Harderian Gland Development and Degeneration in the Fgf10-Deficient Heterozygous Mouse
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genotyping of Fgf10-Mutant Mice
2.2. Fixation, Sectioning, and Histology
2.3. Immunohistochemistry
2.4. TUNEL Staining
2.5. In Situ Hybridization (ISH)
2.6. Microscopy and Camera/Imaging System
2.7. Statistics
3. Results
3.1. More Than Half the Cases of Fgf10+/− HGs Exhibiting, often Unilaterally, the Loss of Glandular Cells, Fibrosis and Melanocytic Hyperplasia as Early as Postnatal Day Six
3.2. More Than Half the Cases of Fgf10+/− HGs Exhibit the Unilateral Absence of HG Development Just before or after Birth
3.3. A Re-Examination of the Expression Pattern of Fgf10 in Association with Fgfr2b and Fgf7 during Mouse HG Development
3.4. Fgf10 Expression in the Harderian Mesenchyme Lacking Developing Glandular Cells Just before Birth
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rehorek, S.J.; Smith, T.D. The primate Harderian gland: Does it really exist? Ann. Anat. 2006, 188, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Hillenius, W.J.; Phillips, D.A.; Rehorek, S.J. “A new lachrymal gland with an excretory duct in red and fallow deer” by Johann jacob Harder (1694): English translation and historical perspective. Ann. Anat. 2007, 189, 423–433. [Google Scholar] [CrossRef]
- Payne, A.P. The harderian gland: A tercentennial review. J. Anat. 1994, 185 Pt. 1, 1–49. [Google Scholar]
- Arends, G.; Schramm, U. The structure of the human semilunar plica at different stages of its development--a morphological and morphometric study. Ann. Anat. 2004, 186, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M. An autoradiographic, biochemical, and morphological study of the harderian gland of the mouse. J. Morphol. 1980, 163, 349–365. [Google Scholar] [CrossRef] [PubMed]
- Strum, J.M.; Shear, C.R. Harderian glands in mice: Fluorescence, peroxidase activity and fine structure. Tissue Cell 1982, 14, 135–148. [Google Scholar] [CrossRef] [PubMed]
- Shirama, K.; Harada, T.; Kohda, M.; Hokano, M. Fine structure of melanocytes and macrophages in the Harderian gland of the mouse. Acta Anat. 1988, 131, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Woodhouse, M.A.; Rhodin, J.A. The Ultrastructure of the Harderian Gland of the Mouse with Particular Reference to the Formation of Its Secretory Product. J. Ultrastruct. Res. 1963, 49, 76–98. [Google Scholar] [CrossRef] [PubMed]
- Sakai, T. The mammalian Harderian gland: Morphology, biochemistry, function and phylogeny. Arch. Histol. Jpn. 1981, 44, 299–333. [Google Scholar] [CrossRef]
- Govindarajan, V.; Ito, M.; Makarenkova, H.P.; Lang, R.A.; Overbeek, P.A. Endogenous and ectopic gland induction by FGF-10. Dev. Biol. 2000, 225, 188–200. [Google Scholar] [CrossRef]
- Makarenkova, H.P.; Ito, M.; Govindarajan, V.; Faber, S.C.; Sun, L.; McMahon, G.; Overbeek, P.A.; Lang, R.A. FGF10 is an inducer and Pax6 a competence factor for lacrimal gland development. Development 2000, 127, 2563–2572. [Google Scholar] [CrossRef] [PubMed]
- Entesarian, M.; Matsson, H.; Klar, J.; Bergendal, B.; Olson, L.; Arakaki, R.; Hayashi, Y.; Ohuchi, H.; Falahat, B.; Bolstad, A.I.; et al. Mutations in the gene encoding fibroblast growth factor 10 are associated with aplasia of lacrimal and salivary glands. Nat. Genet. 2005, 37, 125–127. [Google Scholar] [CrossRef] [PubMed]
- Tsau, C.; Ito, M.; Gromova, A.; Hoffman, M.P.; Meech, R.; Makarenkova, H.P. Barx2 and Fgf10 regulate ocular glands branching morphogenesis by controlling extracellular matrix remodeling. Development 2011, 138, 3307–3317. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Huang, J.; Liu, Y.; Dattilo, L.K.; Huh, S.H.; Ornitz, D.; Beebe, D.C. FGF signaling activates a Sox9-Sox10 pathway for the formation and branching morphogenesis of mouse ocular glands. Development 2014, 141, 2691–2701. [Google Scholar] [CrossRef] [PubMed]
- Schild, A.; Isenmann, S.; Tanimoto, N.; Tonagel, F.; Seeliger, M.W.; Ittner, L.M.; Kretz, A.; Ogris, E.; Gotz, J. Impaired development of the Harderian gland in mutant protein phosphatase 2A transgenic mice. Mech. Dev. 2006, 123, 362–371. [Google Scholar] [CrossRef] [PubMed]
- Lao, D.H.; Yusoff, P.; Chandramouli, S.; Philp, R.J.; Fong, C.W.; Jackson, R.A.; Saw, T.Y.; Yu, C.Y.; Guy, G.R. Direct binding of PP2A to Sprouty2 and phosphorylation changes are a prerequisite for ERK inhibition downstream of fibroblast growth factor receptor stimulation. J. Biol. Chem. 2007, 282, 9117–9126. [Google Scholar] [CrossRef] [PubMed]
- Puk, O.; Esposito, I.; Soker, T.; Loster, J.; Budde, B.; Nurnberg, P.; Michel-Soewarto, D.; Fuchs, H.; Wolf, E.; Hrabe de Angelis, M.; et al. A new Fgf10 mutation in the mouse leads to atrophy of the harderian gland and slit-eye phenotype in heterozygotes: A novel model for dry-eye disease? Invest Ophthalmol. Vis. Sci. 2009, 50, 4311–4318. [Google Scholar] [CrossRef] [PubMed]
- Sekine, K.; Ohuchi, H.; Fujiwara, M.; Yamasaki, M.; Yoshizawa, T.; Sato, T.; Yagishita, N.; Matsui, D.; Koga, Y.; Itoh, N.; et al. Fgf10 is essential for limb and lung formation. Nat. Genet. 1999, 21, 138–141. [Google Scholar] [CrossRef]
- Fekete, E. A comparative morphological study of the mammary gland in a high and low tumor strain of mice. Am. J. Pathol. 1938, 14, 22. [Google Scholar]
- Sato, K.; Nwe Nwe, K.; Ohuchi, H. The Opsin 3/Teleost multiple tissue opsin system: mRNA localization in the retina and brain of medaka (Oryzias latipes). J. Comp. Neurol. 2021, 529, 2484–2516. [Google Scholar] [CrossRef]
- Kishi, J.Y.; Lapan, S.W.; Beliveau, B.J.; West, E.R.; Zhu, A.; Sasaki, H.M.; Saka, S.K.; Wang, Y.; Cepko, C.L.; Yin, P. SABER amplifies FISH: Enhanced multiplexed imaging of RNA and DNA in cells and tissues. Nat. Methods 2019, 16, 533–544. [Google Scholar] [CrossRef]
- Sato, K.; Yamashita, T.; Ohuchi, H. Mammalian type opsin 5 preferentially activates G14 in Gq-type G proteins triggering intracellular calcium response. J. Biol. Chem. 2023, 299, 105020. [Google Scholar] [CrossRef] [PubMed]
- Shirama, K.; Hokano, M. Electron-microscopic studies on the maturation of secretory cells in the mouse Harderian gland. Acta Anat 1991, 140, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Mares, L.; Ramos, L. Harderian SOX9: Molecular characterization and its dimorphic expression in hamster. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2021, 258, 110981. [Google Scholar] [CrossRef] [PubMed]
- Ramos, L.; Mares, L. Hamster DAX1: Molecular insights, specific expression, and its role in the Harderian gland. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2022, 263, 111096. [Google Scholar] [CrossRef] [PubMed]
- Cornell-Bell, A.H.; Sullivan, D.A.; Allansmith, M.R. Gender-related differences in the morphology of the lacrimal gland. Invest. Ophthalmol. Vis. Sci. 1985, 26, 1170–1175. [Google Scholar] [PubMed]
- Richards, S.M.; Jensen, R.V.; Liu, M.; Sullivan, B.D.; Lombardi, M.J.; Rowley, P.; Schirra, F.; Treister, N.S.; Suzuki, T.; Steagall, R.J.; et al. Influence of sex on gene expression in the mouse lacrimal gland. Exp. Eye Res. 2006, 82, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Mukaibo, T.; Gao, X.; Yang, N.Y.; Oei, M.S.; Nakamoto, T.; Melvin, J.E. Sexual dimorphisms in the transcriptomes of murine salivary glands. FEBS Open Bio 2019, 9, 947–958. [Google Scholar] [CrossRef]
- Findlater, G.S.; McDougall, R.D.; Kaufman, M.H. Eyelid development, fusion and subsequent reopening in the mouse. J. Anat. 1993, 183 Pt. 1, 121–129. [Google Scholar]
- Iruela-Arispe, M.L.; Beitel, G.J. Tubulogenesis. Development 2013, 140, 2851–2855. [Google Scholar] [CrossRef]
- Mailleux, A.A.; Overholtzer, M.; Schmelzle, T.; Bouillet, P.; Strasser, A.; Brugge, J.S. BIM regulates apoptosis during mammary ductal morphogenesis, and its absence reveals alternative cell death mechanisms. Dev. Cell 2007, 12, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Itoh, N.; Ornitz, D.M. Functional evolutionary history of the mouse Fgf gene family. Dev. Dyn. 2008, 237, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Lovicu, F.J.; Kao, W.W.; Overbeek, P.A. Ectopic gland induction by lens-specific expression of keratinocyte growth factor (FGF-7) in transgenic mice. Mech. Dev. 1999, 88, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Cook, D.L.; Gerber, A.N.; Tapscott, S.J. Modeling stochastic gene expression: Implications for haploinsufficiency. Proc. Natl. Acad. Sci. USA 1998, 95, 15641–15646. [Google Scholar] [CrossRef] [PubMed]
- Leyes Porello, E.A.; Trudeau, R.T.; Lim, B. Transcriptional bursting: Stochasticity in deterministic development. Development 2023, 150, dev201546. [Google Scholar] [CrossRef] [PubMed]
- Jaskoll, T.; Abichaker, G.; Witcher, D.; Sala, F.G.; Bellusci, S.; Hajihosseini, M.K.; Melnick, M. FGF10/FGFR2b signaling plays essential roles during in vivo embryonic submandibular salivary gland morphogenesis. BMC Dev. Biol. 2005, 5, 11. [Google Scholar] [CrossRef] [PubMed]
- Basilicata, M.F.; Keller Valsecchi, C.I. The good, the bad, and the ugly: Evolutionary and pathological aspects of gene dosage alterations. PLoS Genet. 2021, 17, e1009906. [Google Scholar] [CrossRef] [PubMed]
- Finburgh, E.N.; Mauduit, O.; Noguchi, T.; Bu, J.J.; Abbas, A.A.; Hakim, D.F.; Bellusci, S.; Meech, R.; Makarenkova, H.P.; Afshari, N.A. Role of FGF10/FGFR2b Signaling in Homeostasis and Regeneration of Adult Lacrimal Gland and Corneal Epithelium Proliferation. Invest Ophthalmol. Vis. Sci. 2023, 64, 21. [Google Scholar] [CrossRef] [PubMed]
- Kleckowska-Nawrot, J.E.; Gozdziewska-Harlajczuk, K.; Barszcz, K. Comparative study of the eyelids and orbital glands morphology in the okapi (Okapia johnstoni, Giraffidae), Pere David’s deer (Elaphurus davidianus, Cervidae) and the Philippine mouse-deer (Tragulus nigricans, Tragulidae). Histol. Histopathol. 2020, 35, 185–202. [Google Scholar] [CrossRef]
- Aldana Marcos, H.J.; Cintia Ferrari, C.; Cervino, C.; Affanni, J.M. Histology, histochemistry and fine structure of the lacrimal and nictitans gland in the South American armadillo Chaetophractus villosus (Xenarthra, Mammalia). Exp. Eye Res. 2002, 75, 731–744. [Google Scholar] [CrossRef]
- Katayama, S.; Tomaru, Y.; Kasukawa, T.; Waki, K.; Nakanishi, M.; Nakamura, M.; Nishida, H.; Yap, C.C.; Suzuki, M.; Kawai, J.; et al. Antisense transcription in the mammalian transcriptome. Science 2005, 309, 1564–1566. [Google Scholar] [CrossRef] [PubMed]
- Mahale, S.; Setia, M.; Prajapati, B.; Subhash, S.; Yadav, M.P.; Thankaswamy Kosalai, S.; Deshpande, A.; Kuchlyan, J.; Di Marco, M.; Westerlund, F.; et al. HnRNPK maintains single strand RNA through controlling double-strand RNA in mammalian cells. Nat. Commun. 2022, 13, 4865. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Prochazka, J.; Prochazkova, M.; Klein, O.D. Expression of FGFs during early mouse tongue development. Gene Expr. Patterns 2016, 20, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, P.; Liu, P.; Xiong, R.; Zhang, E.; Chen, X.; Gu, D.; Zhao, Y.; Wang, Z.; Zhou, Y. The essential role for c-Ski in mediating TGF-beta1-induced bi-directional effects on skin fibroblast proliferation through a feedback loop. Biochem. J. 2008, 409, 289–297. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ikeda, S.; Sato, K.; Fujita, H.; Ono-Minagi, H.; Miyaishi, S.; Nohno, T.; Ohuchi, H. Harderian Gland Development and Degeneration in the Fgf10-Deficient Heterozygous Mouse. J. Dev. Biol. 2024, 12, 16. https://doi.org/10.3390/jdb12020016
Ikeda S, Sato K, Fujita H, Ono-Minagi H, Miyaishi S, Nohno T, Ohuchi H. Harderian Gland Development and Degeneration in the Fgf10-Deficient Heterozygous Mouse. Journal of Developmental Biology. 2024; 12(2):16. https://doi.org/10.3390/jdb12020016
Chicago/Turabian StyleIkeda, Shiori, Keita Sato, Hirofumi Fujita, Hitomi Ono-Minagi, Satoru Miyaishi, Tsutomu Nohno, and Hideyo Ohuchi. 2024. "Harderian Gland Development and Degeneration in the Fgf10-Deficient Heterozygous Mouse" Journal of Developmental Biology 12, no. 2: 16. https://doi.org/10.3390/jdb12020016
APA StyleIkeda, S., Sato, K., Fujita, H., Ono-Minagi, H., Miyaishi, S., Nohno, T., & Ohuchi, H. (2024). Harderian Gland Development and Degeneration in the Fgf10-Deficient Heterozygous Mouse. Journal of Developmental Biology, 12(2), 16. https://doi.org/10.3390/jdb12020016