, Y. Citizen scientists supplement work of Cornell researchers: A half-century of interaction with bird watchers has evolved into a robust and growing collaboration between volunteers and a leading ornithology lab. Science 2005, 308, 1402–1404. [Google Scholar] [CrossRef]
- Bonney, R.; Cooper, C.B.; Dickinson, J.; Kelling, S.; Phillips, T.; Rosenberg, K.V.; Shirk, J. Citizen science: A developing tool for expanding science knowledge and scientific literacy. Bioscience 2009, 59, 977–984. [Google Scholar] [CrossRef]
- Bonney, R.; Shirk, J.L.; Phillips, T.B.; Wiggins, A.; Ballard, H.L.; Miller-Rushing, A.J.; Parrish, J.K. Next steps for citizen science. Science 2014, 343, 1436–1437. [Google Scholar] [CrossRef]
- Bonney, R.; Phillips, T.B.; Ballard, H.L.; Enck, J.W. Can citizen science enhance public understanding of science? Public Underst. Sci. 2016, 25, 2–16. [Google Scholar] [CrossRef]
- Bonomi, T.; Bellini, R. The tunnel impact on the groundwater level in an urban area: A modelling approach to forecast it. RMZ Mater. Geoenviron. 2003, 50, 45–48. [Google Scholar]
- Dassargues, A. Groundwater modelling to predict the impact of tunnel on the behavior of water table aquiefer in urban condition. In Groundwater in the Urban Environment: Problems, Processes and Management; Balkema: Rotterdam, The Netherlands, 1997; pp. 225–230. [Google Scholar]
- Ricci, G.; Enrione, R.; Eusebio, A.; Crova, R. Numerical modelling of the interference between underground structures and aquifers in urban environment. The Turin subway—Line 1. In Underground Space—The 4th Dimension of Metropolises, Three Volume Set +CD-ROM, Proceedings of the World Tunnel Congress 2007 and 33rd ITA/AITES Annual General Assembly, Prague, Czech Republic, 5–10 May 2007; CRC Press: Boca Raton, FL, USA, 2007; Volume 2, pp. 1323–1329. [Google Scholar]
- Velasco, V.; Montfort, D.; Vàzquez-Suñé, E.; Font-Capo, J.; Carrera, J.; Pujades, E. Assessment of the barrier effect caused by underground constructions on porous aquifers with low hydraulic gradient: A case study of the metro construction in Barcelona, Spain. Eng. Geol. 2015, 196, 238–250. [Google Scholar]
- Pujades, E.; López, A.; Carrera, J.; Vázquez-Suñé, E.; Jurado, A. Barrier effect of underground structures on aquifers. Eng. Geol. 2012, 144–145, 41–49. [Google Scholar] [CrossRef]
- Attard, G.; Winiarski, T.; Rossier, Y.; Eisenlohr, L. Review: Impact of underground structures on the flow of urban groundwaterRevue: Impact des structures du sous-sol sur les écoulements des eaux souterraines en milieu urbainRevisión: Impacto de las estructuras del subsuelo en el flujo del agua subterránea. Hydrogeol. J. 2015, 24, 5–19. [Google Scholar] [CrossRef]
- Attard, G.; Rossier, Y.; Winiarski, T.; Eisenlohr, L. Deterministic modeling of the impact of underground structures on urban groundwater temperature. Sci. Total Environ. 2016, 572, 986–994. [Google Scholar] [CrossRef]
- Vázquez-Suñé, E.; Sánchez-Vila, X.; Carrera, J. Introductory review of specific factors influencing urban groundwater, an emerging branch of hydrogeology, with reference to Barcelona, Spain. Hydrogeol. J. 2005, 13, 522–533. [Google Scholar] [CrossRef]
- Kresic, N.; Mikszewski, A. Hydrogeological Conceptual Site Models: Data Analysis and Visualization; CRC Press: Boca Raton, FL, USA, 2012; ISBN 1439852286. [Google Scholar]
- McDonald, M.G.; Harbaugh, A.W. A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model; US Geological Survey: Preston, WV, USA, 1988.
- Diersch, H.-J.G. FEFLOW: Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media; Springer Science & Business Media: Berlin, Germany, 2013; ISBN 364238739X. [Google Scholar]
- Besner, J. Underground space needs an interdisciplinary approach. Tunn. Undergr. Space Technol. 2016, 55, 224–228. [Google Scholar] [CrossRef]
- Goel, R.K.; Singh, B.; Zhao, J. Underground Infrastructures: Planning, Design, and Construction; Butterworth-Heinemann: Oxford, UK, 2012; ISBN 0123971683. [Google Scholar]
Name/ID | Bottom Reference (m a.s.l.) | Depth (m) | Area × 103 (m2) | Volume × 103 (m3) |
---|---|---|---|---|
PrCP1 | 119.32 | 5 | 0.12 | 0.59 |
PrCP100 | 117.27 | 5 | 0.23 | 1.17 |
PrCP1000 | 112.99 | 5 | 1.37 | 6.87 |
PrCP10000 | 127.94 | 5 | 0.14 | 0.71 |
… | … | … | … | … |
PrCP11283 | 127.52 | 5 | 0.48 | 2.39 |
Total Parks: 11,283 | 45,100.96 |
Name | Bottom Reference (m a.s.l.) | Depth (m) | Area × 103 (m2) | Volume × 103 (m3) | Period of Construction | Number of Floors | Location |
---|---|---|---|---|---|---|---|
Silla | 131.3 | 5 | 5.82 | 29.1 | 2002–2007 | 1 | North of Milan |
Erculea | 100.91 | 17 | 1.3 | 22.10 | <1990 | 5 | Downtown |
Risorgimento Nord | 96.9 | 20 | 1.43 | 28.6 | 2007–2014 | 6 | Downtown |
Ciclamini/Margherite | 111.5 | 8 | 3 | 24 | 1990–2002 | 2 | West |
… | … | … | … | … | … | … | … |
Cascina Bianca | 106.2 | 5 | 7.88 | 39.4 | 2002–2007 | 1 | South of Milan |
Total Parks: 126 | 5157 |
Name | Bottom Reference (m a.s.l.) | Depth (m) | Area × 103 (m2) | Volume × 103 (m3) | Period of Construction | Type | Waterproofed |
---|---|---|---|---|---|---|---|
Duomo (M1) | 107.64 | 12.47 | 5.56 | 69.33 | <1990 | Station | No |
Sant’Agostino (M2) | 99.12 | 17.35 | 1.37 | 23.77 | <1990 | Station | No |
Duomo (M3) | 95.7 | 25.05 | 4.59 | 114.98 | 1990–2002 | Station | Yes |
Linate (M4) | 98.91 | 11.1 | 4.25 | 47.17 | 2021–2023 | Station | Yes |
… | … | … | … | … | … | … | … |
Lotto (M5) | 98.47 | 26.28 | 2.41 | 63.33 | >2014 | Station | Yes |
Repubblica–P.ta Venezia (UR) | 100.9 | 8.5 | 6.15 | 52.27 | 1990–2002 | Gallery | Yes |
Total elements: 388 | 13,702.67 |
Type | Name | Depth (m) | Area × 103 (m2) | Volume × 103 (m3) | Period of Construction | V Jan90 (%) | V Dec02 (%) | V Sep07 (%) | V Dec14 (%) |
---|---|---|---|---|---|---|---|---|---|
S | Cadorna M1 | 10.65 | 3.53 | 37.59 | <1990 | 0 | 0 | 0 | 0 |
S | Cairoli M1 | 10.16 | 3.40 | 34.54 | <1990 | 0 | 0 | 0 | 0 |
S | Conciliazione M1 | 9.5 | 2.22 | 21.09 | <1990 | 0 | 0 | 0 | 0 |
S | Cadorna M2 | 10.31 | 4.06 | 41.86 | <1990 | 0 | 0 | 0 | 0 |
S | Sant’Agostino M2 | 17.35 | 1.37 | 23.77 | <1990 | 16.47 | 35.79 | 16.50 | 34.85 |
S | Sant’Ambrogio M2 | 12.77 | 2.41 | 30.77 | <1990 | 0 | 3.46 | 0 | 9.79 |
G | Pagano–Conciliazione M1 | 6.5 | 2.34 | 15.21 | <1990 | 0 | 0 | 0 | 0 |
G | Conciliazione–Cadorna M1 | 6.5 | 6.18 | 40.17 | <1990 | 0 | 0 | 0 | 0 |
G | Cadorna–Cairoli M1 | 6.5 | 3.55 | 23.07 | <1990 | 0 | 0 | 0 | 0 |
G | Cairoli–Cordusio M1 | 6.5 | 1.4 | 9.1 | <1990 | 0 | 0 | 0 | 0 |
G | Porta Genova–Sant’Agostino M2 | 7 | 1.08 | 7.56 | <1990 | 63.76 | 113.88 | 65.68 | 106.66 |
G | Sant’Agostino–Sant’Ambogio M2 | 7 | 3 | 21 | <1990 | 12.62 | 42.77 | 12.40 | 49.88 |
G | Sant’Ambrogio–Cadorna M2 | 7 | 6.4 | 44.8 | <1990 | 0 | 13.76 | 0 | 20.65 |
G | Cadorna–Lanza M2 | 7 | 3.98 | 27.86 | <1990 | 0 | 0 | 0 | 0 |
P | Carducci Olona | 17 | 3.42 | 58.14 | <1990 | 4.26 | 17.63 | 3.75 | 20.79 |
P | Numa Pompilio | 17 | 4.07 | 69.27 | <1990 | 8.65 | 27.72 | 8.28 | 28.18 |
P | Puccini | 20 | 1.68 | 33.65 | <1990 | 3.56 | 19.27 | 2.84 | 22.69 |
P | Sant’Ambrogio | 17 | 7.41 | 125.93 | 2007–2014 | --- | --- | --- | 22.40 |
P | Tommaseo | 17 | 3.15 | 53.60 | <1990 | 0 | 13.29 | 0 | 19.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sartirana, D.; Rotiroti, M.; Zanotti, C.; Bonomi, T.; Fumagalli, L.; De Amicis, M. A 3D Geodatabase for Urban Underground Infrastructures: Implementation and Application to Groundwater Management in Milan Metropolitan Area. ISPRS Int. J. Geo-Inf. 2020, 9, 609. https://doi.org/10.3390/ijgi9100609
Sartirana D, Rotiroti M, Zanotti C, Bonomi T, Fumagalli L, De Amicis M. A 3D Geodatabase for Urban Underground Infrastructures: Implementation and Application to Groundwater Management in Milan Metropolitan Area. ISPRS International Journal of Geo-Information. 2020; 9(10):609. https://doi.org/10.3390/ijgi9100609
Chicago/Turabian StyleSartirana, Davide, Marco Rotiroti, Chiara Zanotti, Tullia Bonomi, Letizia Fumagalli, and Mattia De Amicis. 2020. "A 3D Geodatabase for Urban Underground Infrastructures: Implementation and Application to Groundwater Management in Milan Metropolitan Area" ISPRS International Journal of Geo-Information 9, no. 10: 609. https://doi.org/10.3390/ijgi9100609
APA StyleSartirana, D., Rotiroti, M., Zanotti, C., Bonomi, T., Fumagalli, L., & De Amicis, M. (2020). A 3D Geodatabase for Urban Underground Infrastructures: Implementation and Application to Groundwater Management in Milan Metropolitan Area. ISPRS International Journal of Geo-Information, 9(10), 609. https://doi.org/10.3390/ijgi9100609