Evolution and Spatiotemporal Expression of ankha and ankhb in Zebrafish
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sequence Alignment and Phylogenetic Tree Construction of ANKH Proteins
2.2. Percentage Identity Matrix
2.3. Promoter Prediction Analysis
2.4. Gene Ontology (GO) Annotation Analysis
2.5. Zebrafish Maintenance
2.6. mRNA Isolation, cDNA Synthesis and Reverse-Transcription PCR
2.7. Quantitative PCR (RT-qPCR)
2.8. RNA Probes for In Situ Hybridization
2.9. Whole-Mount In Situ Hybridization (WISH)
3. Results
3.1. Zebrafish ankhb Demonstrates a Closer Evolutionary Relationship to ANKH Proteins of Other Vertebrates
3.2. Differential Promoter Strength in Zebrafish ankh Paralog Genes
3.3. Similar Functional Biology of ANKH Proteins in Humans, Mice and Zebrafish
3.4. ankha and ankhb Expression Patterns in Zebrafish Embryonic and Larval Development
3.5. Expression of ankha and ankhb Is Localized to the Craniofacial Region, Somites, Notochord and Tail
3.6. Alignment of ANKH Proteins to Determine Their Homology to Known Mutations That Cause CMD in Humans
4. Discussion
4.1. The ankhb Amino Acid Sequence in Zebrafish Shows Greater Similarity to ANK Sequence in Humans
4.2. Both ankha and ankhb Exhibit Similar Spatiotemporal Expression Patterns, Suggesting Functional Redundancy
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, S.R.; Han, Y.S. Craniometaphyseal Dysplasia. Arch. Plast. Surg. 2013, 40, 157–159. [Google Scholar] [CrossRef]
- Wu, J.; Li, X.; Chen, S. Special manifestations and treatment of rare cases of snoring with special facial features and hearing loss in children. J. Int. Med. Res. 2022, 50, 03000605221108085. [Google Scholar] [CrossRef]
- Reichenberger, E.; Tiziani, V.; Watanabe, S.; Park, L.; Ueki, Y.; Santanna, C.; Baur, S.T.; Shiang, R.; Grange, D.K.; Beighton, P.; et al. Autosomal dominant Craniometaphyseal Dysplasia is caused by mutations in the transmembrane protein ANK. Am. J. Hum. Genet. 2001, 68, 1321–1326. [Google Scholar] [CrossRef]
- Chen, I.P.; Wang, C.J.; Strecker, S.; Koczon-Jaremko, B.; Boskey, A.; Reichenberger, E.J. Introduction of a Phe377del mutation in ANK creates a mouse model for Craniometaphyseal Dysplasia. J. Bone Miner. Res. 2009, 24, 1206–1215. [Google Scholar] [CrossRef]
- Stains, J.P.; Civitelli, R. Connexins in the skeleton. Semin. Cell Dev. Biol. 2016, 50, 31–39. [Google Scholar] [CrossRef]
- Nürnberg, P.; Thiele, H.; Chandler, D.; Höhne, W.; Cunningham, M.L.; Ritter, H.; Leschik, G.; Uhlmann, K.; Mischung, C.; Harrop, K.; et al. Heterozygous mutations in ANKH, the human ortholog of the mouse progressive ankylosis gene, result in Craniometaphyseal dysplasia. Nat. Genet. 2001, 28, 37–41. [Google Scholar] [CrossRef]
- Szeri, F.; Lundkvist, S.; Donnelly, S.; Engelke, U.F.H.; Rhee, K.; Williams, C.J.; Sundberg, J.P.; Wevers, R.A.; Tomlinson, R.E.; Jansen, R.S.; et al. The membrane protein ANKH is crucial for bone mechanical performance by mediating cellular export of citrate and ATP. PLoS Genet. 2020, 16, e1008884. [Google Scholar] [CrossRef]
- Szeri, F.; Niaziorimi, F.; Donnelly, S.; Fariha, N.; Tertyshnaia, M.; Patel, D.; Lundkvist, S.; van de Wetering, K. The Mineralization Regulator ANKH Mediates Cellular Efflux of ATP, Not Pyrophosphate. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2022, 37, 1024–1031. [Google Scholar] [CrossRef]
- Terkeltaub, R.A. Inorganic pyrophosphate generation and disposition in pathophysiology. Am. J. Physiol. Cell Physiol. 2001, 281, C1–C11. [Google Scholar] [CrossRef]
- Ding, Y.-J.; Chen, X.-G.; Chen, Y.-H. Molecular structure and developmental expression of two zebrafish Ankylosis Progressive Homolog (ankh) genes, ankha and ankhb. Russ. J. Dev. Biol. 2013, 44, 307–313. [Google Scholar] [CrossRef]
- Chen, I.-P.; Wang, L.; Jiang, X.; Aguila, H.L.; Reichenberger, E.J. A Phe377del mutation in ANK leads to impaired osteoblastogenesis and osteoclastogenesis in a mouse model for craniometaphyseal dysplasia (CMD). Hum. Mol. Genet. 2011, 20, 948–961. [Google Scholar] [CrossRef]
- Ho, A.M.; Johnson, M.D.; Kingsley, D.M. Role of the mouse ank gene in control of tissue calcification and arthritis. Science 2000, 289, 265–270. [Google Scholar] [CrossRef]
- Gurley, K.A.; Reimer, R.J.; Kingsley, D.M. Biochemical and genetic analysis of ANK in arthritis and bone disease. Am. J. Hum. Genet. 2006, 79, 1017–1029. [Google Scholar] [CrossRef]
- Tonelli, F.; Bek, J.W.; Besio, R.; De Clercq, A.; Leoni, L.; Salmon, P.; Coucke, P.J.; Willaert, A.; Forlino, A. Zebrafish: A Resourceful Vertebrate Model to Investigate Skeletal Disorders. Front. Endocrinol. 2020, 11, 489. [Google Scholar] [CrossRef]
- Vascotto, S.G.; Beckham, Y.; Kelly, G.M. The zebrafish’s swim to fame as an experimental model in biology. Biochem. Cell Biol. 1997, 75, 479–485. [Google Scholar] [CrossRef]
- Carnovali, M.; Banfi, G.; Mariotti, M. Zebrafish Models of Human Skeletal Disorders: Embryo and Adult Swimming Together. BioMed. Res. Int. 2019, 2019, e1253710. [Google Scholar] [CrossRef]
- Le Pabic, P.; Dranow, D.B.; Hoyle, D.J.; Schilling, T.F. Zebrafish endochondral growth zones as they relate to human bone size, shape and disease. Front. Endocrinol. 2022, 13, 1060187. [Google Scholar] [CrossRef]
- Dietrich, K.; Fiedler, I.A.; Kurzyukova, A.; López-Delgado, A.C.; McGowan, L.M.; Geurtzen, K.; Hammond, C.L.; Busse, B.; Knopf, F. Skeletal Biology and Disease Modeling in Zebrafish. J. Bone Miner. Res. 2021, 36, 436–458. [Google Scholar] [CrossRef]
- Bergen, D.J.M.; Kague, E.; Hammond, C.L. Zebrafish as an Emerging Model for Osteoporosis: A Primary Testing Platform for Screening New Osteo-Active Compounds. Front. Endocrinol. 2019, 10, 6. [Google Scholar] [CrossRef] [PubMed]
- White, R.J.; Collins, J.E.; Sealy, I.M.; Wali, N.; Dooley, C.M.; Digby, Z.; Stemple, D.L.; Murphy, D.N.; Billis, K.; Hourlier, T.; et al. A high-resolution mRNA expression time course of embryonic development in zebrafish. eLife 2017, 6, e30860. [Google Scholar] [CrossRef]
- Martin, F.J.; Amode, M.R.; Aneja, A.; Austine-Orimoloye, O.; Azov, A.G.; Barnes, I.; Becker, A.; Bennett, R.; Berry, A.; Bhai, J.; et al. Ensembl 2023. Nucleic Acids Res. 2023, 51, D933–D941. [Google Scholar] [CrossRef]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [PubMed]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef] [PubMed]
- Blum, M.; Chang, H.Y.; Chuguransky, S.; Grego, T.; Kandasaamy, S.; Mitchell, A.; Nuka, G.; Paysan-Lafosse, T.; Qureshi, M.; Raj, S.; et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. 2021, 49, D344–D354. [Google Scholar] [CrossRef]
- Hu, Y.; Xie, S.; Yao, J. Identification of novel reference genes suitable for qRT-PCR normalization with respect to the zebrafish developmental stage. PLoS ONE 2016, 11, e0149277. [Google Scholar] [CrossRef]
- Van Gils, M.; Willaert, A.; De Vilder EY, G.; Coucke, P.J.; Vanakker, O.M. Generation and validation of a complete knockout model of abcc6a in zebrafish. J. Investig. Dermatol. 2018, 138, 2333–2342. [Google Scholar] [CrossRef]
- Knowlton, M.N.; Chan, B.M.C.; Kelly, G.M. The zebrafish band 4.1 member Mir is involved in cell movements associated with gastrulation. Dev. Biol. 2003, 264, 407–429. [Google Scholar] [CrossRef]
- Peat, J.R.; Ortega-Recalde, O.; Kardailsky, O.; Hore, T.A. The elephant shark methylome reveals conservation of epigenetic regulation across jawed vertebrates. F1000Research 2017, 6, 526. [Google Scholar] [CrossRef]
- Kane, D.A.; Kimmel, C.B. The zebrafish midblastula transition. Development 1993, 119, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Qasim, B.A.; Mohammed, A.A.; Balata, A.A.; Arif, S.H.; Musa, L.O. Craniodiaphyseal Dysplasia, a very rare form of bone dysplasia. Oral. Maxillofac. Surg. 2020, 6, 100137. [Google Scholar] [CrossRef]
- Fleming, A.; Sato, M.; Goldsmith, P. High-Throughput In Vivo Screening for Bone Anabolic Compounds with Zebrafish. J. Biomol. Screen. 2005, 10, 823–831. [Google Scholar] [CrossRef]
- Steinke, D.; Hoegg, S.; Brinkmann, H.; Meyer, A. Three rounds (1R/2R/3R) of genome duplications and the evolution of the glycolytic pathway in vertebrates. BMC Biol. 2006, 4, 16. [Google Scholar] [CrossRef] [PubMed]
- Kollitz, E.M.; Hawkins, M.B.; Whitfield, G.K.; Kullman, S.W. Functional Diversification of Vitamin D Receptor Paralogs in Teleost Fish After a Whole Genome Duplication Event. Endocrinology 2014, 155, 4641–4654. [Google Scholar] [CrossRef]
- Debiais-Thibaud, M.; Germon, I.; Laurenti, P.; Casane, D.; Borday-Birraux, V. Low divergence in Dlx gene expression between dentitions of the medaka (Oryzias latipes) versus high level of expression shuffling in osteichtyans. Evol. Dev. 2008, 10, 464–476. [Google Scholar] [CrossRef]
- Policastro, R.A.; Zentner, G.E. Global approaches for profiling transcription initiation. Cell Rep. Methods 2021, 1, 100081. [Google Scholar] [CrossRef]
- Triska, M.; Solovyev, V.; Baranova, A.; Kel, A.; Tatarinova, T.V. Nucleotide patterns aiding in prediction of eukaryotic promoters. PLoS ONE 2017, 12, e0187243. [Google Scholar] [CrossRef]
- Xu, C.; Park, J.-K.; Zhang, J. Evidence that alternative transcriptional initiation is largely nonadaptive. PLoS Biol. 2019, 17, e3000197. [Google Scholar] [CrossRef]
- Eames, B.F.; DeLaurier, A.; Ullmann, B.; Huycke, T.R.; Nichols, J.T.; Dowd, J.; McFadden, M.; Sasaki, M.M.; Kimmel, C.B. FishFace: Interactive atlas of zebrafish craniofacial development at cellular resolution. BMC Dev. Biol. 2013, 13, 23. [Google Scholar] [CrossRef]
- Nakano, Y.; Addison, W.N.; Kaartinen, M.T. ATP-mediated mineralization of MC3T3-E1 osteoblast cultures. Bone 2007, 41, 549–561. [Google Scholar] [CrossRef] [PubMed]
- DiBenedetto, A.J.; Guinto, J.B.; Ebert, T.D.; Bee, K.J.; Schmidt, M.M.; Jackman, T.R. Zebrafish brd2a and brd2bare paralogous members of the bromodomain-ET (BET) family of transcriptional coregulators that show structural and expression divergence. BMC Dev. Biol. 2008, 8, 39. [Google Scholar] [CrossRef]
- Dhillon, S.S.; Torell, F.; Donten, M.; Lundstedt-Enkel, K.; Bennett, K.; Rännar, S.; Trygg, J.; Lundstedt, T. Metabolic profiling of zebrafish embryo development from blastula period to early larval stages. PLoS ONE 2019, 14, e0213661. [Google Scholar] [CrossRef] [PubMed]
- Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Tissue-based map of the human proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef] [PubMed]
- Aksoy, Y.A.; Yang, B.; Chen, W.; Hung, T.; Kuchel, R.P.; Zammit, N.W.; Grey, S.T.; Goldys, E.M.; Deng, W. Spatial and temporal control of CRISPR-Cas9-mediated gene editing delivered via a Light-Triggered Liposome System. ACS Appl. Mater. Interfaces 2020, 12, 52433–52444. [Google Scholar] [CrossRef] [PubMed]
- Kague, E.; Roy, P.; Asselin, G.; Hu, G.; Simonet, J.; Stanley, A.; Albertson, C.; Fisher, S. Osterix/Sp7 limits cranial bone initiation sites and is required for formation of sutures. Dev. Biol. 2016, 413, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Gistelinck, C.; Gioia, R.; Gagliardi, A.; Tonelli, F.; Marchese, L.; Bianchi, L.; Landi, C.; Bini, L.; Huysseune, A.; Witten, P.E.; et al. Zebrafish Collagen Type I: Molecular and biochemical characterization of the major structural protein in bone and skin. Sci. Rep. 2016, 6, 21540. [Google Scholar] [CrossRef]
- Morava, E.; Kühnisch, J.; Drijvers, J.M.; Robben, J.H.; Cremers, C.; van Setten, P.; Branten, A.; Stumpp, S.; de Jong, A.; Voesenek, K.; et al. Autosomal recessive mental retardation, deafness, ankylosis, and mild hypophosphatemia associated with a novel ANKH mutation in a consanguineous family. J. Clin. Endocrinol. Metab. 2011, 96, E189–E198. [Google Scholar] [CrossRef]
- Zou, S.; Kamei, H.; Modi, Z.; Duan, C. Zebrafish IGF Genes: Gene duplication, conservation and divergence, and novel roles in midline and notochord development. PLoS ONE 2009, 4, e7026. [Google Scholar] [CrossRef]
- Weuring, W.J.; Hoekman, J.W.; Braun KP, J.; Koeleman BP, C. Genetic and functional differences between duplicated zebrafish genes for human SCN1A. Cells 2022, 11, 454. [Google Scholar] [CrossRef]
Gene | Forward Primer (5′-3′) | Reverse Primer (5′-3′) |
---|---|---|
ankha | AGAAGCTTGCTTTCCTGTACCTCGCACT | TCGAATTCCAACCACCCATAGGGCATCT |
ankhb | TAGAATTCCTTACATGGGGGTTCACGGG | AAGCTTGGAGCTGAGTTTTCGCCTTG |
lsm12b | AGTTGTCCCAAGCCTATGCAATCAG | AGTTGTCCCAAGCCTATGCAATCAG |
Gene | Forward Primer (5′-3′) | Reverse Primer (5′-3′) |
---|---|---|
ankha | ATATAGCCATCGACTTCGGG | CTTGCCAGCATTTCAACCTT |
ankhb | ACACATTTCCGAGAGCATCC | CGCGAATTGTCACTGGAATAG |
gapdh | GTGGAGTCTACTGGTGTCTTC | GTGCAGGAGGCATTGCTTACA |
Gene | Forward Primer (5′-3′) | Reverse Primer (5′-3′) |
---|---|---|
ankha | AGAAGCTTGCTTTCCTGTACCTCGCAGT | TCGAATTCCAACCACCCATAGGGCATGT |
ankhb | TAGAATTCCTTACATGGGGGTTCACGGG | ACAAGCTTGGAGCTGAGTTTTCGCCTTG |
Promoter Predictions for Zebrafish ankha | |||
---|---|---|---|
Start | End | Score | Promoter Sequence |
29 | 79 | 0.84 | AAATGTTTTATAAAAAAATTCCTAAAAAGTCACTAAAATTTTGTATTTTA |
115 | 165 | 0.91 | ACTTTTTGAGAAAAAAAGACCCACACCTTTTAACAGTCTGGCTCTGACCC |
228 | 278 | 0.87 | ATAAATGGCTTATAACAGTACCCCCAGACATTGTATTATATTGATTTATG |
347 | 397 | 0.81 | TGTCAATTTCTTTAAATAGCCTCCAGTAGAGGGCAGCATATATTTAAAAA |
Promoter Predictions for Zebrafish ankhb | |||
Start | End | Score | Promoter Sequence |
215 | 265 | 0.96 | CATGTGTTTATATAAAAGAAGTTTATGTGATTTATAAACCTTCAGTAACA |
Promoter Predictions for Human ANKH | |||
Start | End | Score | Promoter Sequence |
228 | 278 | 0.82 | GCCAGGGCACCCCGGGGTCTCCAGGCGGCCCACCGCCCTCACCCCCCACC |
374 | 424 | 0.82 | GAGGCGCCAGCCCCACGGCCCGAGCGTGCGCAGCGCCCCCCGCGGCCGCG |
386 | 436 | 0.84 | CCACGGCCCGAGCGTGCGCAGCGCCCCCCGCGGCCGCGCCAAGCGCAGGC |
433 | 483 | 0.86 | GGCGACGGCACAGGAAAGGAGGCCGCGGCGCGCCCGGCCCGGCCCCCTCC |
461 | 511 | 0.87 | CGCGCCCGGCCCGGCCCCCTCCCCAGCCCGCCCCCGGGGCCGCTGGCGGT |
Promoter Predictions for Mouse Ank | |||
Start | End | Score | Promoter Sequence |
430 | 480 | 0.83 | GCCCCCCGCGGCCGAGCCGTGCGCAGCGGAGCGGGGAGGCGGCGCCGGGC |
515 | 565 | 0.83 | CCGCCCGCCCCTGATTTCCTCCGCGCGGCGCGGCGGCGGCGGCGGAGGCG |
Protein | Biological Processes | Molecular Function | Cellular Component |
---|---|---|---|
ANK (Homo sapiens) | Phosphate ion transmembrane transport (GO:0035435) | Inorganic phosphate transmembrane transporter activity (GO:0005315) | Membrane (GO:0016020) |
Ank (Mus Musculus) | Phosphate ion transmembrane transport (GO:0035435) | Inorganic phosphate transmembrane transporter activity (0005315) | Membrane (GO:0016020) |
ankha (Danio rerio) | Phosphate ion transmembrane transport (GO:0035435) | Inorganic phosphate transmembrane transporter activity (GO:0005315) | Membrane (GO:0016020) |
ankhb (Danio rerio) | Phosphate ion transmembrane transport (GO:0035435) | Inorganic phosphate transmembrane transporter activity (GO:0005315) | Membrane (GO:0016020) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wathuliyadde, N.; Willmore, K.E.; Kelly, G.M. Evolution and Spatiotemporal Expression of ankha and ankhb in Zebrafish. J. Dev. Biol. 2024, 12, 23. https://doi.org/10.3390/jdb12030023
Wathuliyadde N, Willmore KE, Kelly GM. Evolution and Spatiotemporal Expression of ankha and ankhb in Zebrafish. Journal of Developmental Biology. 2024; 12(3):23. https://doi.org/10.3390/jdb12030023
Chicago/Turabian StyleWathuliyadde, Nuwanthika, Katherine E. Willmore, and Gregory M. Kelly. 2024. "Evolution and Spatiotemporal Expression of ankha and ankhb in Zebrafish" Journal of Developmental Biology 12, no. 3: 23. https://doi.org/10.3390/jdb12030023
APA StyleWathuliyadde, N., Willmore, K. E., & Kelly, G. M. (2024). Evolution and Spatiotemporal Expression of ankha and ankhb in Zebrafish. Journal of Developmental Biology, 12(3), 23. https://doi.org/10.3390/jdb12030023