An Event-Based Inventory Approach in Landslide Hazard Assessment: The Case of the Skolis Mountain, Northwest Peloponnese, Greece
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Landslide Inventory
5. Use of Randomly Acquired Aerial and Satellite Photographs for Landslide Inventory
5.1. Seismic Quiescence Period 1945–1987
5.2. Seismic Period 1988–1993
5.3. Seismic Quiescence 1994–2002
5.4. Seismic Period 2003–2007
5.5. Seismic Period 2007–2009
5.6. Seismic Period 2010–2017
6. Results
6.1. Geometric Parameters of Skolis Landslides—Aspect Ratio
6.2. Estimation of Arias Intensity for Historical Events
6.3. Statistical Analysis of Landslide Area Evolution
6.4. Qualitative Analysis
Post-Earthquake Landslide Morphological Evolution
7. Discussion
7.1. Reach Angle
7.2. Aspect Ratio
7.3. Recurrence Period and Rate of Length
7.4. Hazard Map
8. Conclusions
- The existence of former landslides constitutes the determinant factor. The reactivated landslides not only occurred within pre-existing landslide masses, but they have also been fully mobilized by significantly increasing their size up to three times.
- Although the proportional increase of the larger landslides resulting from the Arias intensities is expected, the increase of the smaller landslides is subject to certain limitations such as seismic magnitude, Mw ≥ 5.6 and distance from the epicenter, R = 11 km. The outcome of this process is a landslide inventory map through the GIS environment showing the size and distribution of landslides triggered by a Mw = 6.4 earthquake (Figure 5 and Figure 14).
- Increased percentages of LAP and LD negatively affect the slope stability, especially in the last two decades (Table 2). The coincidence of the high LAP and LD with moderate to strong earthquakes also suggests potential slope failure in an area prone to landslide phenomena.
- The calculation of the rate of length is quite crucial. High RL values along with seismic activity can be used for the evaluation of landslide hazard assessment of inhabited or unstable areas.
- The proposed model of the inventory analysis is coherent with the interpretation of the temporal and spatial distribution showing high periods of stability and short periods of rapid length evolution during short periods of seismicity. Our method is interesting both for (i) the landslide mapping and evolution in mountainous areas throughout time, and (ii) the significance of long term landslide monitoring as a base for the compilation of a landslide inventory and hazard analysis and assessment.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cruden, D.M. A Simple Definition of a Landslide. Bull. Int. Assoc. Eng. Geol. 1991, 43, 27–29. [Google Scholar] [CrossRef]
- Fell, R.; Whitt, G.; Miner, A.; Flentje, P.N. Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Aust. Geomech. J. 2007, 42, 13–36. [Google Scholar]
- Guzzetti, F.; Mondini, A.C.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Chang, K.T. Landslide inventory maps: New tools for an old problem. Earth Sci. Rev. 2012, 112, 42–66. [Google Scholar] [CrossRef] [Green Version]
- Van Westen, C.J.; Van Asch, T.W.J.; Soeters, R. Landslide hazard and risk zonation-why is it still so difficult? Bull. Eng. Geol. Environ. 2006, 65, 167–184. [Google Scholar] [CrossRef]
- Van Westen, C.J.; Castellanos, E.A.; Kuriakose, S.L. Spatial data for landslide susceptibility, hazards and vulnerability assessment: An overview. Eng. Geol. 2008, 102, 112–131. [Google Scholar] [CrossRef]
- Xu, C. Preparation of earthquake-triggered landslide inventory maps using remote sensing and GIS technologies: Principles and case studies. Geosci. Front. 2015, 6, 825–836. [Google Scholar] [CrossRef] [Green Version]
- Keefer, D.K. Investigating landslides caused by earthquakes—A historical review. Surv. Geophys. 2002, 23, 473–510. [Google Scholar] [CrossRef]
- Guzzetti, F.; Reichenbach, P.; Cardinali, M.; Galli, M.; Ardizzone, F. Probabilistic landslide hazard assessment at the basin scale. Geomorphology 2005, 72, 272–299. [Google Scholar] [CrossRef]
- Keefer, D. Landslides caused by earthquakes. Geol. Soc. Am. Bull. 1984, 95, 406–421. [Google Scholar] [CrossRef]
- Wieczorek, G.F. Preparing a detailed landslide-inventory map for hazard evaluation and reduction. Bull. Int. Assoc. Eng. Geol. 1984, 21, 337–342. [Google Scholar] [CrossRef]
- Guzzetti, F.; Cardinali, M. Landslide inventory map of the Umbria region, Central Italy. In Proceedings of the ALPS 90 6th International Conference and Field Workshop on Landslides, Milan, Italy, 12 September 1990; pp. 273–284. [Google Scholar]
- Soeters, R.; Van Westen, C.J. Slope instability recognition, analysis, and zonation. In Landslides, Investigation and Mitigation; Turner, A.K., Schuster, R.L., Eds.; National Academy Press: Washington, DC, USA, 1996; pp. 129–177. ISBN 0-309-06151-2. [Google Scholar]
- Rodríguez, C.E.; Bommer, J.J.; Chandler, R.J. Earthquake-induced landslides: 1980–1997. Soil Dyn. Earthq. Eng. 1999, 18, 325–346. [Google Scholar] [CrossRef]
- Harp, E.L.; Jibson, R.L. Inventory of landslides triggered by the 1994 Northridge, California earthquake. USGS Open-File Rep. 1995, 95–213. [Google Scholar] [CrossRef]
- Harp, E.L.; Jibson, R.L. Landslides triggered by the 1994 Northridge, California earthquake. Bull. Seismol. Soc. Am. 1996, 86, 319–332. [Google Scholar]
- Keefer, D.K. Statistical analysis of an earthquake-induced landslide distribution-the 1989 Loma Prieta, California event. Eng. Geol. 2000, 58, 231–249. [Google Scholar] [CrossRef]
- Harp, E.L.; Keefer, D.K.; Sato, H.P.; Yagi, H. Landslide inventories: The essential part of seismic landslide hazard analyses. Eng. Geol. 2011, 122, 9–21. [Google Scholar] [CrossRef]
- Dai, F.C.; Xu, C.; Yao, X.; Xu, L.; Tu, X.B.; Gong, Q.M. Spatial distribution of landslides triggered by the 2008 Ms 8.0 Wenchuan earthquake, China. J. Asian Earth Sci. 2011, 40, 883–895. [Google Scholar] [CrossRef]
- Guzzetti, F.; Reichenbach, P.; Cardinali, M.; Ardizzone, F.; Galli, M. Impact of landslides in the Umbria Region, Central Italy. Nat. Hazards Earth Syst. Sci. 2003, 3, 469–486. [Google Scholar] [CrossRef] [Green Version]
- Gorum, T.; Fan, X.; van Westen, C.J.; Huang, R.Q.; Xu, Q.; Tang, C.; Wang, G. Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake. Geomorphology 2011, 133, 152–167. [Google Scholar] [CrossRef]
- Malamud, B.D.; Turcotte, D.L.; Guzzetti, F.; Reichenbach, P. Landslide inventories and their statistical properties. Earth Surf. Process. Landf. 2004, 29, 687–711. [Google Scholar] [CrossRef]
- Cardinali, M.; Reichenbach, P.; Guzzetti, F.; Ardizzone, F.; Antonini, G.; Galli, M.; Cacciano, M.; Castellani, M.; Salvati, P. A geomorphological approach to estimate landslide hazard and risk in urban and rural areas in Umbria, central Italy. Nat. Hazards Earth Syst. Sci. 2002, 2, 57–72. [Google Scholar] [CrossRef] [Green Version]
- Carrara, A.; Crosta, G.B.; Frattini, P. Geomorphological and historical data in assessing landslide hazard. Earth Surf. Process. Landf. 2003, 28, 1125–1142. [Google Scholar] [CrossRef]
- Guzzetti, F.; Galli, M.; Reichenbach, P.; Ardizzone, F.; Cardinali, M. Landslide hazard assessment in the Collazzone area, Umbria, central Italy. Nat. Hazards Earth Syst. Sci. 2006, 6, 115–131. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, C.; Chen, J.; Zhou, Q.; Shen, L. Geometrical characteristics of earthquake-induced landslides and correlations with control factors: A case study of the 2013 Minxian, Gansu, China, Mw 5.9 event. Landslides 2017, 14, 1915–1927. [Google Scholar] [CrossRef]
- Arias, A. Arias, A. A measure of Earthquake Intensity. In Seismic Design of Nuclear Power Plants; Hansen, R.J., Ed.; The MIT Press: Cambridge, MA, USA, 1970; pp. 438–483. [Google Scholar]
- Keefer, D.K.; Wilson, R.C. Predicting earthquake-induced landslides, with emphasis on arid and semi-arid environments. In Landslides in a Semi-Arid Environment with Emphasis on the Inland Valleys of Southern California; Sadler, P.M., Morton, D.M., Eds.; Inland Geological Society of Southern California Publications: Riverside, CA, USA, 1989; Volume 2, pp. 118–149. [Google Scholar]
- Harp, E.L.; Wilson, R.C. Shaking intensity thresholds for rock falls and slides: Evidence from 1987 Whittier Narrows and Superstition Hills earthquake strong-motion records. Bull. Seismol. Soc. Am. 1995, 85, 1739–1757. [Google Scholar]
- Koukouvelas, I.; Litoseliti, A.; Nikolakopoulos, K.; Zygouri, V. Earthquake triggered rock falls and their role in the development of a rock slope: The case of Skolis Mountain, Greece. Eng. Geol. 2015, 191, 71–85. [Google Scholar] [CrossRef]
- Serpetsidaki, A.; Elias, P.; Ilieva, M.; Bernard, P.; Briole, P.; Deschamps, A.; Lambotte, S.; Lyon-Caen, H.; Sokos, E.; Tselentis, G.-A. New constraints from seismology and geodesy on the Mw = 6.4 2008 Movri (Greece) earthquake: Evidence for a growing strike-slip fault system. Geophys. J. Int. 2014, 198, 1373–1386. [Google Scholar] [CrossRef] [Green Version]
- Roumelioti, Z.; Theodoulidis, N.; Bouchon, M. Constraints on the location of the 2008, MW 6.4 Achaia-Ilia earthquake fault from strong motion data. Bull. Geol. Soc. Gr. 2013, 47, 1231–1240. [Google Scholar] [CrossRef]
- Koukouvelas, I.; Kokkalas, S.; Xypolias, P. Surface deformation during the Mw 6.4 (8 June 2008) Movri Mountain earthquake in the Peloponnese, and its implications for the seismotectonics of western Greece. Int. Geol. Rev. 2010, 52, 249–268. [Google Scholar] [CrossRef]
- Koukis, G.; Ziourkas, C. Slope instability phenomena in Greece: A statistical analysis. Bull. Int. Assoc. Eng. Geol. 1991, 43, 47–60. [Google Scholar] [CrossRef]
- Koukouvelas, I.; Mpresiakas, A.; Sokos, E.; Doutsos, T. The tectonic setting and earthquake hazards of the 1993 Pyrgos earthquake, Peloponnese, Greece. J. Geol. Soc. Lond. 1996, 153, 39–49. [Google Scholar] [CrossRef]
- Gallousi, C.; Koukouvelas, I. Quantifying geomorphic evolution of earthquake-triggered landslides and their relation to active normal faults. An example from the Gulf of Corinth, Greece. Tectonophysics 2007, 440, 85–104. [Google Scholar] [CrossRef]
- Keefer, D.K. Rock avalanches caused by earthquakes: Source characteristics. Science 1984, 223, 1288–1290. [Google Scholar] [CrossRef] [PubMed]
- Jibson, R.W.; Keefer, D.K. Analysis of the seismic origin of landslides: Examples from the New Madrid Seismic Zone. Bull. Seismol. Soc. Am. 1993, 105, 521–536. [Google Scholar] [CrossRef]
- Kokkalas, S.; Kamberis, E.; Xypolias, P.; Sotiropoulos, S.; Koukouvelas, I. Coexistence of thin- and thick-skinned tectonics in Zakynthos area (Western Greece): Insights from seismic sections and regional seismicity. Tectonophysics 2013, 597–598, 73–84. [Google Scholar] [CrossRef]
- Chalkias, C.; Ferentinou, M.; Polykretis, C. GIS-Based Landslide Susceptibility Mapping on the Peloponnese Peninsula, Greece. Geosciences 2014, 4, 176–190. [Google Scholar] [CrossRef] [Green Version]
- Litoseliti, A.; Koukouvelas, I.; Nikolakopoulos, K. Hazard due to earthquake-induced rock falls: The use of remote sensing data and field mapping in the case of Skolis Mountain, NW Peloponnese. Bull. Geol. Soc. Gr. 2014, 48, 4–26. [Google Scholar] [CrossRef] [Green Version]
- Potere, D. Horizontal Positional Accuracy of Google Earth’s High Resolution Imagery Archive. Sensors 2008, 8, 7973–7981. [Google Scholar] [CrossRef]
- Benker, C.S.; Langford, R.P.; Pavlis, T.L. Positional accuracy of the Google Earth terrain model derived from stratigraphic unconformities in the Big Bend region, Texas, USA. Geocarto Int. 2011, 26, 291–303. [Google Scholar] [CrossRef]
- Sato, H.P.; Harp, E.L. Interpretation of earthquake-induced landslides triggered by the 12 May 2008, M7.9 Wenchuan earthquake in the Beichuan area, Sichuan Province, China, using satellite imagery and Google Earth. Landslides 2009, 6, 153–159. [Google Scholar] [CrossRef]
- Costanzo, D.; Rotigliano, E.; Irigaray, C.; Jimenez-Peralvarez, J.D.; Chacon, J. Factors selection in landslide susceptibility modelling on large scale following the gis matrix method: Application to the river Beiro basin (Spain). Nat. Hazards Earth Syst. Sci. 2012, 12, 327–340. [Google Scholar] [CrossRef]
- Schicker, R.; Moon, V. Comparison of bivariate and multivariate statistical approaches in landslide susceptibility mapping at a regional scale. Geomorphology 2012, 161-162, 40–57. [Google Scholar] [CrossRef]
- Hu, Q.; Wu, W.; Xia, T.; Yu, Q.; Yang, P.; Li, Z.; Song, Q. Exploring the Use of Google Earth Imagery and Object-Based Methods in Land Use/Cover Mapping. Remote Sens. 2013, 5, 6026–6042. [Google Scholar] [CrossRef] [Green Version]
- Nikolakopoulos, K.; Dimitropoulos, G. Estimating the accuracy of vectors derived from open data. In Proceedings of the SPIE 10428, Earth Resources and Environmental Remote Sensing/GIS Applications VIII, 104280N, Warsaw, Poland, 5 October 2017. [Google Scholar] [CrossRef]
- Evans, S.; Hungr, O. The assessment of rockfall hazard at the base of talus slopes. Can. Geotech. J. 1993, 30, 620–636. [Google Scholar] [CrossRef]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Dorren, L.K.A. A review of rock fall mechanics and modelling approaches. Prog. Phys. Geogr. 2003, 27, 69–87. [Google Scholar] [CrossRef]
- Micu, M.; Jurchescu, M.; Micu, D.; Zarea, R.; Zumpano, V.; Bălteanu, D. A morphogenetic insight into a multi-hazard analysis: Bâsca Mare landslide dam. Landslides 2014, 11, 1131–1139. [Google Scholar] [CrossRef]
- IAEG Commission on Landslides. Suggested nomenclature for landslides. Bull. Int. Assoc. Eng. Geol. 1990, 41, 13–16. [Google Scholar] [CrossRef]
- Niculita, M. Automatic landslide length and width estimation based on the geometric processing of the bounding box and the geomorphometric analysis of DEMs. Nat. Hazards Earth Syst. Sci. 2016, 16, 2021–2030. [Google Scholar] [CrossRef] [Green Version]
- Danciu, L.; Tselentis, G.A. Engineering ground-motion parameters attenuation relationships for Greece. Bull. Seismol. Soc. Am. 2007, 97, 162–183. [Google Scholar] [CrossRef]
- Papadopoulos, G.; Plessa, A. Magnitude-Distance relations for earthquake-induced landslides in Greece. Eng. Geol. 2000, 58, 251–270. [Google Scholar] [CrossRef]
- Coe, J.A.; Michael, J.A.; Crovelli, R.A.; Savage, W.Z.; Laprade, W.T.; Nashem, W.D. Probabilistic assessment of precipitation-triggered landslides using historical records of landslide occurrence, Seattle, Washington. Environ. Eng. Geosci. 2004, 10, 103–122. [Google Scholar] [CrossRef]
- Ibsen, M.L.; Brunsden, D. The nature, use and problems of historical archives for the temporal occurrence of landslides, with specific reference to the south coast of Britain, Ventnor, Isle of Wight. Geomorphology 1996, 15, 241–258. [Google Scholar] [CrossRef]
- Lang, A.; Moya, J.; Corominas, J.; Schrott, L.; Dikau, R. Classic and new dating methods for assessing the temporal occurrence of mass movements. Geomorphology 1999, 30, 33–52. [Google Scholar] [CrossRef]
- Glade, T. Landslide hazard assessment and historical landslide data – an inseparable couple. In The Use of Historical Data in Natural Hazard Assessments; Glade, T., Frances, F., Albini, P., Eds.; Springer: Dordrecht, The Netherlands, 2001; Volume 17, pp. 153–168. [Google Scholar] [CrossRef]
- Corominas, J.; Copons, R.; Vilaplana, J.M.; Altimir, J.; Amigó, J. Integrated Landslide Susceptibility Analysis and Hazard Assessment in the Principality of Andorra. Nat. Hazards 2003, 30, 421–435. [Google Scholar] [CrossRef]
- Dai, F.C.; Lee, C.F. Landslide characteristics and, slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 2002, 42, 213–228. [Google Scholar] [CrossRef]
- Qi, S.W.; Xu, Q.; Zhang, B.; Zhou, Y.D.; Lan, H.; Li, L.H. Source characteristics of long runout rock avalanches triggered by the 2008 Wenchuan earthquake, China. J. Asian Earth Sci. 2011, 40, 896–906. [Google Scholar] [CrossRef]
- Xu, C.; Shyu, J.B.H.; Xu, X.W. Landslides triggered by the 12 January 2010 Mw 7.0 Port-au-Prince, Haiti, earthquake: Visual interpretation, inventory compiling and spatial distribution statistical analysis. Nat. Hazards Earth Syst. Sci. 2014, 2, 1259–1331. [Google Scholar] [CrossRef]
- Corominas, J. The angle of reach as a mobility index for small and large landslides. Can. Geotech. J. 1996, 33, 260–271. [Google Scholar] [CrossRef]
- Parise, M.; Jibson, R.W. A seismic landslide susceptibility rating of geologic units based on analysis of characteristics of landslides triggered by the 17 January, 1994 Northridge, California earthquake. Eng. Geol. 2000, 58, 251–270. [Google Scholar] [CrossRef]
Date * | Seismicity Periods | Data Type | Source | Photos Number | Spatial Resolution |
---|---|---|---|---|---|
1945 | NO SEISMICITY | AAP 1 | HMGS 2 | 2 | 1 m |
1960 | AAP | HMGS | 2 | 1 m | |
1973 | AAP | HMGS | 1 | 1 m | |
1987 | AAP | HMGS | 4 | 1 m | |
1988 | SEISMICITY | NO AQUISITION OF AERIAL PHOTOGRAPHS | |||
1993 | |||||
1994 | NO SEISMICITY | ||||
1996 | Orthomosaics | HMGS | 1 m | ||
2002 | NO AQUISITION OF AERIAL PHOTOGRAPHS | ||||
2003 | SEISMICITY | ||||
2004 | NO SEISMICITY | ||||
2006 | |||||
2007 | SEISMICITY | AAP/SI 3 | HMGS, GΕ 4 | 2, 1 | 1 m |
2008 | DAP 5 orthomosaic, field mapping, SI | NGCMA 6 and GE | 1 | 0.5 m | |
2009 | SI | GΕ | 1 | 0.65 7 m | |
2010 | NO SEISMICITY | NO AQUSITION OF AERIAL PHOTOGRAPHS | |||
2011 | SEISMICITY | ||||
2012 | NO SEISMICITY | ||||
2014 | |||||
2015 | SEISMICITY | SI | GE | 1 | 0.65 m |
2016 | NO SEISMICITY | NO AQUSITION OF AERIAL PHOTOGRAPHS | |||
2017 | SI | GE | 1 | m |
Date | Number of Landslides (N) | New Landslides (N) | Affected Area (m2) | Landslide Area Percentage (%) ** | Landslide Density (N/km2) | Density of New Landslides (N/km2) | Interval (yr) | Landslide Frequency (N/km2*yr) |
---|---|---|---|---|---|---|---|---|
1945 | 42 | Reference datum | 33,496 | 0.86 | 10.77 | Reference datum | ||
1960 | 47 | 5 | 36,741 | 0.94 | 12.05 | 1.28 | 15 | 0.80 |
1973 | 47 | 0 | 36,657 | 0.94 | 12.05 | 0.00 | 13 | 0.93 |
1987 | 49 | 2 | 38,096 | 0.98 | 12.56 | 0.51 | 14 | 0.90 |
1996 | 72 | 23 | 95,699 | 2.45 | 18.46 | 5.90 | 9 | 2.05 |
2007 (13 August) | 75 | 3 | 118,021 | 3.03 | 19.23 | 0.77 | 11 | 1.75 |
2008 (15 May, 10 July) | 89 | 14 | 242,198 | 6.21 | 22.82 | 3.59 | 1 | 22.82 |
2009 (20 July) | 89 | 0 | 269,109 | 6.90 | 22.82 | 0.00 | 1 | 22.82 |
2015 (5 May) | 89 | 0 | 278,969 | 7.15 | 22.82 | 0.00 | 6 | 3.80 |
2017 (12 August) | 89 | 0 | 292,918 | 7.51 | 22.82 | 0.00 | 2 | 11.41 |
Total | 89 | 47 | 292,918 | 7.51 | 72 |
Inventory | Landslide Area (m2) | |||||
---|---|---|---|---|---|---|
Age | Number of Landslides (N) | Affected Area (m2) | Min | Max | Mean | Std. Dev. |
1945 | 42 | 33,496 | 50.64 | 5456.27 | 957.02 | 1108.21 |
1960 | 47 | 36,741 | 58.62 | 5499.67 | 918.52 | 1121.23 |
1973 | 47 | 36,657 | 58.62 | 5499.67 | 916.41 | 1118.71 |
1987 | 49 | 38,096 | 58.62 | 5500.12 | 917.06 | 1119.26 |
1996 | 72 | 95,699 | 58.78 | 8197.59 | 1519.04 | 1864.45 |
2007 (13 August) | 75 | 118,021 | 58.80 | 8197.89 | 1639.17 | 1896.02 |
2008 (15 May, 10 July) | 89 | 242,198 | 128.10 | 17,344.91 | 2984.51 | 2990.01 |
2009 (20 July) | 89 | 269,109 | 141.02 | 19,937.89 | 3293.21 | 3321.11 |
2015 (5 May) | 89 | 278,969 | 141.02 | 22,692.95 | 3170.11 | 3716.50 |
2017 (12 August) | 89 | 292,918 | 148.07 | 23,827.59 | 3328.62 | 3902.32 |
Total | 89 | 292,918 |
Rate of Increase/Type | 0–1.5 m yr−1 | 1.5–3 m yr−1 | 3–4.5 m yr−1 | >4.5 m yr−1 |
---|---|---|---|---|
Δ | 1 | 2 | 3 | 4 |
J | 2 | 4 | 6 | 8 |
I | 3 | 6 | 9 | 12 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Litoseliti, A.; Koukouvelas, I.K.; Nikolakopoulos, K.G.; Zygouri, V. An Event-Based Inventory Approach in Landslide Hazard Assessment: The Case of the Skolis Mountain, Northwest Peloponnese, Greece. ISPRS Int. J. Geo-Inf. 2020, 9, 457. https://doi.org/10.3390/ijgi9070457
Litoseliti A, Koukouvelas IK, Nikolakopoulos KG, Zygouri V. An Event-Based Inventory Approach in Landslide Hazard Assessment: The Case of the Skolis Mountain, Northwest Peloponnese, Greece. ISPRS International Journal of Geo-Information. 2020; 9(7):457. https://doi.org/10.3390/ijgi9070457
Chicago/Turabian StyleLitoseliti, Aspasia, Ioannis K. Koukouvelas, Konstantinos G. Nikolakopoulos, and Vasiliki Zygouri. 2020. "An Event-Based Inventory Approach in Landslide Hazard Assessment: The Case of the Skolis Mountain, Northwest Peloponnese, Greece" ISPRS International Journal of Geo-Information 9, no. 7: 457. https://doi.org/10.3390/ijgi9070457
APA StyleLitoseliti, A., Koukouvelas, I. K., Nikolakopoulos, K. G., & Zygouri, V. (2020). An Event-Based Inventory Approach in Landslide Hazard Assessment: The Case of the Skolis Mountain, Northwest Peloponnese, Greece. ISPRS International Journal of Geo-Information, 9(7), 457. https://doi.org/10.3390/ijgi9070457