Indexing Mixed Aperture Icosahedral Hexagonal Discrete Global Grid Systems
Abstract
:1. Introduction
2. Related Work
3. Framework
3.1. Mixed Aperture 3 and 4
3.2. Indexing
3.2.1. Indexing Method
3.2.2. Indexing Arithmetics and Algorithms
3.3. Grid on the Surface of the Icosahedron and Projection
4. Experiments and Discussion
4.1. Mixed Aperture Hexagonal Representation of a Global Raster Dataset
- Generate the grid of the chosen level and calculate the geographic coordinate of the center of each cell;
- Convert from the location of the center of each cell to the row and the column of the pixel the center located in the DEM dataset;
- Give the elevation value of this pixel to this hexagonal (or pentagonal) cell as the elevation of the area this cell represents.
4.2. Discretization of the Spherical Vector Line Based on Hexagonal Grids and Index Arithmetics
5. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
Appendix A
- Calculate at the right digit position using Table A1c and get , where is the result index of the right digit position, and 5 and are respectively the carry digit for the digit position of the level 1 and the level 2.
- Calculate using Table A1b for the level 2 digit position, where is the result index of the digit position of the level 2, and 4 and 6 are respectively the carry digit for the digit position of the level 0 and the level 1.
- Calculate using Table A1a, and . There, 1 is the result index of the digit position of the level 1, and 2 and 6 are two carry digits for the level 0.
- Calculate at the left digit position and according to the definition in Figure A1.
References
- Guo, H.D.; Liu, Z.; Jiang, H.; Wang, C.L.; Liu, J.; Liang, D. Big earth data: A new challenge and opportunity for Digital Earth’s development. Int. J. Digit. Earth 2017, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Mahdavi-Amiri, A.; Alderson, T.; Samavati, F. A survey of digital earth. Comput. Graph. 2015, 53, 95–117. [Google Scholar] [CrossRef]
- Sahr, K. On the optimal representation of vector location using fixed-width multi-precision quantizers. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Xuzhou, China, 11–12 November 2013. [Google Scholar] [CrossRef] [Green Version]
- Sahr, K.; White, D.; Kimerling, A.J. Geodesic discrete global grid systems. Cartogr. Geogr. Inf. Sci. 2003, 30, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Adams, B. WÄhi, a discrete global grid gazetteer built using linked open data. Int. J. Digit. Earth 2017, 10, 490–503. [Google Scholar] [CrossRef]
- Lin, B.X.; Zhou, L.C.; Xu, D.P.; Zhu, A.X.; Lu, G.N. A discrete global grid system for earth system modelling. Int. J. Geogr. Inf. Sci. 2017, 4, 1–27. [Google Scholar]
- Yao, X.C.; Li, G.Q.; Xia, J.S.; Ben, J.; Cao, Q.; Zhao, L.; Ma, Y.; Zhang, L.; Zhu, D. Enabling the Big Earth Observation Data via Cloud Computing and DGGS: Opportunities and Challenges. Remote. Sens. 2019, 12, 62. [Google Scholar] [CrossRef] [Green Version]
- Topic 21: Discrete Global Grid Systems Abstract Specification. Available online: http://docs.opengeospatial.org/as/15-104r5/15-104r5.html (accessed on 13 November 2019).
- Sahr, K. Hexagonal discrete global grid systems for geospatial computing. Arch. Photogramm. Cartogr. Remote Sens. 2011, 22, 363–376. [Google Scholar]
- Vince, A.; Zheng, X.X. Arithmetic and fourier transform for the PYXIS multi-resolution digital earth model. Int. J. Digit. Earth 2009, 2, 59–79. [Google Scholar] [CrossRef]
- Why Hexagons? Available online: https://pro.arcgis.com/zh-cn/pro-app/tool-reference/spatial-statistics/h-whyhexagons.htm (accessed on 13 November 2019).
- Mahdavi-Amiri, A.; Bhojani, F.; Samavati, F. One-to-two digital earth. In Proceedings of the 9th International Symposium on Advances in Visual Computing (ISVC 2013), Rethymnon, Greece, 29–31 July 2013; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Sahr, K. Central place indexing: Hierarchical linear indexing systems for mixed-aperture hexagonal discrete global grid systems. Cartographica 2019, 54, 16–29. [Google Scholar] [CrossRef]
- Mahdavi Amiri, A.; Alderson, T.; Samavati, F. Geospatial data organization methods with emphasis on aperture-3 hexagonal discrete global grid systems. Cartographica 2019, 54, 30–50. [Google Scholar] [CrossRef]
- Sahr, K. Location coding on icosahedral aperture 3 hexagon discrete global grids. Comput. Environ. Urban Syst. 2008, 32, 174–187. [Google Scholar] [CrossRef]
- Tong, X.C.; Ben, J.; Wang, Y.; Zhang, Y.S.; Pei, T. Efficient encoding and spatial operation scheme for aperture 4 hexagonal discrete global grid system. Int. J. Geogr. Inf. Sci. 2013, 27, 898–921. [Google Scholar] [CrossRef]
- Wang, R.; Ben, J.; Du, L.Y.; Zhou, J.B.; Li, Z.X. Encoding and operation for the planar aperture 4 hexagon grid system. Acta Geotech. Cartogr. Sin. 2018, 47, 1018–1025. [Google Scholar] [CrossRef]
- Cozzi, P.; Ring, K. 3D Engine Design for Virtual Globes, 1st ed.; A K Peters, Ltd.: Natick, MA, USA, 2011. [Google Scholar]
- Tobler, W.; Chen, Z.T. A quadtree for global information storage. Geogr. Anal. 1986, 18, 360–371. [Google Scholar] [CrossRef]
- Gibb, R.G. The rHEALPix discrete global grid system. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Halifax, NS, Canada, 16 May 2016; Volume 34, p. 012012. [Google Scholar] [CrossRef] [Green Version]
- Ben, J.; Tong, X.C.; Zhou, C.H.; Zhang, K.X. Construction algorithm of octahedron based hexagon grid systems. J. Geo-Inf. Sci. 2015, 6, 54–61. [Google Scholar] [CrossRef]
- Bai, J.J. Location coding and indexing aperture 4 hexagonal discrete global grid based on octahedron. J. Remote Sens. 2011, 15, 1125–1137. [Google Scholar]
- White, D.; Kimerling, A.J.; Sahr, K.; Lian, S. Comparing area and shape distortion on polyhedral-based recursive partitions of the sphere. Int. J. Geogr. Inf. Sci. 1998, 12, 805–827. [Google Scholar] [CrossRef]
- Mahdavi-Amiri, A.; Harrison, E.; Samavati, F. Hexagonal connectivity maps for Digital Earth. Int. J. Digit. Earth 2014, 8, 750–769. [Google Scholar] [CrossRef]
- Wang, R.; Ben, J.; Du, L.Y.; Zhou, J.B.; Li, Z.X. The code operation scheme for the icosahedral aperture 4 hexagon grid system. Geomat. Inf. Sci. Wuhan Univ. 2019. [Google Scholar] [CrossRef]
- H3. Available online: https://uber.github.io/h3/#/ (accessed on 13 November 2019).
- Vince, A. Indexing the aperture 3 hexagonal discrete global grid. J. Vis. Commun. Image Represent. 2006, 17, 1227–1236. [Google Scholar] [CrossRef]
- PYXIS. Available online: http://pyxisinnovation.com (accessed on 13 November 2019).
- Ben, J.; Li, Y.L.; Zhou, C.H.; Wang, R.; Du, L.Y. Algebraic encoding scheme for aperture 3 hexagonal discrete global grid system. Sci. China-Earth Sci. 2018, 61, 215–227. [Google Scholar] [CrossRef]
- Gibson, L.; Lucas, D. Spatial data processing using generalized balanced ternary. In Proceedings of the IEEE Computer Society Conference on Pattern Recognition and Image Processing, Las Vegas, NV, USA; 1982; pp. 566–571. [Google Scholar]
- Sahr, K. Central Place Indexing Systems. United States Patent Awarded U.S. 2,010,054,550, 6 August 2012. [Google Scholar]
- Snyder, J. An equal-area map projection for polyhedral globes. Cartographica 1992, 29, 10–21. [Google Scholar] [CrossRef]
- USGS EROS Archive-Digital Elevation-Global 30 Arc-Second Elevation (GTOPO30). Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-global-30-arc-second-elevation-gtopo30?qt-science_center_objects=0#qt-science_center_objects (accessed on 13 November 2019).
- She, S.J.; Liao, X.Y.; Xue, H.P.; Xu, H.Q.; Zhang, H.M.; Xu, Z.J.; Deng, J.F. Special representation of the Antaritic ice sheet on the world terrain map. Geospat. Inf. 2014, 12, 142–143. [Google Scholar] [CrossRef]
- Du, L.Y.; Ma, Q.H.; Ben, J.; Wang, R.; Li, J.H. Duality and dimensionality reducation discrete line generation algorithm for a triangular grid. ISPRS Int. J. Geo-Inf. 2018, 7, 391. [Google Scholar] [CrossRef] [Green Version]
DGGS Scheme | Chosen Grid Level | Aperture Sequence | Number of Cells | Cell Area (km2) | |
---|---|---|---|---|---|
Aperture 3 | 17 | 1,291,401,632 | 0.39497 | ||
Aperture 4 | 13 | 671,088,642 | 0.76006 | ||
Aperture 7 (H3) | 8 | 691,776,122 | 0.73733 | ||
Mixed aperture 3 and 4 | 16 | 1 aperture 4 | 573,956,282 | 0.88868 |
Scheme | Number of Cells | Percent of Data Volume (%) |
---|---|---|
GTOPO30 | 933,120,000 | 38.5 |
The proposed scheme | 573,956,282 |
16 | 17 | 18 | 19 | 20 | Average Efficiency | ||
---|---|---|---|---|---|---|---|
China | 204.70 | 202.10 | 199.38 | 202.07 | 200.39 | 201.73 | |
Australia | 198.34 | 200.90 | 204.18 | 195.65 | 203.59 | 200.53 | |
Russia | 192.50 | 197.63 | 198.41 | 201.68 | 203.83 | 198.81 | |
America | 199.26 | 202.11 | 201.02 | 203.85 | 203.10 | 201.87 | |
Canada | 193.50 | 200.33 | 203.17 | 203.62 | 197.53 | 199.63 | |
Brazil | 188.57 | 197.62 | 200.46 | 200.86 | 201.86 | 197.87 |
Level | 16 | 17 | 18 | 19 | 20 | Average Efficiency | |
---|---|---|---|---|---|---|---|
Country | |||||||
China | 255.80 | 207.18 | 178.98 | 85.25 | 102.94 | 166.03 | |
Australia | 248.71 | 201.29 | 186.78 | 161.86 | 119.99 | 183.73 | |
Russia | 226.57 | 188.33 | 164.26 | 132.02 | 100.29 | 162.29 | |
America | 220.37 | 188.53 | 149.44 | 113.59 | 70.00 | 148.39 | |
Canada | 203.40 | 173.81 | 186.54 | 152.20 | 109.01 | 164.99 | |
Brazil | 243.04 | 220.14 | 188.92 | 157.71 | 114.91 | 184.94 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Ben, J.; Zhou, J.; Zheng, M. Indexing Mixed Aperture Icosahedral Hexagonal Discrete Global Grid Systems. ISPRS Int. J. Geo-Inf. 2020, 9, 171. https://doi.org/10.3390/ijgi9030171
Wang R, Ben J, Zhou J, Zheng M. Indexing Mixed Aperture Icosahedral Hexagonal Discrete Global Grid Systems. ISPRS International Journal of Geo-Information. 2020; 9(3):171. https://doi.org/10.3390/ijgi9030171
Chicago/Turabian StyleWang, Rui, Jin Ben, Jianbin Zhou, and Mingyang Zheng. 2020. "Indexing Mixed Aperture Icosahedral Hexagonal Discrete Global Grid Systems" ISPRS International Journal of Geo-Information 9, no. 3: 171. https://doi.org/10.3390/ijgi9030171
APA StyleWang, R., Ben, J., Zhou, J., & Zheng, M. (2020). Indexing Mixed Aperture Icosahedral Hexagonal Discrete Global Grid Systems. ISPRS International Journal of Geo-Information, 9(3), 171. https://doi.org/10.3390/ijgi9030171