A Hybrid Method to Incrementally Extract Road Networks Using Spatio-Temporal Trajectory Data
Abstract
:1. Introduction
2. Literature Review
3. Method
- Partitioning original trajectory data into K time series and initializing a road network version for each time series trajectory data based on morphological rasterization operations;
- Adjusting the K-temporal road networks, initialized above, according to a gravitation force model to amend the geometric deviations between different temporal road networks;
- Constructing urban road networks by a k-segment fitting algorithm and then, inferring the associated road parameters with a statistical trend analysis.
3.1. Initialization of K-temporal Road Networks Based on Morphological Rasterization
3.2. Adjustment of K-temporal Road Networks Based on a Gravitation Force Model
3.3. Construction of Urban Road Networks Based on k-segment Fitting and Statistical Analysis
3.3.1. Geometry Construction of Urban Road Networks Based on the K-segment Fitting Algorithm
3.3.2. Attribute Inferencing of Urban Road Networks Based on a Statistical Analysis
4. Results
4.1. Experimental Results
4.2. Result Analysis and Evaluation
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Liu, C.; Xiong, L.; Hu, X.; Shan, J. A Progressive Buffering Method for Road Map Update Using OpenStreetMap Data. ISPRS Int. J. Geo-Inf. 2015, 4, 1246–1264. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Song, H.; Li, B.; Zhang, H. Generation of Lane-Level Road Networks Based on a Trajectory-Similarity-Join Pruning Strategy. ISPRS Int. J. Geo-Inf. 2019, 8, 416. [Google Scholar] [CrossRef] [Green Version]
- Van Winden, K.; Biljecki, F.; van der Spek, S. Autom. Update of Road Attributes by Mining GPS Tracks. Trans. Gis 2016, 20, 664. [Google Scholar] [CrossRef]
- Deng, M.; Huang, J.; Zhang, Y.; Liu, H.; Tang, L.; Tang, J.; Yang, X. Generating urban road intersection models from low-frequency GPS trajectory data. Int. J. Geogr. Inf. Sci. 2018, 32, 2337. [Google Scholar] [CrossRef]
- Yang, W.; Ai, T.; Lu, W. A Method for Extracting Road Boundary Information from Crowdsourcing Vehicle GPS Trajectories. Sensors 2018, 18, 1261. [Google Scholar] [CrossRef] [Green Version]
- Biagioni, J.; Eriksson, J. Inferring Road Maps from Global Positioning System Traces. Transp. Res. Rec. J. Transp. Res. Board 2012, 2291, 61. [Google Scholar] [CrossRef] [Green Version]
- Kuntzsch, C.; Sester, M.; Brenner, C. Generative models for road network reconstruction. Int. J. Geogr. Inf. Sci. 2015, 30, 1012. [Google Scholar] [CrossRef]
- Cao, L.; Krumm, J. From GPS traces to a routable road map. In Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Seattle, Washington, DC, USA, 4–6 November 2009; pp. 3–12. [Google Scholar]
- Tang, L.; Ren, C.; Liu, Z.; Li, Q. A Road Map Refinement Method Using Delaunay Triangulation for Big Trace Data. ISPRS Int. J. Geo-Inf. 2017, 6, 45. [Google Scholar] [CrossRef] [Green Version]
- Maboudi, M.; Amini, J.; Malihi, S.; Hahn, M. Integrating fuzzy object based image analysis and ant colony optimization for road extraction from remotely sensed images. ISPRS J. Photogramm. Remote Sens. 2018, 138, 151. [Google Scholar] [CrossRef]
- Yang, B.; Dong, Z.; Liu, Y.; Liang, F.; Wang, Y. Computing multiple aggregation levels and contextual features for road facilities recognition using mobile laser scanning data. ISPRS J. Photogramm. Remote Sens. 2017, 126, 180. [Google Scholar] [CrossRef]
- Ahmed, M.; Karagiorgou, S.; Pfoser, D.; Wenk, C. A comparison and evaluation of map construction algorithms using vehicle tracking data. GeoInformatica 2014, 19, 601. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Li, B.; Yang, B.; Song, H.; Lu, Z. Lane-Level Road Network Generation Techniques for Lane-Level Maps of Autonomous Vehicles: A Survey. Sustainability 2019, 11, 4511. [Google Scholar] [CrossRef] [Green Version]
- O’Keeffe, K.P.; Anjomshoaa, A.; Strogatz, S.H.; Santi, P.; Ratti, C. Quantifying the sensing power of vehicle fleets. Proc. Natl. Acad. Sci. USA 2019, 116, 12752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasemsuppakorn, P.; Karimi, H.A. A pedestrian network construction algorithm based on multiple GPS traces. Transp. Res. Part C Emerg. Technol. 2013, 26, 285. [Google Scholar] [CrossRef]
- John, S.; Hahmann, S.; Rousell, A.; Löwner, M.O.; Zipf, A. Deriving incline values for street networks from voluntarily collected GPS traces. Cartogr. Geogr. Inf. Sci. 2016, 44, 152. [Google Scholar] [CrossRef]
- Chen, C.; Chiang, M. Trajectory pattern mining: Exploring semantic and time information. In Proceedings of the 2016 Conference on Technologies and Applications of Artificial Intelligence (TAAI 2016), Hsinchu, Taiwan, 25–27 November 2016. [Google Scholar]
- Dabiri, S.; Heaslip, K. Inferring transportation modes from GPS trajectories using a convolutional neural network. Transp. Res. Part C Emerg. Technol. 2018, 86, 360. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.; Kan, Z.; Zhang, X.; Huang, F.; Yang, X.; Li, Q. Travel Time Estimation at Intersections Based on Low-frequency Spatial-temporal GPS Trace Big Data. Cartogr. Geogr. Inf. Sci. 2016, 43, 417. [Google Scholar] [CrossRef]
- Ivanovic, S.S.; Olteanu-Raimond, A.M.; Mustière, S.; Devogele, T. A Filtering-Based Approach for Improving Crowdsourced GNSS Traces in a Data Update Context. ISPRS Int. J. Geo-Inf. 2019, 8, 380. [Google Scholar] [CrossRef] [Green Version]
- Zang, K.; Shen, J.; Huang, H.; Wan, M.; Shi, J. Assessing and mapping of road surface roughness based on GPS and accelerometer sensors on bicycle-mounted smartphones. Sensors 2018, 18, 914. [Google Scholar] [CrossRef] [Green Version]
- Uduwaragoda, E.R.I.A.C.M.; Perera, A.S.; Dias, S.A.D. Generating lane level road data from vehicle trajectories using Kernel Density Estimation. In Proceedings of the International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), The Hague, The Netherlands, 6–9 October 2013. [Google Scholar]
- Shi, W.; Shen, S.; Liu, Y. Automatic Generation of Road Network Map from Massive GPS Vehicle Trajectories. In Proceedings of the 12th International IEEE Conference on Intelligent Transportation Systems, St. Louis, MO, USA, 4–7 October 2009; pp. 1–6. [Google Scholar]
- Zhang, L.; Thiemann, F.; Sester, M. Integration of GPS traces with road map. In International Workshop on Computational Transportation Science; ACM: New York, NY, USA, 2010. [Google Scholar]
- Agamennoni, G.; Nieto, J.I.; Nebot, E.M. Robust Inference of Principal Road Paths for Intelligent Transportation Systems. IEEE Trans. Intell. Transp. Syst. 2011, 12, 298. [Google Scholar] [CrossRef]
- Schroedl, S.; Wagstaff, K.; Rogers, S.; Langley, P.; Wilson, C. Mining GPS Traces for Map Refinement. Data Min. Knowl. Discov. 2004, 9, 59–87. [Google Scholar] [CrossRef]
- Davies, J.; Beresford, A.R.; Hopper, A. Scalable, distributed, real-time map generation. IEEE Pervasive Comput. 2006, 5, 47. [Google Scholar] [CrossRef]
- Wang, J.; Wang, C.; Song, X.; Raghavan, V. Automatic intersection and traffic rule detection by mining motor-vehicle GPS trajectories. Comput. Environ. Urban Syst. 2017, 64, 19. [Google Scholar] [CrossRef]
- Tang, L.; Yang, X.; Kan, Z.; Li, Q. Lane-Level Road Information Mining from Vehicle GPS Trajectories Based on Naïve Bayesian Classification. ISPRS Int. J. Geo-Inf. 2015, 4, 2660–2680. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Xu, Z.; Wu, G. A Novel Method of Missing Road Generation in City Blocks Based on Big Mobile Navigation Trajectory Data. ISPRS Int. J. Geo-Inf. 2019, 8, 142. [Google Scholar] [CrossRef] [Green Version]
- Bruntrup, R.; Edelkamp, S.; Jabbar, S.; Scholz, B. Incremental map generation with GPS traces. In Proceedings of the Intelligent Transportation Systems, Vienna, Austria, 16 September 2005; pp. 574–579. [Google Scholar]
- Tang, J.; Deng, M.; Huang, J.; Liu, H.; Chen, X. An Automatic Method for Detection and Update of Additive Changes in Road Network with GPS Trajectory Data. ISPRS Int. J. Geo-Inf. 2019, 8, 411. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Tang, L.; Stewart, K.; Dong, Z.; Zhang, X.; Li, Q. Automatic change detection in lane-level road networks using GPS trajectories. Int. J. Geogr. Inf. Sci. 2017, 32, 601. [Google Scholar] [CrossRef]
- Ahmed, M.; Wenk, C. Constructing street networks from GPS trajectories. In Proceedings of the European Symposium on Algorithms, Berlin, Germany, 10–12 September 2012; pp. 60–71. [Google Scholar]
- Wu, T.; Xiang, L.; Gong, J. Updating Road Networks by Local Renewal from GPS Trajectories. ISPRS Int. J. Geo-Inf. 2016, 5, 163. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, C.; Song, X.; Raghavan, V. A novel approach for generating routable road maps from vehicle GPS traces. Int. J. Geogr. Inf. Sci. 2015, 29, 69. [Google Scholar] [CrossRef]
- Yang, X.; Tang, L.; Ren, C.; Chen, Y.; Xie, Z.; Li, Q. Pedestrian network generation based on crowdsourced tracking data. Int. J. Geogr. Inf. Sci. 2019. [Google Scholar] [CrossRef]
- Huang, J.; Deng, M.; Tang, J.; Hu, S.; Liu, H.; Wariyo, S.; He, J. Automatic Generation of Road Maps from Low Quality GPS Trajectory Data via Structure Learning. IEEE Access 2018, 6, 71965. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.; Li, Y. Efficient map reconstruction and augmentation via topological methods. In Proceedings of the 23rd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Bellevue, WA, USA, 3–6 November 2015. [Google Scholar]
- Li, D.; Li, J.; Li, J. Road Network Extraction from Low-Frequency Trajectories Based on a Road Structure-Aware Filter. ISPRS Int. J. Geo-Inf. 2019, 8, 374. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Zhu, Q.; Du, Z.; Feng, T.; Zhang, Y. Mathematical morphology-based generalization of complex 3D building models incorporating semantic relationships. ISPRS J. Photogramm. Remote Sens. 2012, 68, 95. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, Y. Pattern-mining approach for conflating crowdsourcing road networks with POIs. Int. J. Geogr. Inf. Sci. 2015, 29, 786. [Google Scholar] [CrossRef]
Parameter | B1 | B2 | M | δ | μ | kmax | ε0 | s | Φ |
---|---|---|---|---|---|---|---|---|---|
Value | 1.0 | 10.0 | 0.005 | 24 | 6 m | 0.1 m | 30° |
Buffer Distance (Meters) | 1 | 2 | 4 | 6 | 8 | 10 | 12 | 15 |
---|---|---|---|---|---|---|---|---|
The proposed method | 15.11% | 30.02% | 54.92% | 70.61% | 80.66% | 87.32% | 91.71% | 96.32% |
Davies’s Method [27] | 23.26% | 30.66% | 43.93% | 51.78% | 56.08% | 58.09% | 59.08% | 60.18% |
Ahmed’s method [34] | 05.89% | 11.81% | 22.26% | 30.70% | 37.46% | 43.11% | 47.94% | 54.03% |
Wang’s Method [39] | 14.46% | 16.26% | 19.78% | 23.16% | 25.87% | 28.42% | 30.99% | 35.71% |
Force-Based Adjustment | k-Segment Curve Fitting | |
---|---|---|
Raw trajectory data | 6.02 s | 1.48 s |
K-temporal road networks | >5 h | 7.68 s |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhang, Z.; Huang, J.; She, T.; Deng, M.; Fan, H.; Xu, P.; Deng, X. A Hybrid Method to Incrementally Extract Road Networks Using Spatio-Temporal Trajectory Data. ISPRS Int. J. Geo-Inf. 2020, 9, 186. https://doi.org/10.3390/ijgi9040186
Zhang Y, Zhang Z, Huang J, She T, Deng M, Fan H, Xu P, Deng X. A Hybrid Method to Incrementally Extract Road Networks Using Spatio-Temporal Trajectory Data. ISPRS International Journal of Geo-Information. 2020; 9(4):186. https://doi.org/10.3390/ijgi9040186
Chicago/Turabian StyleZhang, Yunfei, Zexu Zhang, Jincai Huang, Tingting She, Min Deng, Hongchao Fan, Peng Xu, and Xingshen Deng. 2020. "A Hybrid Method to Incrementally Extract Road Networks Using Spatio-Temporal Trajectory Data" ISPRS International Journal of Geo-Information 9, no. 4: 186. https://doi.org/10.3390/ijgi9040186
APA StyleZhang, Y., Zhang, Z., Huang, J., She, T., Deng, M., Fan, H., Xu, P., & Deng, X. (2020). A Hybrid Method to Incrementally Extract Road Networks Using Spatio-Temporal Trajectory Data. ISPRS International Journal of Geo-Information, 9(4), 186. https://doi.org/10.3390/ijgi9040186