Influence of Pre-Harvest Gibberellic Acid and Post-Harvest 1-methyl Cyclopropane Treatments on Phenolic Compounds, Vitamin C and Organic Acid Contents during the Shelf Life of Strawberry Fruits
Abstract
:1. Introduction
2. Results and Discussion
2.1. Organic Acids and Vitamin C
2.2. Phenolic Compounds
3. Materials and Methods
3.1. Plant Material and Trial Pattern
3.2. Determination of Phenolic Compounds
3.3. Determination of Organic Acids
3.4. Determination of Vitamin C
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- TURKSTAT. Turkish Statistical Institute Online Statistical Database: Turkish Statistical Institute. 2019. Available online: https://biruni.tuik.gov.tr (accessed on 10 October 2020).
- FAO. Food and Agriculture Organization of the United Nations. 2019. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 12 December 2019).
- Rahman, M.M.; Moniruzzaman, M.; Ahmad, M.R.; Sarker, B.C.; Alam, M.K. Maturity stages affect the postharvest quality and shelf-life of fruits of strawberry genotypes growing in subtropical regions. J. Saudi Soc. Agric. Sci. 2016, 15, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Hertog, M.G.L.; Hollman, P.C.H.; Van de Putte, B. Content of Potentially Anticarcinogenic Flavonoids of Tea Infusions, Wines, and Fruit Juices. J. Agric. Food Chem. 1993, 41, 1242–1246. [Google Scholar] [CrossRef]
- Eruygur, N.; Koçyiğit, U.M.; Taslimi, P.; Ataş, M.; Tekin, M.; Gülçin, İ. Screening the in vitro antioxidant, antimicrobial, anticholinesterase, antidiabetic activities of endemic Achillea cucullata (Asteraceae) ethanol extract. S. Afr. J. Bot. 2019, 120, 141–145. [Google Scholar] [CrossRef]
- Gulcin, I. Antioxidant properties of resveratrol: A structure–activity insight. Innov. Food Sci. Emerg. Technol. 2010, 11, 210–218. [Google Scholar] [CrossRef]
- Yuan, J.P.; Wang, J.H.; Liu, X. Metabolism of dietary soy isoflavones to equol by human intestinal microflora−implications for health. Mol. Nutr. Food Res. 2007, 51, 765–781. [Google Scholar] [CrossRef]
- Taslimi, P.; Kocyigit, U.M.; Tüzün, B.; Kirici, M. Biological effects and molecular docking studies of Catechin 5-O-gallate: Antioxidant, anticholinergics, antiepileptic and antidiabetic potentials. J. Biomol. Struct. Dyn. 2020, 1–9. [Google Scholar] [CrossRef]
- Derosa, G.; Maffioli, P.; Sahebkar, A. Ellagic acid and its role in chronic diseases. Adv. Exp. Med. Biol. 2016, 928, 473–479. [Google Scholar]
- Zhu, S.; Zhou, J. Effect of nitric oxide on ethylene production in strawberry fruit during storage. Food Chem. 2007, 100, 1517–1522. [Google Scholar] [CrossRef]
- Mastromatteo, M.; Conte, A.; Del Nobile, M.A. Combined used of modified atmosphere packaging and natural compounds for food preservation. Food Eng. Rev. 2010, 2, 28–38. [Google Scholar] [CrossRef]
- Sharma, R.R.; Singh, D.; Singh, R. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists. Rev. Biol. Contr. 2009, 50, 205–221. [Google Scholar] [CrossRef]
- Ayranci, E.; Tunc, S. The effect of edible coatings on water and vitamin C loss of apricots (Armeniaca vulgaris L.) and green peppers (Capsicum annuum L.). Food Chem. 2004, 87, 339–342. [Google Scholar] [CrossRef]
- Olivas, G.L.; Barbosa-Canovas, G.V. Edible coatings for fresh-cut fruits. Crit. Rev. Food Sci. 2005, 45, 657–670. [Google Scholar] [CrossRef] [PubMed]
- Öz, A.T.; Süfer, Ö. Meyve ve sebzelerde hasat sonrası kalite üzerine yenilebilir film ve kaplamaların etkisi. Akad. Gıda 2012, 10, 85–91. [Google Scholar]
- Özkaya, O.; Omur, D.; Scovazzo, G.C.; Volpe, G. Evaluation of quality Parameters of Strawberry Fruits in Modified Atmosphere Packaging during Storage. Afr. J. Biotechnol. 2009, 8, 789–793. [Google Scholar]
- El-Kereamy, A.; Chervin, C.; Roustan, J.P. Exogenous ethylene stimulates the long-term expression of genes related to anthocyanin biosynthesis in grape berries. Physiol. Plant 2003, 119, 175–182. [Google Scholar] [CrossRef]
- Manning, K. Soft Fruit, in Biochemistry of Fruit Ripening; Chapman & Hall: London, UK, 1993; pp. 346–377. [Google Scholar]
- El-Kazzaz, M.K.; Sommer, N.F.; Fortlage, R.J. Effect of different atmospheres on postharvest decay and quality offresh strawberries. Phytopathology 1983, 73, 282–285. [Google Scholar] [CrossRef] [Green Version]
- Sezer, E.; Ayhan, Z. Meyve ve sebzelerde etilen tutucu içeren aktif ambalajlama sistemlerinin uygulanmasi ve raf ömrüne etkisi. Akad. Gida 2017, 15, 182–191. [Google Scholar]
- Tian, M.S.; Prakash, S.; Elgar, H.J.; Young, H.; Burmeister, D.M.; Ross, G.S. Responses of strawberry fruit to 1–MCP and ethylene. Plant Growth Regul. 2000, 32, 83–90. [Google Scholar] [CrossRef]
- Dong, L.; Lurie, S.; Zhou, H. Effect of 1–methylcyclopropene on ripening of Canino apricots and Royal Zee plums. Postharvest Biol. Technol. 2002, 24, 135–145. [Google Scholar] [CrossRef]
- Jiang, Y.; Joyce, D.C.; Terry, L.A. 1-MCP treatment affects strawberry fruit decay. Postharvest Biol. Technol. 2001, 23, 227–232. [Google Scholar] [CrossRef]
- Silva, P.A.; de Abreu, C.M.P.; Queiroz, E.; Corrêa, A.D.; dos Santos, C.D. Storage of strawberries (Fragaria ananassa L.) cv. ‘Oso Grande’, subjected to 1-MCP. Acta Sci. Technol. 2012, 34, 353–358. [Google Scholar] [CrossRef] [Green Version]
- Gundogdu, M.; Berk, S.; Canan, İ.; Tuna Kocoglu, S.; Celık, F.; Taş, A. Determination of the effect of gibberellic acid treatments on the fruit quality of strawberry cv. seascape. Yyu J. Agric. Sci. 2017, 27, 608–612. [Google Scholar]
- Çetin, V. Plant growth regulators in used fruits and vegetables. Gıda ve Yem Bilimi Tek. 2002, 2, 40–50. [Google Scholar]
- Erkoyuncu, T.M.; Yorgancılar, M. Bitki doku kültürü yöntemleri ile sekonder metabolitlerin üretimi. Selçuk Tarım Bilim Derg. 2015, 2, 66–76. [Google Scholar]
- Şahin, M.; Doğan, S. Narda çiçek tomurcuğu alım dönemi, karanlık rejimi ve bitki büyüme düzenleyicilerinin anter kültürü üzerine etkileri. Anadolu 2019, 29, 103–113. [Google Scholar] [CrossRef]
- Wiel, A.; Golde, P.H.M.; Hart, H.C. Blessing of the grape. Eur. J. Case Rep. Intern. Med. 2001, 12, 484–489. [Google Scholar]
- Juríková, T.; Balla, S.; Sochor, J.; Pohanka, M.; Mlcek, J.; Baron, M. Flavonoid Profile of saskatoon berries (Amelanchier alnifolia Nutt.) and their health promoting effects. Molecules 2013, 18, 12571–12586. [Google Scholar]
- Shukitt, H.B.; Carey, A.; Simon, L.; Mark, D.A.; Joseph, J.A. Effect of concord grape juice on cognitive and motor deficits in aging. Nutrition 2006, 22, 295–302. [Google Scholar] [CrossRef]
- Demiral, M.A. Dikey torba kültürü çilek yetiştiriciliğinde uygulanan farklı demir dozlarının verim kalite ve kimyasal bileşim üzerine etkileri. Doktora Tezi, Ege Ünüversitesi Fen Bilimleri Enstitüsü, İzmir, Turkey, 2000. Available online: https://tezarsivi.com/dikey-torba-kulturu-cilek-yetistiriciliginde-uygulanan-farkli-demir-dozlarinin-verim-kalite-ve-kimyasal-bilesim-uzerine-etkileri (accessed on 7 January 2021).
- Lira, B.S.; Rosado, D.; Almeida, J.; de Souza, A.P.; Buckeridge, M.S.; Purgatto, E.; Guyer, L.; Hörtensteiner, S.; Freschi, L.; Rossi, M. Pheophytinase knockdown impacts carbon metabolism and nutraceutical content under normal growth conditions in tomato. Plant Cell Physiol. 2016, 57, 642–653. [Google Scholar] [CrossRef] [Green Version]
- Osorio, S.; Scossa, F.; Fernie, A. Molecular regulation of fruit ripening. Front. Plant Sci. 2013, 4, 198. [Google Scholar] [CrossRef] [Green Version]
- Cordenunsi, B.R.; Genovese, M.I.; Nascimento, J.R.O.; Hassimotto, N.M.A.; Santos, R.J.; Lajolo, F.M. Effects of temperature on the chemical composition and antioxidant activity of three strawberry cultivars. Food Chem. 2005, 91, 113–121. [Google Scholar] [CrossRef]
- Kargı, S.P.; Sarıdaş, M.A. Modern Çilek Yetiştiriciliği. Tarım. Gündem. Derg. 2012, 2, 36–41. [Google Scholar]
- Mignolli, F.; Vidoz, M.L.; Picciarelli, P.; and Mariotti, L. Gibberellins modulate auxin responses during tomato (Solanum lycopersicum L.) fruit development. Physiol. Plant. 2019, 165, 768–779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cosme Silva, G.M.; Silva, W.B.; Medeiros, D.B.; Salvador, A.R.; Cordeiro, M.H.M.; da Silva, N.M.; BortoliniSantana, D.; PoleteMizobutsi, G. The chitosan affects severely the carbon metabolism in mango (Mangifera indica L. cv. palmer) fruit during storage. Food Chem. 2017, 237, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Ríos, J.L.; Giner, R.M.; Marín, M.; Recio, M.C. A pharmacological update of ellagic acid. Planta Med. 2018, 84, 1068–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfei, S.; Turrini, F.; Catena, S.; Zunin, P.; Grilli, M.; Pittaluga, A.M.; Boggia, R. Ellagic acid a multi-target bioactive compound for drug discovery in CNS? A narrative review. Eur. J. Med. Chem. 2019, 183, 111724. [Google Scholar] [CrossRef] [PubMed]
- Landete, J.M. Ellagitannins, ellagic acid and their derived metabolites: A review about source, metabolism, functions and health. Food Res. Int. 2011, 44, 1150–1160. [Google Scholar] [CrossRef]
- Zhang, L.; Dong, M.; Xu, G.; Tian, Y.; Tang, H.; Wang, Y. Metabolomics reveals that dietary ferulic acid and quercetin modulate metabolic homeostasis in rats. J. Agric. Food Chem. 2018, 66, 1723–1731. [Google Scholar] [CrossRef]
- Srinivasan, M.; Sudheer, A.R.; Menon, V.P. Ferulic Acid: Therapeutic potential through its antioxidant property. J. Clin. Biochem. Nutr. 2007, 40, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Zduńska, K.; Dana, A.; Kolodziejczak, A.; Rotsztejn, H. Antioxidant properties of ferulic acid and its possible application. Ski. Pharmacol. Physiol. 2018, 31, 332–336. [Google Scholar] [CrossRef]
- Allende, A.; Marín, A.I.; Buendía, B.; Tomás-Barberán, F.; Gil, M.I. Impact of combined postharvest treatments (UV-C light, gaseous O3, superatmospheric O2 and high CO2) on health promoting compounds and shelf-life of strawberries. Postharvest Biol. Technol. 2007, 46, 201–211. [Google Scholar] [CrossRef]
- Kim, D.O.; Jeong, S.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003, 81, 321–326. [Google Scholar] [CrossRef]
- Orak, H.H. Total antioxidant activities, phenolics, anthocyanins, polyphenoloxidase activities of selected red grape varieties and their correlation. Sci. Hortic. 2007, 111, 235–241. [Google Scholar] [CrossRef]
- Ercisli, S.; Esitken, A. Fruit characteristics of native rose hip (Rosa spp.) selections from the Erzurum province of Turkey. New Zeal. J. Crop Hort. 2004, 32, 51–53. [Google Scholar] [CrossRef] [Green Version]
- Eyduran, S.P.; Ercisli, S.; Akin, M.; Beyhan, Ö.; Geçer, M.K. Organic Acids, sugars, vitamin c, antioxidant capacity, and phenolic compounds in fruits of white (Morus alba L.) and black (Morus nigra L.) mulberry genotypes. J. Appl. Bot. Food Qual. 2015, 88, 134–138. [Google Scholar]
- Colak, A.M.; Okatan, V.; Polat, M.; Guclu, S.F. Different harvest times affect market quality of Lycium barbarum L. berries. Turk. J. Agric. For. 2019, 43, 326–333. [Google Scholar] [CrossRef]
- Ercisli, S.; Orhan, E.; Esitken, A.; Yildirim, N.; Agar, G. Relationships among some cornelian cherry genotypes (Cornus mas L.) based on RAPD analysis. Genet. Resour. Crop Evol. 2008, 55, 613–618. [Google Scholar] [CrossRef]
- Paikra, S.; Panigrahi, H.K.; Chandrakar, S. Effect of NAA and GA3 spray on quality parameters of strawberry (Fragaria x ananassa Duch.) cv. Sabrina under net tunnel. J. Pharm. Phytochem. 2018, 7, 393–395. [Google Scholar]
- Güleş, A.; Türk, B.; Okşar, E.R.; Şe, F. Hasat öncesi farklı konsantrasyonlarda gibberellik asit uygulamalarının ‘Obilnaja’ japon eriği meyvelerinin depolanmasına etkileri. ÇOMÜ Zir Fak. Derg. 2017, 5, 21–26. [Google Scholar]
- Kumar, R.; Saravanan, S.; Parshant, B.; Sharma, R.M. Influence of gibberellic acid and blossom removal on fruit quality of strawberry (Fragaria × ananassa Duch.) cv. belrubi. Vegetos 2013, 26, 107–110. [Google Scholar] [CrossRef]
- Rodriguez-Delgado, M.A.; Malovana, S.; Perez, J.P.; Borges, T.; Garcia-Montelongo, F.J. Separation of phenolic compounds by high-performance liquid chromatography with absorbance and fluorimetric detection. J. Chromatogr. 2001, 912, 249–257. [Google Scholar] [CrossRef]
- Bevilacqua, A.E.; Califano, A.N. Determination of organic acids in dairy products by high performance liquid chromatography. J. Food Sci. 1989, 54, 1076–1079. [Google Scholar] [CrossRef]
- Cemeroglu, B. Food analysis. In Food Technology Society Publication; No. 34; Bizim Büro Basımevi: Ankara, Turkey, 2007; pp. 168–171. [Google Scholar]
- The Comprehensive R Archive Network 2020. Available online: https://cran.r-project.org/ (accessed on 12 October 2020).
Treatments | Shelf-Life (Days) | ||
---|---|---|---|
3 | 5 | ||
Oxalic acid | Control | 535.99 ± 5.00 c * | 521.45 ± 0.50 b |
1-MCP | 598.92 ± 1.00 a | 571.99 ± 1.00 a | |
GA3 (50) | 543.83 ± 2.00 c | 522.20 ± 1.50 b | |
1-MCP + GA3 (50) | 578.27 ± 0.50 b | 520.61 ± 2.00 b | |
GA3 (100) | 510.66 ± 1.00 cd | 470.35 ± 1.50 d | |
1-MCP + GA3 (100) | 526.42 ± 0.50 c | 512.56 ± 1.00 c | |
Citric acid | Control | 1470.39 ± 4.50 b | 1085.42 ± 2.50 b |
1-MCP | 1495.77 ± 0.50 a | 1425.13 ± 0.50 a | |
GA3 (50) | 1346.96 ± 1.50 c | 872.78 ± 1.00 c | |
1-MCP + GA3 (50) | 1390.47 ± 1.00 d | 948.66 ± 1.00 d | |
GA3 (100) | 1204.05 ± 0.50 f | 711.45 ± 1.00 f | |
1-MCP + GA3 (100) | 1291.45 ± 0.50 e | 745.51 ± 1.00 e | |
Tartaric acid | Control | 224.40 ± 3.00 ab | 190.80 ± 0.50 b |
1-MCP | 256.75 ± 1.50 a | 220.50 ± 0.50 a | |
GA3 (50) | 216.54 ± 1.50 b | 92.53 ± 0.40 e | |
1-MCP + GA3 (50) | 220.79 ± 1.50 b | 148.02 ± 0.50 c | |
GA3 (100) | 207.88 ± 1.00 c | 80.48 ± 0.50 f | |
1-MCP + GA3 (100) | 215.10 ± 0.50 bc | 131.47 ± 0.50 d | |
Malic acid | Control | 739.99 ± 5.00 b | 323.90 ± 0.50 d |
1-MCP | 803.77 ± 0.50 a | 553.77 ± 3.00 a | |
GA3 (50) | 660.60 ± 0.50 e | 284.15 ± 1.50 e | |
1-MCP + GA3 (50) | 692.55 ± 1.00 c | 392.31 ± 1.00 c | |
GA3 (100) | 638.04 ± 0.50 f | 254.10 ± 1.00 f | |
1-MCP + GA3 (100) | 673.45 ± 1.00 d | 397.13 ± 1.50 b |
Treatments | Shelf-Life (Days) | ||
---|---|---|---|
3 | 5 | ||
Succinic acid | Control | 646.05 ± 5.00 d * | 345.58 ± 1.00 e |
1-MCP | 667.60 ± 0.50 c | 612.03 ± 1.00 c | |
GA3 (50) | 672.62 ± 0.50 b | 640.91 ± 0.50 a | |
1-MCP + GA3 (50) | 681.91 ± 1.00 a | 620.04 ± 1.00 b | |
GA3 (100) | 572.21 ± 0.50 e | 528.65 ± 0.50 d | |
1-MCP + GA3 (100) | 526.90 ± 1.00 f | 473.82 ± 1.50 f | |
Fumaric acid | Control | 2.59 ± 0.02 f | 1.28 ± 0.14 f |
1-MCP | 6.32 ± 0.30 e | 4.63 ± 0.08 c | |
GA3 (50) | 9.76 ± 0.05 a | 5.17 ± 0.07 a | |
1-MCP + GA3 (50) | 7.42 ± 0.03 d | 3.60 ± 0.06 e | |
GA3 (100) | 9.48 ± 0.03 b | 5.10 ± 0.02 b | |
1-MCP + GA3 (100) | 9.15 ± 0.07 c | 4.58 ± 0.36 d | |
Vitamin C | Control | 27.12 ± 0.50 c | 16.99 ± 0.30 d |
1-MCP | 33.79 ± 0.03 a | 19.93 ± 0.06 a | |
GA3 (50) | 23.48 ± 0.40 e | 16.61 ± 0.03 d | |
1-MCP + GA3 (50) | 30.47 ± 0.06 b | 17.50 ± 0.27 b | |
GA3 (100) | 20.36 ± 0.10 f | 16.57 ± 0.04 d | |
1-MCP + GA3 (100) | 26.88 ± 0.07 d | 16.91 ± 0.08 c |
Treatments | Shelf-Life (Days) | ||
---|---|---|---|
3 | 5 | ||
Gallic Acid | Control | 9.72 ± 0.04 c * | 7.65 ± 0.15 b |
1-MCP | 11.43 ± 0.05 a | 10.05 ± 0.05 a | |
GA3 (50) | 9.53 ± 0.49 c | 6.93 ± 0.49 c | |
1-MCP + GA3 (50) | 11.08 ± 0.05 b | 7.50 ± 0.05 b | |
GA3 (100) | 8.96 ± 0.01 e | 6.72 ± 0.05 d | |
1-MCP + GA3 (100) | 9.03 ± 0.00 d | 7.45 ± 0.04 b | |
Protocatechuic Acid | Control | 0.23 ± 0.02 c | 0.17 ± 0.05 d |
1-MCP | 0.44 ± 0.01 a | 0.39 ± 0.06 a | |
GA3 (50) | 0.21 ± 0.00 d | 0.13 ± 0.01 e | |
1-MCP + GA3 (50) | 0.35 ± 0.03 b | 0.25 ± 0.025 b | |
GA3 (100) | 0.15 ± 0.04 e | 0.10 ± 0.02 f | |
1-MCP + GA3 (100) | 0.24 ± 0.00 c | 0.19 ± 0.00 c | |
Catechin | Control | 7.52 ± 0.23 f | 6.89 ± 0.23 e |
1-MCP | 13.29 ± 0.11 a | 11.72 ± 0.05 a | |
GA3 (50) | 9.01 ± 0.99 e | 8.33 ± 5.00 d | |
1-MCP + GA3 (50) | 11.21 ± 0.05 d | 9.39 ± 0.05 c | |
GA3 (100) | 11.62 ± 0.03 c | 10.28 ± 0.05 b | |
1-MCP + GA3 (100) | 11.81 ± 0.44 b | 9.27 ± 0.01 c | |
Chlorogenic Acid | Control | 4.03 ± 0.48 c | 2.65 ± 0.10 e |
1-MCP | 4.89 ± 0.01 a | 3.17 ± 0.04 c | |
GA3 (50) | 3.96 ± 1.00 d | 3.01 ± 1.00 c | |
1-MCP + GA3 (50) | 4.35 ± 0.05 b | 3.61 ± 0.05 a | |
GA3 (100) | 3.93 ± 0.03 d | 2.91 ± 0.10 d | |
1-MCP + GA3 (100) | 4.02 ± 0.00 c | 3.35 ± 0.03 b |
Treatments | Shelf-Life (Days) | ||
---|---|---|---|
3 | 5 | ||
Caffeic acid | Control | 1.37 ± 0.04 b * | 0.919 ± 0.18 b |
1-MCP | 1.55 ± 0.06 a | 1.275 ± 0.02 a | |
GA3 (50) | 0.81 ± 0.19 d | 0.56 ± 0.34 c | |
1-MCP + GA3 (50) | 0.95 ± 0.03 c | 0.60 ± 0.03 c | |
GA3 (100) | 0.44 ± 0.03 f | 0.41 ± 0.05 d | |
1-MCP + GA3 (100) | 0.72 ± 0.00 e | 0.59 ± 0.03 c | |
Vanillic acid | Control | 1.21 ± 0.10 b | 0.86 ± 0.05 b |
1-MCP | 1.50 ± 0.05 a | 1.28 ± 0.05 a | |
GA3 (50) | 0.91 ± 0.05 c | 0.70 ± 0.20 c | |
1-MCP + GA3 (50) | 0.94 ± 0.01 c | 0.89 ± 0.01 b | |
GA3 (100) | 0.86 ± 0.02 c | 0.64 ± 0.03 d | |
1-MCP + GA3 (100) | 0.88 ± 0.00 c | 0.72 ± 0.05 c | |
Rutin | Control | 1.51 ± 0.24 c | 0.80 ± 0.01 c |
1-MCP | 1.92 ± 0.04 a | 1.29 ± 0.04 a | |
GA3 (50) | 1.80 ± 0.35 b | 0.91 ± 0.19 b | |
1-MCP + GA3 (50) | 1.94 ± 0.01 a | 0.84 ± 0.04 bc | |
GA3 (100) | 1.56 ± 0.03 c | 0.74 ± 0.03 cd | |
1-MCP + GA3 (100) | 1.27 ± 0.00 d | 0.80 ± 0.05 c | |
Ellagic acid | Control | 8.21 ± 0.05 b | 5.27 ± 0.18 bc |
1-MCP | 9.38 ± 0.02 a | 7.80 ± 0.13 a | |
GA3 (50) | 7.53 ± 2.49 c | 5.33 ± 0.49 bc | |
1-MCP + GA3 (50) | 7.76 ± 0.02 c | 5.77 ± 0.05 b | |
GA3 (100) | 5.14 ± 0.05 e | 4.23 ± 0.02 cd | |
1-MCP + GA3 (100) | 6.58 ± 0.03 d | 4.77 ± 0.00 c |
Treatments | Shelf-Life (Days) | ||
---|---|---|---|
3 | 5 | ||
p-qumaric | Control | 7.57 ± 0.31 b * | 5.10± 0.04 c |
1-MCP | 8.62 ± 0.03 a | 6.28 ± 0.05 a | |
GA3 (50) | 6.51 ± 0.50 d | 4.01 ± 1.00 d | |
1-MCP + GA3 (50) | 7.05 ± 0.00 c | 5.84 ± 0.01 b | |
GA3 (100) | 5.75 ± 0.04 f | 3.36 ± 0.03 e | |
1-MCP + GA3 (100) | 6.07 ± 0.00 e | 4.30 ± 0.05 d | |
Ferulic acid | Control | 1.43 ± 0.05 ab | 1.37 ± 0.09 a |
1-MCP | 1.58 ± 0.05 a | 1.41 ± 0.03 a | |
GA3 (50) | 1.51 ± 0.05 a | 1.53 ± 0.50 a | |
1-MCP + GA3 (50) | 1.36 ± 0.01 bc | 1.35 ± 0.03 a | |
GA3 (100) | 1.17 ± 0.06 c | 1.46 ± 0.10 a | |
1-MCP + GA3 (100) | 1.20 ± 0.00 c | 0.95 ± 0.04 b | |
Phloridzin | Control | 0.66 ± 0.44 bc | 0.54 ± 0.04 c |
1-MCP | 0.97 ± 0.04 a | 0.67 ± 0.03 a | |
GA3 (50) | 0.60 ± 0.09 c | 0.58 ± 0.14 c | |
1-MCP + GA3 (50) | 0.77 ± 0.01 b | 0.56 ± 0.00 c | |
GA3 (100) | 0.41 ± 0.02 d | 0.37 ± 0.05 d | |
1-MCP + GA3 (100) | 0.76 ± 0.00 b | 0.63 ± 0.00 b | |
Quercetin | Control | 1.07 ± 0.05 d | 0.76 ± 0.01 c |
1-MCP | 1.41 ± 0.00 a | 1.34 ± 0.00 a | |
GA3 (50) | 1.27 ± 0.05 bc | 0.95 ± 0.01 b | |
1-MCP + GA3 (50) | 1.15 ± 0.04 c | 0.97 ± 0.02 b | |
GA3 (100) | 0.94 ± 0.03 de | 0.89 ± 0.03 b | |
1-MCP + GA3 (100) | 0.96 ± 0.00 de | 0.92 ± 0.00 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taş, A.; Berk, S.K.; Orman, E.; Gundogdu, M.; Ercişli, S.; Karatas, N.; Jurikova, T.; Adamkova, A.; Nedomova, S.; Mlcek, J. Influence of Pre-Harvest Gibberellic Acid and Post-Harvest 1-methyl Cyclopropane Treatments on Phenolic Compounds, Vitamin C and Organic Acid Contents during the Shelf Life of Strawberry Fruits. Plants 2021, 10, 121. https://doi.org/10.3390/plants10010121
Taş A, Berk SK, Orman E, Gundogdu M, Ercişli S, Karatas N, Jurikova T, Adamkova A, Nedomova S, Mlcek J. Influence of Pre-Harvest Gibberellic Acid and Post-Harvest 1-methyl Cyclopropane Treatments on Phenolic Compounds, Vitamin C and Organic Acid Contents during the Shelf Life of Strawberry Fruits. Plants. 2021; 10(1):121. https://doi.org/10.3390/plants10010121
Chicago/Turabian StyleTaş, Akgül, Selma Kuru Berk, Erdal Orman, Muttalip Gundogdu, Sezai Ercişli, Neva Karatas, Tunde Jurikova, Anna Adamkova, Sarka Nedomova, and Jiri Mlcek. 2021. "Influence of Pre-Harvest Gibberellic Acid and Post-Harvest 1-methyl Cyclopropane Treatments on Phenolic Compounds, Vitamin C and Organic Acid Contents during the Shelf Life of Strawberry Fruits" Plants 10, no. 1: 121. https://doi.org/10.3390/plants10010121
APA StyleTaş, A., Berk, S. K., Orman, E., Gundogdu, M., Ercişli, S., Karatas, N., Jurikova, T., Adamkova, A., Nedomova, S., & Mlcek, J. (2021). Influence of Pre-Harvest Gibberellic Acid and Post-Harvest 1-methyl Cyclopropane Treatments on Phenolic Compounds, Vitamin C and Organic Acid Contents during the Shelf Life of Strawberry Fruits. Plants, 10(1), 121. https://doi.org/10.3390/plants10010121