Emerging Contributions of Pluripotent Stem Cells to Reproductive Technologies in Veterinary Medicine
Abstract
:1. Introduction
2. “Old” and New Technologies for Embryo Production
Species | Old Technologies | New Technologies | References |
---|---|---|---|
Bovine | IVF, OPU, ICSI, and SCNT | Blastoid (EPSCs + TSCs) | [11,18] |
Porcine | IVF, ICSI, and SCNT | OLCs, SSCLCs, and PGCLCS | [17,21,22,36,37,38,39] |
Equine | IVF and ICSI | [19,26,27] | |
Mice | IVF | Blastoid (ESCs + TSCs, EPSCs + TSCs, and EPSCs), PGCLCs, xrOVARY, and rTESTES | [8,12,15,40,41,42] |
Human | IVF | Blastoid (naïve PSCs, EPSCs, and iPSCs), PGCLCs, and xrOVARY | [7,16,43,44,45,46] |
3. Production of Competent Gametes in Livestock
3.1. Germline Cells In Vivo
3.2. X Chromosome Inactivation (XCI)
3.3. Gametogenesis In Vitro
4. Animal Models and Translational Medicine
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Simmet, K.; Zakhartchenko, V.; Wolf, E. Comparative Aspects of Early Lineage Specification Events in Mammalian Embryos—Insights from Reverse Genetics Studies. Cell Cycle 2018, 17, 1688–1695. [Google Scholar] [CrossRef]
- Madeja, Z.E.; Pawlak, P.; Piliszek, A. Beyond the Mouse: Non-Rodent Animal Models for Study of Early Mammalian Development and Biomedical Research. Int. J. Dev. Biol. 2019, 63, 187–201. [Google Scholar] [CrossRef] [PubMed]
- Bourdon, G.; Cadoret, V.; Charpigny, G.; Couturier-Tarrade, A.; Dalbies-Tran, R.; Flores, M.-J.; Froment, P.; Raliou, M.; Reynaud, K.; Saint-Dizier, M.; et al. Progress and Challenges in Developing Organoids in Farm Animal Species for the Study of Reproduction and Their Applications to Reproductive Biotechnologies. Vet. Res. 2021, 52, 42. [Google Scholar] [CrossRef] [PubMed]
- Hansen, P.J. Implications of Assisted Reproductive Technologies for Pregnancy Outcomes in Mammals. Annu. Rev. Anim. Biosci. 2020, 8, 395–413. [Google Scholar] [CrossRef] [PubMed]
- Diskin, M.G.; Morris, D.G. Embryonic and Early Foetal Losses in Cattle and Other Ruminants. Reprod. Domest. Anim. 2008, 43 (Suppl. S2), 260–267. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Warmflash, A.; Lutolf, M.P. Stem-Cell-Based Embryo Models for Fundamental Research and Translation. Nat. Mater. 2021, 20, 132–144. [Google Scholar] [CrossRef] [PubMed]
- Kagawa, H.; Javali, A.; Khoei, H.H.; Sommer, T.M.; Sestini, G.; Novatchkova, M.; Scholte op Reimer, Y.; Castel, G.; Bruneau, A.; Maenhoudt, N.; et al. Human Blastoids Model Blastocyst Development and Implantation. Nature 2022, 601, 600–605. [Google Scholar] [CrossRef] [PubMed]
- Rivron, N.C.; Frias-Aldeguer, J.; Vrij, E.J.; Boisset, J.-C.; Korving, J.; Vivié, J.; Truckenmüller, R.K.; van Oudenaarden, A.; van Blitterswijk, C.A.; Geijsen, N. Blastocyst-like Structures Generated Solely from Stem Cells. Nature 2018, 557, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhong, C.; Yu, Y.; Liu, H.; Sakurai, M.; Yu, L.; Min, Z.; Shi, L.; Wei, Y.; Takahashi, Y.; et al. Generation of Blastocyst-like Structures from Mouse Embryonic and Adult Cell Cultures. Cell 2019, 179, 687–702.e18. [Google Scholar] [CrossRef]
- Sozen, B.; Cox, A.L.; Jonghe, J.D.; Bao, M.; Hollfelder, F.; Glover, D.M.; Zernicka-Goetz, M. Self-Organization of Mouse Stem Cells into an Extended Potential Blastoid. Dev. Cell 2019, 51, 698–712.e8. [Google Scholar] [CrossRef]
- Pinzón-Arteaga, C.A.; Wang, Y.; Wei, Y.; Li, L.; Orsi, A.E.R.; Scatolin, G.; Liu, L.; Sakurai, M.; Ye, J.; Yu, L.; et al. Bovine Blastocyst like Structures Derived from Stem Cell Cultures. bioRxiv 2022. [Google Scholar] [CrossRef]
- Hayashi, K.; Ogushi, S.; Kurimoto, K.; Shimamoto, S.; Ohta, H.; Saitou, M. Offspring from Oocytes Derived from In Vitro Primordial Germ Cell–like Cells in Mice. Science 2012, 338, 971–975. [Google Scholar] [CrossRef]
- Springer, C.; Wolf, E.; Simmet, K. A New Toolbox in Experimental Embryology—Alternative Model Organisms for Studying Preimplantation Development. J. Dev. Biol. 2021, 9, 15. [Google Scholar] [CrossRef]
- Chang, M.C. Fertilization of Rabbit Ova In Vitro. Nature 1959, 184, 466–467. [Google Scholar] [CrossRef] [PubMed]
- Whittingham, D.G. Fertilization of Mouse Eggs In Vitro. Nature 1968, 220, 592–593. [Google Scholar] [CrossRef] [PubMed]
- Steptoe, P.C.; Edwards, R.G. Birth after the reimplantation of a human embryo. Lancet 1978, 312, 366. [Google Scholar] [CrossRef]
- Leman, A.D.; Dziuk, P.J. Fertilization and development of pig follicular oocytes. Reproduction 1971, 26, 387–389. [Google Scholar] [CrossRef]
- Brackett, B.G.; Bousquet, D.; Boice, M.L.; Donawick, W.J.; Evans, J.F.; Dressel, M.A. Normal Development Following In Vitro Fertilization in the Cow. Biol. Reprod. 1982, 27, 147–158. [Google Scholar] [CrossRef]
- Palmer, E.; Bézard, J.; Magistrini, M.; Duchamp, G. In Vitro Fertilization in the Horse. A Retrospective Study. J. Reprod. Fertil. Suppl. 1991, 44, 375–384. [Google Scholar]
- Galli, C.; Duchi, R.; Colleoni, S.; Lagutina, I.; Lazzari, G. Ovum Pick up, Intracytoplasmic Sperm Injection and Somatic Cell Nuclear Transfer in Cattle, Buffalo and Horses: From the Research Laboratory to Clinical Practice. Theriogenology 2014, 81, 138–151. [Google Scholar] [CrossRef]
- Martin, M.J. Development of In Vivo-Matured Porcine Oocytes Following Intracytoplasmic Sperm Injection. Biol. Reprod. 2000, 63, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Hölker, M.; Petersen, B.; Hassel, P.; Kues, W.A.; Lemme, E.; Lucas-Hahn, A.; Niemann, H. Duration of In Vitro Maturation of Recipient Oocytes Affects Blastocyst Development of Cloned Porcine Embryos. Cloning Stem Cells 2005, 7, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Lee, G.; Kim, J.; Kang, S.; Lee, B.; Hwang, W. Expression of Leptin Ligand and Receptor and Effect of Exogenous Leptin Supplement on In Vitro Development of Porcine Embryos. Theriogenology 2006, 65, 831–844. [Google Scholar] [CrossRef] [PubMed]
- Leemans, B.; Gadella, B.M.; Stout, T.A.E.; De Schauwer, C.; Nelis, H.; Hoogewijs, M.; Van Soom, A. Why Doesn’t Conventional IVF Work in the Horse? The Equine Oviduct as a Microenvironment for Capacitation/Fertilization. Reproduction 2016, 152, R233–R245. [Google Scholar] [CrossRef] [PubMed]
- Kurome, M.; Geistlinger, L.; Kessler, B.; Zakhartchenko, V.; Klymiuk, N.; Wuensch, A.; Richter, A.; Baehr, A.; Kraehe, K.; Burkhardt, K.; et al. Factors Influencing the Efficiency of Generating Genetically Engineered Pigs by Nuclear Transfer: Multi-Factorial Analysis of a Large Data Set. BMC Biotechnol. 2013, 13, 43. [Google Scholar] [CrossRef] [PubMed]
- Bézard, J. In Vitro fertilization in the mare. In Proceedings of the International Scientific Conference on Biotechnics in Horse Reproduction; Agricultural University of Crakow: Crakow, Poland, 1992; p. 12. [Google Scholar]
- Galli, C.; Colleoni, S.; Duchi, R.; Lagutina, I.; Lazzari, G. Equine Assisted Reproduction and Embryo Technologies. Anim. Reprod. 2013, 10, 334–343. [Google Scholar]
- Felix, M.R.; Turner, R.M.; Dobbie, T.; Hinrichs, K. Successful In Vitro Fertilization in the Horse: Production of Blastocysts and Birth of Foals after Prolonged Sperm Incubation for Capacitation. Biol. Reprod. 2022, 107, 1551–1564. [Google Scholar] [CrossRef] [PubMed]
- Rizos, D.; Ward, F.; Duffy, P.; Boland, M.P.; Lonergan, P. Consequences of Bovine Oocyte Maturation, Fertilization or Early Embryo Development In Vitro versus in Vivo: Implications for Blastocyst Yield and Blastocyst Quality. Mol. Reprod. Dev. 2002, 61, 234–248. [Google Scholar] [CrossRef] [PubMed]
- Fair, T.; Lonergan, P.; Dinnyes, A.; Cottell, D.C.; Hyttel, P.; Ward, F.A.; Boland, M.P. Ultrastructure of Bovine Blastocysts Following Cryopreservation: Effect of Method of Blastocyst Production. Mol. Reprod. Dev. 2001, 58, 186–195. [Google Scholar] [CrossRef]
- Rizos, D.; Gutiérrez-Adán, A.; Pérez-Garnelo, S.; de la Fuente, J.; Boland, M.P.; Lonergan, P. Bovine Embryo Culture in the Presence or Absence of Serum: Implications for Blastocyst Development, Cryotolerance, and Messenger RNA Expression1. Biol. Reprod. 2003, 68, 236–243. [Google Scholar] [CrossRef]
- Heras, S.; De Coninck, D.I.M.; Van Poucke, M.; Goossens, K.; Bogado Pascottini, O.; Van Nieuwerburgh, F.; Deforce, D.; De Sutter, P.; Leroy, J.L.M.R.; Gutierrez-Adan, A.; et al. Suboptimal Culture Conditions Induce More Deviations in Gene Expression in Male than Female Bovine Blastocysts. BMC Genom. 2016, 17, 72. [Google Scholar] [CrossRef] [PubMed]
- Romar, R.; Cánovas, S.; Matás, C.; Gadea, J.; Coy, P. Pig In Vitro Fertilization: Where Are We and Where Do We Go? Theriogenology 2019, 137, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Sherrer, E.S.; Rathbun, T.J.; Davis, D.L. Fertilization and Blastocyst Development in Oocytes Obtained from Prepubertal and Adult Pigs1. J. Anim. Sci. 2004, 82, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Herrick, J.R.; Conover-Sparman, M.L.; Krisher, R.L. Reduced Polyspermic Fertilization of Porcine Oocytes Utilizing Elevated Bicarbonate and Reduced Calcium Concentrations in a Single-Medium System. Reprod. Fertil. Dev. 2003, 15, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Song, S.H.; Kumar, B.M.; Kang, E.J.; Lee, Y.M.; Kim, T.H.; Ock, S.A.; Lee, S.L.; Jeon, B.G.; Rho, G.J. Characterization of Porcine Multipotent Stem/Stromal Cells Derived from Skin, Adipose, and Ovarian Tissues and Their Differentiation in Vitro into Putative Oocyte-like Cells. Stem Cells Dev. 2011, 20, 1359–1370. [Google Scholar] [CrossRef] [PubMed]
- Linher, K.; Dyce, P.; Li, J. Primordial Germ Cell-Like Cells Differentiated In Vitro from Skin-Derived Stem Cells. PLoS ONE 2009, 4, e8263. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xiang, J.; Zhang, W.; Li, J.; Wei, Q.; Zhong, L.; Ouyang, H.; Han, J. Induction of Germ Cell-like Cells from Porcine Induced Pluripotent Stem Cells. Sci. Rep. 2016, 6, 27256. [Google Scholar] [CrossRef] [PubMed]
- Pieri, N.C.G.; de Souza, A.F.; Botigelli, R.C.; Pessôa, L.V.d.F.; Recchia, K.; Machado, L.S.; Glória, M.H.; de Castro, R.V.G.; Leal, D.F.; Fantinato Neto, P.; et al. Porcine Primordial Germ Cell-Like Cells Generated from Induced Pluripotent Stem Cells Under Different Culture Conditions. Stem Cell Rev. Rep. 2021, 18, 1639–1656. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Hikabe, O.; Obata, Y.; Hirao, Y. Reconstitution of Mouse Oogenesis in a Dish from Pluripotent Stem Cells. Nat. Protoc. 2017, 12, 1733–1744. [Google Scholar] [CrossRef]
- Hikabe, O.; Hamazaki, N.; Nagamatsu, G.; Obata, Y.; Hirao, Y.; Hamada, N.; Shimamoto, S.; Imamura, T.; Nakashima, K.; Saitou, M.; et al. Reconstitution In Vitro of the Entire Cycle of the Mouse Female Germ Line. Nature 2016, 539, 299–303. [Google Scholar] [CrossRef]
- Ishikura, Y.; Ohta, H.; Sato, T.; Murase, Y.; Yabuta, Y.; Kojima, Y.; Yamashiro, C.; Nakamura, T.; Yamamoto, T.; Ogawa, T.; et al. In Vitro Reconstitution of the Whole Male Germ-Cell Development from Mouse Pluripotent Stem Cells. Cell Stem Cell 2021, 28, 2167–2179.e9. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Min, Z.; Alsolami, S.; Ma, Z.; Zhang, E.; Chen, W.; Zhong, K.; Pei, W.; Kang, X.; Zhang, P.; et al. Generation of Human Blastocyst-like Structures from Pluripotent Stem Cells. Cell Discov. 2021, 7, 81. [Google Scholar] [CrossRef]
- Sozen, B.; Jorgensen, V.; Weatherbee, B.A.T.; Chen, S.; Zhu, M.; Zernicka-Goetz, M. Reconstructing Aspects of Human Embryogenesis with Pluripotent Stem Cells. Nat. Commun. 2021, 12, 5550. [Google Scholar] [CrossRef]
- Yu, L.; Wei, Y.; Duan, J.; Schmitz, D.A.; Sakurai, M.; Wang, L.; Wang, K.; Zhao, S.; Hon, G.C.; Wu, J. Blastocyst-like Structures Generated from Human Pluripotent Stem Cells. Nature 2021, 591, 620–626. [Google Scholar] [CrossRef]
- Yamashiro, C.; Sasaki, K.; Yokobayashi, S.; Kojima, Y.; Saitou, M. Generation of Human Oogonia from Induced Pluripotent Stem Cells in Culture. Nat. Protoc. 2020, 15, 1560–1583. [Google Scholar] [CrossRef]
- Clark, A.T.; Brivanlou, A.; Fu, J.; Kato, K.; Mathews, D.; Niakan, K.K.; Rivron, N.; Saitou, M.; Surani, A.; Tang, F.; et al. Human Embryo Research, Stem Cell-Derived Embryo Models and In Vitro Gametogenesis: Considerations Leading to the Revised ISSCR Guidelines. Stem Cell Rep. 2021, 16, 1416–1424. [Google Scholar] [CrossRef] [PubMed]
- González, F.; Boué, S.; Belmonte, J.C.I. Methods for Making Induced Pluripotent Stem Cells: Reprogramming à La Carte. Nat. Rev. Genet. 2011, 12, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.R.; Schoevers, E.J.; Roelen, B.A.J. Usefulness of Bovine and Porcine IVM/IVF Models for Reproductive Toxicology. Reprod. Biol. Endocrinol. RBE 2014, 12, 117. [Google Scholar] [CrossRef] [PubMed]
- Sjunnesson, Y. In Vitro Fertilisation in Domestic Mammals-a Brief Overview. Upsala J. Med. Sci. 2020, 125, 68–76. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, B.; Xu, J.; Wang, J.; Wu, J.; Shi, C.; Xu, Y.; Dong, J.; Wang, C.; Lai, W.; et al. Derivation of Pluripotent Stem Cells with In Vivo Embryonic and Extraembryonic Potency. Cell 2017, 169, 243–257.e25. [Google Scholar] [CrossRef]
- Yu, L.; Ezashi, T.; Wei, Y.; Duan, J.; Logsdon, D.; Zhan, L.; Nahar, A.; Arteaga, C.A.P.; Liu, L.; Stobbe, C.; et al. Large Scale Production of Human Blastoids Amenable to Modeling Blastocyst Development and Maternal-Fetal Crosstalk. bioRxiv 2022. [Google Scholar] [CrossRef]
- Shahbazi, M.N.; Siggia, E.D.; Zernicka-Goetz, M. Self-Organization of Stem Cells into Embryos: A Window on Early Mammalian Development. Science 2019, 364, 948–951. [Google Scholar] [CrossRef]
- Hall, V.; Hinrichs, K.; Lazzari, G.; Betts, D.H.; Hyttel, P. Early Embryonic Development, Assisted Reproductive Technologies, and Pluripotent Stem Cell Biology in Domestic Mammals. Vet. J. 2013, 197, 128–142. [Google Scholar] [CrossRef] [PubMed]
- Day, B.N. Reproductive Biotechnologies: Current Status in Porcine Reproduction. Anim. Reprod. Sci. 2000, 60–61, 161–172. [Google Scholar] [CrossRef]
- Gil, M.; Cuello, C.; Parrilla, I.; Vazquez, J.; Roca, J.; Martinez, E. Advances in Swine In Vitro Embryo Production Technologies. Reprod. Domest. Anim. 2010, 45, 40–48. [Google Scholar] [CrossRef]
- Surani, M.A.; Hajkova, P. Epigenetic Reprogramming of Mouse Germ Cells toward Totipotency. Cold Spring Harb. Symp. Quant. Biol. 2010, 75, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Saitou, M.; Yamaji, M. Primordial Germ Cells in Mice. Cold Spring Harb. Perspect. Biol. 2012, 4, a008375. [Google Scholar] [CrossRef]
- Yoshimatsu, S.; Kisu, I.; Qian, E.; Noce, T. A New Horizon in Reproductive Research with Pluripotent Stem Cells: Successful In Vitro Gametogenesis in Rodents, Its Application to Large Animals, and Future In Vitro Reconstitution of Reproductive Organs Such as “Uteroid” and “Oviductoid”. Biology 2022, 11, 987. [Google Scholar] [CrossRef]
- Tang, W.W.C.; Kobayashi, T.; Irie, N.; Dietmann, S.; Surani, M.A. Specification and Epigenetic Programming of the Human Germ Line. Nat. Rev. Genet. 2016, 17, 585–600. [Google Scholar] [CrossRef]
- Sasaki, K.; Nakamura, T.; Okamoto, I.; Yabuta, Y.; Iwatani, C.; Tsuchiya, H.; Seita, Y.; Nakamura, S.; Shiraki, N.; Takakuwa, T.; et al. The Germ Cell Fate of Cynomolgus Monkeys Is Specified in the Nascent Amnion. Dev. Cell 2016, 39, 169–185. [Google Scholar] [CrossRef]
- Kobayashi, T.; Castillo-Venzor, A.; Penfold, C.A.; Morgan, M.; Mizuno, N.; Tang, W.W.C.; Osada, Y.; Hirao, M.; Yoshida, F.; Sato, H.; et al. Tracing the Emergence of Primordial Germ Cells from Bilaminar Disc Rabbit Embryos and Pluripotent Stem Cells. Cell Rep. 2021, 37, 109812. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Sang, F.; Withey, S.; Tang, W.; Dietmann, S.; Klisch, D.; Ramos-Ibeas, P.; Zhang, H.; Requena, C.E.; Hajkova, P.; et al. Specification and Epigenomic Resetting of the Pig Germline Exhibit Conservation with the Human Lineage. Cell Rep. 2021, 34, 108735. [Google Scholar] [CrossRef] [PubMed]
- Ohinata, Y.; Payer, B.; O’Carroll, D.; Ancelin, K.; Ono, Y.; Sano, M.; Barton, S.C.; Obukhanych, T.; Nussenzweig, M.; Tarakhovsky, A.; et al. Blimp1 Is a Critical Determinant of the Germ Cell Lineage in Mice. Nature 2005, 436, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, K. Cellular and Molecular Regulation of the Activation of Mammalian Primordial Follicles: Somatic Cells Initiate Follicle Activation in Adulthood. Hum. Reprod. Update 2015, 21, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Kurimoto, K.; Saitou, M. Mechanism and Reconstitution In Vitro of Germ Cell Development in Mammals. Cold Spring Harb. Symp. Quant. Biol. 2015, 80, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Zhang, H.; Tang, W.W.C.; Irie, N.; Withey, S.; Klisch, D.; Sybirna, A.; Dietmann, S.; Contreras, D.A.; Webb, R.; et al. Principles of Early Human Development and Germ Cell Program from Conserved Model Systems. Nature 2017, 546, 416–420. [Google Scholar] [CrossRef]
- Lavoir, M.-C.; Basrur, P.K.; Betteridge, K.J. Isolation and Identification of Germ Cells from Fetal Bovine Ovaries. Mol. Reprod. Dev. 1994, 37, 413–424. [Google Scholar] [CrossRef]
- Wrobel, K.H.; Süß, F. Identification and Temporospatial Distribution of Bovine Primordial Germ Cells Prior to Gonadal Sexual Differentiation. Anat. Embryol. 1998, 197, 451–467. [Google Scholar] [CrossRef]
- Soto, D.A.; Ross, P.J. Similarities between Bovine and Human Germline Development Revealed by Single-Cell RNA Sequencing. Reproduction 2021, 161, 239–253. [Google Scholar] [CrossRef]
- Wolf, X.A.; Serup, P.; Hyttel, P. Three-Dimensional Localisation of NANOG, OCT4, and E-Cadherin in Porcine Pre- and Peri-Implantation Embryos. Dev. Dyn. 2011, 240, 204–210. [Google Scholar] [CrossRef]
- Vejlsted, M.; Offenberg, H.; Thorup, F.; Maddox-Hyttel, P. Confinement and Clearance of OCT4 in the Porcine Embryo at Stereomicroscopically Defined Stages around Gastrulation. Mol. Reprod. Dev. 2006, 73, 709–718. [Google Scholar] [CrossRef] [PubMed]
- Hyldig, M.S.; Watjen, O.; Olga, V.; Morten, T.; Preben, D. Changes of DNA Methylation Level and Spatial Arrangement of Primordial Germ Cells in Embryonic Day 15 to Embryonic Day 28 Pig Embryos 1. Biol. Reprod. 2011, 1093, 1087–1093. [Google Scholar] [CrossRef] [PubMed]
- Hyldig, S.M.W.; Croxall, N.; Contreras, D.A.; Thomsen, P.D.; Alberio, R. Epigenetic Reprogramming in the Porcine Germ Line. BMC Dev. Biol. 2011, 11, 11. [Google Scholar] [CrossRef] [PubMed]
- Jorge, A.S.; Recchia, K.; Glória, M.H.; de Souza, A.F.; Pessôa, L.V.d.F.; Fantinato Neto, P.; Martins, D.D.S.; de Andrade, A.F.C.; Martins, S.M.M.K.; Bressan, F.F.; et al. Porcine Germ Cells Phenotype during Embryonic and Adult Development. Animals 2023, 13, 2520. [Google Scholar] [CrossRef] [PubMed]
- Walt, M.L.; Stabenfeldt, G.H.; Hughes, J.P.; Neely, D.P.; Bradbury, R. Development of the Equine Ovary and Ovulation Fossa. J. Reprod. Fertil. Suppl. 1979, 471–477. [Google Scholar]
- Barreto, R.S.N.; Romagnolli, P.; Mess, A.M.; Rigoglio, N.N.; Sasahara, T.H.C.; Simões, L.S.; Fratini, P.; Matias, G.S.S.; Jacob, J.C.F.; Gastal, E.L.; et al. Reproductive System Development in Male and Female Horse Embryos and Fetuses: Gonadal Hyperplasia Revisited. Theriogenology 2018, 108, 118–126. [Google Scholar] [CrossRef]
- Scarlet, D.; Handschuh, S.; Reichart, U.; Podico, G.; Ellerbrock, R.E.; Demyda-Peyrás, S.; Canisso, I.F.; Walter, I.; Aurich, C. Sexual Differentiation and Primordial Germ Cell Distribution in the Early Horse Fetus. Animals 2021, 11, 2422. [Google Scholar] [CrossRef] [PubMed]
- Curran, S.; Urven, L.; Ginther, O.J. Distribution of Putative Primordial Germ Cells in Equine Embryos. Equine Vet. J. 1997, 29, 72–76. [Google Scholar] [CrossRef]
- Saitou, M.; Miyauchi, H. Gametogenesis from Pluripotent Stem Cells. Cell Stem Cell 2016, 18, 721–735. [Google Scholar] [CrossRef]
- Bharti, D.; Jang, S.J.; Lee, S.Y.S.L.; Lee, S.Y.S.L.; Rho, G.J. Vitro Generation of Oocyte Like Cells and Their In Vivo Efficacy: How Far We Have Been Succeeded. Cells 2020, 9, 557, Erratum in Cells 2020, 9, 1262. [Google Scholar] [CrossRef]
- Aramaki, S.; Hayashi, K.; Kurimoto, K.; Ohta, H.; Yabuta, Y.; Iwanari, H.; Mochizuki, Y.; Hamakubo, T.; Kato, Y.; Shirahige, K.; et al. A Mesodermal Factor, T, Specifies Mouse Germ Cell Fate by Directly Activating Germline Determinants. Dev. Cell 2013, 27, 516–529. [Google Scholar] [CrossRef] [PubMed]
- Nakaki, F.; Hayashi, K.; Ohta, H.; Kurimoto, K.; Yabuta, Y.; Saitou, M. Induction of Mouse Germ-Cell Fate by Transcription Factors In Vitro. Nature 2013, 501, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Kurimoto, K.; Saitou, M. Germ Cell Reprogramming. Curr. Top. Dev. Biol. 2019, 135, 91–125. [Google Scholar] [CrossRef] [PubMed]
- Brawand, D.; Soumillon, M.; Necsulea, A.; Julien, P.; Csárdi, G.; Harrigan, P.; Weier, M.; Liechti, A.; Aximu-Petri, A.; Kircher, M.; et al. The Evolution of Gene Expression Levels in Mammalian Organs. Nature 2011, 478, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.C.; Tucker, T.; Thorogood, N.P.; Brown, C.J. Mechanisms of X-Chromosome Inactivation. Front. Biosci. 2006, 11, 852–866. [Google Scholar] [CrossRef] [PubMed]
- Skaletsky, H.; Kuroda-Kawaguchi, T.; Minx, P.J.; Cordum, H.S.; Hillier, L.; Brown, L.G.; Repping, S.; Pyntikova, T.; Ali, J.; Bieri, T.; et al. The Male-Specific Region of the Human Y Chromosome Is a Mosaic of Discrete Sequence Classes. Nature 2003, 423, 825–837. [Google Scholar] [CrossRef] [PubMed]
- Gribnau, J.; Grootegoed, J.A. Origin and Evolution of X Chromosome Inactivation. Curr. Opin. Cell Biol. 2012, 24, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Haramoto, Y.; Sakata, M.; Kobayashi, S. Visualization of X Chromosome Reactivation in Mouse Primordial Germ Cells in Vivo. Biol. Open 2021, 10, bio058602. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.K.; Disteche, C.M. Dosage Compensation of the Active X Chromosome in Mammals. Nat. Genet. 2006, 38, 47–53. [Google Scholar] [CrossRef]
- Patrat, C.; Okamoto, I.; Diabangouaya, P.; Vialon, V.; Le Baccon, P.; Chow, J.; Heard, E. Dynamic Changes in Paternal X-Chromosome Activity during Imprinted X-Chromosome Inactivation in Mice. Proc. Natl. Acad. Sci. USA 2009, 106, 5198–5203. [Google Scholar] [CrossRef]
- Yu, B.; van Tol, H.T.A.; Stout, T.A.E.; Roelen, B.A.J. Initiation of X Chromosome Inactivation during Bovine Embryo Development. Cells 2020, 9, 1016. [Google Scholar] [CrossRef] [PubMed]
- Xue, F.; Tian, X.C.; Du, F.; Kubota, C.; Taneja, M.; Dinnyes, A.; Dai, Y.; Levine, H.; Pereira, L.V.; Yang, X. Aberrant Patterns of X Chromosome Inactivation in Bovine Clones. Nat. Genet. 2002, 31, 216–220. [Google Scholar] [CrossRef]
- Hanna, J.; Saha, K.; Pando, B.; van Zon, J.; Lengner, C.J.; Creyghton, M.P.; van Oudenaarden, A.; Jaenisch, R. Direct Cell Reprogramming Is a Stochastic Process Amenable to Acceleration. Nature 2009, 462, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Mak, W.; Nesterova, T.B.; de Napoles, M.; Appanah, R.; Yamanaka, S.; Otte, A.P.; Brockdorff, N. Reactivation of the Paternal X Chromosome in Early Mouse Embryos. Science 2004, 303, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, I.; Otte, A.P.; Allis, C.D.; Reinberg, D.; Heard, E. Epigenetic Dynamics of Imprinted X Inactivation during Early Mouse Development. Science 2004, 303, 644–649. [Google Scholar] [CrossRef] [PubMed]
- Furlan, G.; Rougeulle, C. Function and Evolution of the Long Noncoding RNA Circuitry Orchestrating X-Chromosome Inactivation in Mammals. Wiley Interdiscip. Rev. RNA 2016, 7, 702–722. [Google Scholar] [CrossRef]
- Hayashi, K.; Ohta, H.; Kurimoto, K.; Aramaki, S.; Saitou, M. Reconstitution of the Mouse Germ Cell Specification Pathway in Culture by Pluripotent Stem Cells. Cell 2011, 146, 519–532. [Google Scholar] [CrossRef] [PubMed]
- Irie, N.; Weinberger, L.; Tang, W.W.C.; Kobayashi, T.; Viukov, S.; Manor, Y.S.; Dietmann, S.; Hanna, J.H.; Surani, M.A. SOX17 Is a Critical Specifier of Human Primordial Germ Cell Fate. Cell 2015, 160, 253–268. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, M.; Zywitza, V.; Naitou, Y.; Hamazaki, N.; Goeritz, F.; Hermes, R.; Holtze, S.; Lazzari, G.; Galli, C.; Stejskal, J.; et al. Robust Induction of Primordial Germ Cells of White Rhinoceros on the Brink of Extinction. Sci. Adv. 2022, 8, eabp9683. [Google Scholar] [CrossRef] [PubMed]
- Bessi, B.W.; Botigelli, R.C.; Pieri, N.C.G.; Machado, L.S.; Cruz, J.B.; de Moraes, P.; de Souza, A.F.; Recchia, K.; Barbosa, G.; de Castro, R.V.G.; et al. Cattle In Vitro Induced Pluripotent Stem Cells Generated and Maintained in 5 or 20% Oxygen and Different Supplementation. Cells 2021, 10, 1531. [Google Scholar] [CrossRef]
- Pessoa, L.V.F.; Pires, P.R.L.; Collado, M.; Pieri, N.C.G.; Recchia, K.; Souza, A.F.; Perecin, F.; Da Silveira, J.C.; Andrade, A.F.C.; Ambrosio, C.E.; et al. Generation and miRNA Characterization of Equine Induced Pluripotent Stem Cells Derived from Fetal and Adult Multipotent Tissues. Stem Cells Int. 2019, 2019, 1393791. [Google Scholar] [CrossRef]
- Machado, L.S.; Pieri, N.C.G.; Botigelli, R.C.; Castro, R.V.G.; Souza, A.F.; Bridi, A.; Lima, M.A.; Fantinato Neto, P.; Figueiredo Pessôa, L.V.; Martins, S.M.M.K.; et al. Generation of Neural Progenitor Cells (NPC) from Porcine Induced Pluripotent Stem Cells (piPSC). J. Tissue Eng. Regen. Med. 2020, 14, 1880–1891. [Google Scholar] [CrossRef] [PubMed]
- Recchia, K.; Machado, L.S.; Botigelli, R.C.; Pieri, N.C.G.; Barbosa, G.; de Castro, R.V.G.; Marques, M.G.; de Figueiredo Pessôa, L.V.; Neto, P.F.; Meirelles, F.V.; et al. In Vitro Induced Pluripotency from Urine-Derived Cells in Porcine. World J. Stem Cells 2022, 14, 231–244. [Google Scholar] [CrossRef] [PubMed]
- de Souza, A.F.; Bressan, F.F.; Pieri, N.C.G.; Botigelli, R.C.; Revay, T.; Haddad, S.K.; Covas, D.T.; Ramos, E.S.; King, W.A.; Meirelles, F.V. Generation of Primordial Germ Cell-like Cells from iPSCs Derived from Turner Syndrome Patients. Cells 2021, 10, 3099. [Google Scholar] [CrossRef] [PubMed]
- Bressan, F.F.; Bassanezze, V.; de Figueiredo Pessôa, L.V.; Sacramento, C.B.; Malta, T.M.; Kashima, S.; Fantinato Neto, P.; Strefezzi, R.D.F.; Pieri, N.C.G.; Krieger, J.E.; et al. Generation of Induced Pluripotent Stem Cells from Large Domestic Animals. Stem Cell Res. Ther. 2020, 11, 247. [Google Scholar] [CrossRef]
- Malaver-ortega, L.F.; Sumer, H.; Jain, K.; Verma, P.J. Bone Morphogenetic Protein 4 and Retinoic Acid Trigger Bovine VASA Homolog Expression in Differentiating Bovine Induced Pluripotent Stem Cells. Mol. Reprod. Dev. 2016, 161, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.J.D.N.; De Souza, G.B.; Bernardo, J.M.P.; Ribeiro, R.P.; Passos, J.R.D.S.; Bezerra, F.T.G.; Saraiva, M.V.A.; Silva, J.R.V. Expression of Markers for Germ Cells and Oocytes in Cow Dermal Fibroblast Treated with 5-Azacytidine and Cultured in Differentiation Medium Containing BMP2, BMP4 or Follicular Fluid. Zygote 2017, 25, 341–357. [Google Scholar] [CrossRef] [PubMed]
- de Souza, G.B.; Costa, J.J.N.; da Cunha, E.V.; Passos, J.R.S.; Ribeiro, R.P.; Saraiva, M.V.A.; van den Hurk, R.; Silva, J.R.V. Bovine Ovarian Stem Cells Differentiate into Germ Cells and Oocyte-like Structures after Culture In Vitro. Reprod. Domest. Anim. 2017, 52, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.-Z.; Hua, J.-L.; Shen, W.-Z.; Dou, Z.-Y. In Vitro Production of Haploid Sperm Cells from Male Germ Cells of Foetal Cattle. Anim. Reprod. Sci. 2010, 118, 103–109. [Google Scholar] [CrossRef]
- Zheng, P.; Zhao, X.W.; Zheng, X.M.; Khalid, A.; Zhao, Q.; Zhang, G.X. In Vitro Differentiation of Sperm from Male Germline Stem Cell. Genet. Mol. Res. 2015, 14, 2964–2969. [Google Scholar] [CrossRef]
- Dyce, P.W.; Shen, W.; Huynh, E.; Shao, H.; Villago, D.A.F.; Kidder, G.M.; King, W.A.; Li, J. Analysis of Oocyte-Like Cells Differentiated from Porcine Fetal Skin-Derived Stem Cells. Stem Cells Dev. 2011, 20, 809–819. [Google Scholar] [CrossRef]
- Pessôa, L.V.D.F.; Bressan, F.F.; Freude, K.K. Induced Pluripotent Stem Cells throughout the Animal Kingdom: Availability and Applications. World J. Stem Cells 2019, 11, 491–505. [Google Scholar] [CrossRef]
- Pieri, N.C.G.; de Souza, A.F.; Botigelli, R.C.; Machado, L.S.; Ambrosio, C.E.; dos Santos Martins, D.; de Andrade, A.F.C.; Meirelles, F.V.; Hyttel, P.; Bressan, F.F. Stem Cells on Regenerative and Reproductive Science in Domestic Animals. Vet. Res. Commun. 2019, 43, 7–16. [Google Scholar] [CrossRef]
- Su, Y.; Wang, L.; Fan, Z.; Liu, Y.; Zhu, J.; Kaback, D.; Oudiz, J.; Patrick, T.; Yee, S.P.; Tian, X.; et al. Establishment of Bovine-Induced Pluripotent Stem Cells. Int. J. Mol. Sci. 2021, 22, 10489. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, C.; Jiang, H.; Liu, M.; Yang, N.; Zhao, L.; Hou, D.; Jin, Y.; Chen, Q.; Chen, Y.; et al. Derivation of Novel Naive-like Porcine Embryonic Stem Cells by a Reprogramming Factor-Assisted Strategy. FASEB J. 2019, 33, 9350–9361. [Google Scholar] [CrossRef] [PubMed]
- Groenen, M.A.M.; Archibald, A.L.; Uenishi, H.; Tuggle, C.K.; Takeuchi, Y.; Rothschild, M.F.; Rogel-gaillard, C.; Park, C.; Milan, D.; Megens, H.; et al. Analyses of Pig Genomes Provide Insight into Porcine Demography and Evolution. Nature 2012, 491, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Lonergan, P.; Fair, T. Maturation of Oocytes In Vitro. Annu. Rev. Anim. Biosci. 2016, 4, 255–268. [Google Scholar] [CrossRef]
- Ménézo, Y.J.R.; Hérubel, F. Mouse and Bovine Models for Human IVF. Reprod. Biomed. Online 2002, 4, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Michael Roberts, R.; Yuan, Y.; Genovese, N.; Ezashi, T. Livestock Models for Exploiting the Promise of Pluripotent Stem Cells. ILAR J. 2015, 56, 74–82. [Google Scholar] [CrossRef]
- Perleberg, C.; Kind, A.; Schnieke, A. Genetically Engineered Pigs as Models for Human Disease. DMM Dis. Models Mech. 2018, 11, dmm030783. [Google Scholar] [CrossRef]
- Roberts, J.F.; Jeff Huang, C.C. Bovine Models for Human Ovarian Diseases. In Progress in Molecular Biology and Translational Science; Elsevier B.V.: Amsterdam, The Netherlands, 2022; Volume 189, pp. 101–154. ISBN 978-0-323-99441-5. [Google Scholar]
- Roberts, R.M.; Telugu, B.P.V.L.; Ezashi, T. Induced Pluripotent Stem Cells from Swine (Sus Scrofa): Why They May Prove to Be Important. Cell Cycle 2009, 8, 3078–3081. [Google Scholar] [CrossRef] [PubMed]
- Langbeen, A.; De Porte, H.F.M.; Bartholomeus, E.; Leroy, J.L.M.R.; Bols, P.E.J. Bovine In Vitro Reproduction Models Can Contribute to the Development of (Female) Fertility Preservation Strategies. Theriogenology 2015, 84, 477–489. [Google Scholar] [CrossRef]
- Ramos-Ibeas, P.; Gimeno, I.; Cañón-Beltrán, K.; Gutiérrez-Adán, A.; Rizos, D.; Gómez, E. Senescence and Apoptosis During In Vitro Embryo Development in a Bovine Model. Front. Cell Dev. Biol. 2020, 8, 619902. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Li, Z.; Zhao, Q.; Ye, Z.; Gu, X.; Pan, F.; Li, H.; Xiang, W.; Xiong, C. Induced Pluripotent Stem Cells Derived From Two Idiopathic Azoospermia Patients Display Compromised Differentiation Potential for Primordial Germ Cell Fate. Front. Cell Dev. Biol. 2020, 8, 432. [Google Scholar] [CrossRef] [PubMed]
- Oikawa, M.; Kobayashi, H.; Sanbo, M.; Mizuno, N.; Iwatsuki, K.; Takashima, T.; Yamauchi, K.; Yoshida, F.; Yamamoto, T.; Shinohara, T.; et al. Functional Primordial Germ Cell–like Cells from Pluripotent Stem Cells in Rats. Science 2022, 376, 176–179. [Google Scholar] [CrossRef] [PubMed]
- Sosa, E.; Chen, D.; Rojas, E.J.; Hennebold, J.D.; Peters, K.A.; Wu, Z.; Lam, T.N.; Mitchell, J.M.; Sukhwani, M.; Tailor, R.C.; et al. Differentiation of Primate Primordial Germ Cell-like Cells Following Transplantation into the Adult Gonadal Niche. Nat. Commun. 2018, 9, 5339. [Google Scholar] [CrossRef] [PubMed]
- Bressan, F.F.; Lima, M.A.; Machado, L.S.; Pieiri, N.C.G.; Fantinato-Neto, P.; Therrien, J.; Perecin, F.; Smith, L.C.; Meirelles, F.V. 183 In Vitro Generation and Characterization of Putative Primordial Germ Cells Derived from Induced Pluripotent Stem Cells in Cattle. Reprod. Fertil. Dev. 2018, 30, 231–232. [Google Scholar] [CrossRef]
- Cebrian-Serrano, A.; Stout, T.; Dinnyes, A. Veterinary Applications of Induced Pluripotent Stem Cells: Regenerative Medicine and Models for Disease? Vet. J. 2013, 198, 34–42. [Google Scholar] [CrossRef]
- Hong, T.-K.; Song, J.-H.; Lee, S.-B.; Do, J.-T. Germ Cell Derivation from Pluripotent Stem Cells for Understanding In Vitro Gametogenesis. Cells 2021, 10, 1889. [Google Scholar] [CrossRef]
- Galow, A.M.; Goldammer, T.; Hoeflich, A. Xenogeneic and Stem Cell-Based Therapy for Cardiovascular Diseases: Genetic Engineering of Porcine Cells and Their Applications in Heart Regeneration. Int. J. Mol. Sci. 2020, 21, 9686. [Google Scholar] [CrossRef]
- Jabbar, A.; Zulfiqar, F.; Mahnoor, M.; Mushtaq, N.; Zaman, M.H.; Din, A.S.U.; Khan, M.A.; Ahmad, H.I. Advances and Perspectives in the Application of CRISPR-Cas9 in Livestock. Mol. Biotechnol. 2021, 63, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Moretti, A.; Fonteyne, L.; Giesert, F.; Hoppmann, P.; Meier, A.B.; Bozoglu, T.; Baehr, A.; Schneider, C.M.; Sinnecker, D.; Klett, K.; et al. Somatic Gene Editing Ameliorates Skeletal and Cardiac Muscle Failure in Pig and Human Models of Duchenne Muscular Dystrophy. Nat. Med. 2020, 26, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Larsen, N.J.; Marklund, S.; Kelly, K.A.; Malek, M.; Tuggle, C.K.; Yerle, M.; Rothschild, M.F. New Insights into Porcine-Human Synteny Conservation. Mamm. Genome 1999, 10, 488–491. [Google Scholar] [CrossRef]
Reference | Species | Description |
---|---|---|
[14] | Rabbit | The oocytes were matured in vivo, and the sperm was capacitated in the female reproductive tract. Fifteen live and healthy animals were born. |
[15] | Mice | The oocytes were obtained from the female’s oviduct, and the sperm was collected from the uterus of a mated female. The fetuses were 17 days old. |
[16] | Human | The oocyte was retrieved by laparoscopy, followed by in vitro fertilization. A healthy, normal child weighing 2.7 kg was born. |
[17] | Porcine | The oocytes were punctured from the follicles and then transferred to the oviduct of the female, which was artificially inseminated. The embryos continued to develop normally for up to 25 days. |
[18] | Bovine | The oocytes were surgically collected and fertilized in vitro, resulting in the birth of a 45 kg calf. |
[19] | Equine | The oocytes were matured in vivo and recovered from the stimulated dominant follicle, and the sperm was treated with calcium ionophore A23187. The pregnancy was brought to term with the birth of two foals. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Castro, R.C.F.; Buranello, T.W.; Recchia, K.; de Souza, A.F.; Pieri, N.C.G.; Bressan, F.F. Emerging Contributions of Pluripotent Stem Cells to Reproductive Technologies in Veterinary Medicine. J. Dev. Biol. 2024, 12, 14. https://doi.org/10.3390/jdb12020014
de Castro RCF, Buranello TW, Recchia K, de Souza AF, Pieri NCG, Bressan FF. Emerging Contributions of Pluripotent Stem Cells to Reproductive Technologies in Veterinary Medicine. Journal of Developmental Biology. 2024; 12(2):14. https://doi.org/10.3390/jdb12020014
Chicago/Turabian Stylede Castro, Raiane Cristina Fratini, Tiago William Buranello, Kaiana Recchia, Aline Fernanda de Souza, Naira Caroline Godoy Pieri, and Fabiana Fernandes Bressan. 2024. "Emerging Contributions of Pluripotent Stem Cells to Reproductive Technologies in Veterinary Medicine" Journal of Developmental Biology 12, no. 2: 14. https://doi.org/10.3390/jdb12020014
APA Stylede Castro, R. C. F., Buranello, T. W., Recchia, K., de Souza, A. F., Pieri, N. C. G., & Bressan, F. F. (2024). Emerging Contributions of Pluripotent Stem Cells to Reproductive Technologies in Veterinary Medicine. Journal of Developmental Biology, 12(2), 14. https://doi.org/10.3390/jdb12020014