Temporal Variation in Community Composition of Root Associated Endophytic Fungi and Carbon and Nitrogen Stable Isotope Abundance in Two Bletilla Species (Orchidaceae)
Abstract
:1. Introduction
2. Results
2.1. Fungal Community Found in Bletilla Roots
2.2. Temporal Variation in Diversity of Root Endophytic Fungi
2.3. Community Composition of Root Endophytic Fungi among Different Phenological Stages
2.4. Dynamics of Isotopic Abundances over the Bletilla Growth Season
2.5. Enrichment Factors and N Concentrations of Two Bletilla Species at Different Phenological Stages
3. Discussion
3.1. Temporal Variation in Root-Associated Fungal Diversity for Bletilla Species
3.2. Isotopic Abundance Trends over the Growth Season
4. Materials and Methods
4.1. Plant Species
4.2. Study Site
4.3. Sampling
4.4. Identification of Root Endophytic Fungi
4.5. Analysis of Stable Isotope Abundance and N Concentration
4.6. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chase, M.W.; Cameron, K.M.; Freudenstein, J.V.; Pridgeon, A.M.; Salazar, G.; van den Berg, C.; Schuiteman, A. An updated classification of Orchidaceae. Bot. J. Linn. Soc. 2015, 177, 151–174. [Google Scholar] [CrossRef] [Green Version]
- Christenhusz, M.J.M.; Byng, J.W. The number of known plants species in the world and its annual increase. Phytotaxa 2016, 261, 201–217. [Google Scholar] [CrossRef] [Green Version]
- McCormick, M.K.; Whigham, D.F.; O’Neill, J. Mycorrhizal diversity in photosynthetic terrestrial orchids. New Phytol. 2004, 163, 425–438. [Google Scholar] [CrossRef]
- Roberts, D.; Dixon, K. Orchids. Curr. Biol. 2008, 18, 325–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zettler, L.W.; Sharma, J.; Rasmussen, F. Mycorrhizal diversity. In Orchid Conservation; Dixon, K., Cribb, P., Kell, S., Barrett, R., Eds.; Natural History Publications: Kota Kinabalu, Sabah, Malaysia, 2004; pp. 185–203. [Google Scholar]
- Jin, W.T.; Xiang, X.G.; Jin, X.H. Generic delimitation of Orchidaceae from China: Current situation and perspective. Biodivers. Sci. 2015, 23, 237–242. (In Chinese) [Google Scholar] [CrossRef]
- Bailarote, B.C.; Lievens, B.; Jacquemyn, H. Does mycorrhizal specificity affect orchid decline and rarity? Am. J. Bot. 2012, 99, 1655–1665. [Google Scholar] [CrossRef]
- Waterman, R.J.; Bidartondo, M.I. Deception above, deception below: Linking pollination and mycorrhizal biology of orchids. J. Exp. Bot. 2008, 59, 1085–1096. [Google Scholar] [CrossRef]
- Swarts, N.D.; Dixon, K.W. Terrestrial orchid conservation in the age of extinction. Ann. Bot. 2009, 104, 543–556. [Google Scholar] [CrossRef] [Green Version]
- Herrera, H.; Valadares, R.; Oliveira, G.; Fuentes, A.; Almonacis, L.; Bashan, Y.; Arriagada, C. Adaptation and tolerance mechanisms developed by mycorrhizal Bipinnula fimbriata plantlets (Orchidaceae) in a heavy metal-polluted ecosystem. Mycorrhiza 2018, 28, 651–663. [Google Scholar] [CrossRef]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3rd ed.; Academic Press: New York, NY, USA, 2008. [Google Scholar]
- Schiebold, J.M.I.; Bidartondo, M.I.; Karasch, P.; Gravendeel, B.; Gebauer, G. You are what you get from your fungi: Nitrogen stable isotope patterns in Epipactis species. Ann. Bot. 2017, 119, 1085–1095. [Google Scholar] [CrossRef] [Green Version]
- Stockel, M.; Tesitelova, T.; Jersakova, J.; Bidartondo, M.I.; Gebauer, G. Carbon and nitrogen gain during the growth of orchid seedlings in nature. New Phytol. 2014, 202, 606–615. [Google Scholar] [CrossRef] [PubMed]
- Schiebold, J.M.I.; Bidartondo, M.I.; Lenhard, F.; Makiola, A.; Gebauer, G. Exploiting mycorrhizas in broad daylight: Partial mycoheterotrophy is a common nutritional strategy in meadow orchids. J. Ecol. 2018, 106, 168–178. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.S.; Chen, J.; Li, S.C.; Zeng, X.; Meng, Z.X.; Guo, S.X. Comparative transcriptome analysis of genes involved in GA-GID1-DELLA regulatory module in symbiotic and asymbiotic seed germination of Anoectochilus roxburghii (Wall.) Lindl. (Orchidaceae). Int. J. Mol. Sci. 2015, 16, 30190–30203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonneau, C.; Jersakova, J.; de Tredern, E.; Till-Bottraud, I.; Saarinen, K.; Sauve, M.; Roy, M.; Hajek, T.; Selosse, M.A. Photosynthesis in perennial mixotrophic Epipactis spp. (Orchidaceae) contributes more to shoot and fruit biomass than to hypogeous survival. J. Ecol. 2014, 102, 1183–1194. [Google Scholar] [CrossRef]
- Liebel, H.T.; Bidartondo, M.I.; Gebauer, G. Are carbon and nitrogen exchange between fungi and the orchid Goodyera repens affected by irradiance? Ann. Bot. 2015, 115, 251–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burke, R.M.; Cairney, J.W.G. Carbohydrate oxidases in ericoid and ectomycorrhizal fungi: A possible source of Fenton radicals during the degradation of lignocelluloses. New Photol. 1998, 139, 637–645. [Google Scholar] [CrossRef]
- Slezack, S.; Dumas-Gaudot, E.; Rosendahl, S.; Kjoller, R. Endoproteolytic activities in pea roots inoculated with the arbuscular mycorrhizal fungus Glomus mosseae and/or Aphanomyces euteiches in relation to bioprotection. New Photol. 1999, 142, 517–529. [Google Scholar] [CrossRef]
- McCormick, M.K.; Taylor, D.L.; Juhaszova, K.; Burnett, J.R.; Whigham, D.F.; Oneill, J.P. Limitations on orchid recruitment: Not a simple picture. Mol. Ecol. 2012, 21, 1511–1523. [Google Scholar] [CrossRef]
- Hynson, N.A.; Madsen, T.P.; Selosse, M.A.; Adam, I.K.U.; Ogura-Tsujita, Y.; Roy, M.; Gebauer, G. The physiological ecology of mycoheterotrophy. In Mycoheterotrophy. The Biology of Plants Living on Fungi; Merckx, V.S.F.T., Ed.; Springer: New York, NY, USA, 2013; pp. 297–342. [Google Scholar]
- Van der Heijden, M.G.A.; Bardgett, R.D.; van Straalen, N.M. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 2008, 11, 296–310. [Google Scholar] [CrossRef]
- Gebauer, G.; Meyer, M. 15N and 13C natural abundance of autotrophic and mycoheterotrophic orchids provides insight into nitrogen and carbon gain from fungal association. New Phytol. 2003, 160, 209–223. [Google Scholar] [CrossRef]
- Dawson, T.E.; Mambelli, S.; Plamboeck, A.H.; Templer, P.H.; Tu, K.P. Stable isotopes in plant ecology. Annu. Rev. Ecol. Syst. 2002, 33, 507–559. [Google Scholar] [CrossRef]
- Ercole, E.; Adamo, M.; Rodda, M.; Gebauer, G.; Girlanda, M.; Perotto, S. Temporal variation in mycorrhizal diversity and carbon and nitrogen stable isotope abundance in the wintergreen meadow orchid Anacamptis morio. New Phytol. 2015, 205, 1308–1319. [Google Scholar] [CrossRef] [PubMed]
- Gebauer, G.; Dietrich, P. Nitrogen isotope ratios in different compartments of a mixed stand of spruce, larch and beech trees and of understory vegetation including fungi. Isot. Isot. Environ. Health Stud. 1993, 29, 35–44. [Google Scholar] [CrossRef]
- Gleixner, G.; Danier, H.J.; Werner, R.A.; Schmidt, H.L. Correlations between the 13C content of primary and secondary plant products in different cell compartments and that in decomposing basidiomycetes. Plant Physiol. 1993, 102, 1287–1290. [Google Scholar] [CrossRef] [Green Version]
- Taylor, D.L.; Bruns, T.D.; Szaro, T.M.; Hodges, S.A. Divergence in mycorrhizal specialization within Hexalectris spicata (Orchidaceae), a nonphotosynthetic desert orchid. Am. J. Bot. 2003, 90, 1168–1179. [Google Scholar] [CrossRef] [Green Version]
- Roy, M.; Watthana, S.; Richard, F.; Vessabutr, S.; Selosse, M.A. Mycoheterotrophic orchids from Thailand tropical dipterocarpacean forests associate with a broad diversity of ectomycorrhizal fungi. BMC Biol. 2009, 7, 51. [Google Scholar] [CrossRef] [Green Version]
- Yagame, T.; Orihara, T.; Selosse, M.; Yamato, M.; Iwase, K. Mixotrophy of Platanthera minor, an orchid associated with ectomycorrhiza-forming Ceratobasidiaceae fungi. New Phytol. 2012, 193, 178–187. [Google Scholar] [CrossRef]
- Martos, F.; Dulormne, M.; Pailler, T.; Bonfante, P.; Faccio, A.; Fournel, J.; Dubois, M.P.; Selosse, M.A. Independent recruitment of saprotrophic fungi as mycorrhizal partners by tropical achlorophyllous orchids. New Phytol. 2009, 184, 668–681. [Google Scholar] [CrossRef]
- Ogura-Tsujita, Y.; Gebauer, G.; Hashimoto, T.; Umata, H.; Yukawa, T. Evidence for novel and specialised mycorrhizal parasitism: The orchid Gastrodia confusa gains carbon from saprotrophic Mycena. Proc. R. Soc. Lond. B Biol. Sci. 2009, 276, 761–767. [Google Scholar]
- Girlanda, M.; Segreto, R.; Cafasso, D.; Liebel, H.T.; Rodda, M.; Ercole, E.; Salvatore, C.; Gebauer, G.; Perotto, S. Photosynthetic Mediterranean meadow orchids feature partial mycoheterotrophy and specific mycorrhizal associations. Am. J. Bot. 2011, 98, 1148–1163. [Google Scholar] [CrossRef] [Green Version]
- Liebel, H.T.; Bidartondo, M.I.; Preiss, K.; Segreto, R.; Stockel, M.; Rodda, M.; Gebauer, G. C and N stable isotope signatures reveal constraints to nutritional modes in orchids from the Mediterranean and macaronesia. Am. J. Bot. 2010, 97, 903–912. [Google Scholar] [CrossRef]
- Phillips, R.D.; Barrett, M.D.; Dixon, K.W.; Hopper, S.D. Do mycorrhizal symbioses cause rarity in orchids? J. Ecol. 2011, 99, 858–869. [Google Scholar] [CrossRef]
- Ogura-Tsujita, Y.; Gebauer, G.; Xu, H.; Fukasawa, Y.; Umata, H.; Tetsuka, K.; Kubota, M.; Schweiger, J.M.I.; Yamashita, S.; Maekawa, N. The giant mycoheterotrophic orchid Erythrorchis altissima is associated mainly with a divergent set of wood-decaying fungi. Mol. Ecol. 2018, 27, 1324–1337. [Google Scholar] [CrossRef] [PubMed]
- Peterson, R.L.; Uetake, Y.; Bonfante, P.; Faccio, A. The interface between fungal hyphae and orchid protocorm cells. Can. J. Bot. 1996, 74, 1861–1870. [Google Scholar] [CrossRef]
- Koide, R.T.; Durland, L.; Shumway, D.L.; Xu, B.; Sharda, J.N. On temporal partitioning of a community of ectomycorrhizal fungi. New Phytol. 2007, 174, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Jumpponen, A. Analysis of ribosomal RNA indicates seasonal fungal community dynamics in Andropogon gerardii roots. Mycorrhiza 2011, 21, 453–464. [Google Scholar] [CrossRef]
- Hou, T.W.; Jin, H.; Liu, H.X.; An, D.J.; Luo, Y.B. The variations of mycorrhizal fungi diversity among different growing periods of the dominant orchids from two habitats in the Huanglong valley, Sichuan. Acta Ecol. Sin. 2010, 30, 3424–3432. (In Chinese) [Google Scholar]
- Zhang, X.M.; Johnston, E.R.; Li, L.H.; Konstantinidis, K.T.; Han, X.G. Experimental warming reveals positive feedbacks to climate change in the Eurasian Steppe. ISME J. 2017, 11, 885–895. [Google Scholar] [CrossRef] [Green Version]
- Tedersoo, L.; Bahram, M.; Toots, M.; Diedhiou, A.G.; Henkel, T.W.; Kjoller, R.; Morris, M.H.; Nara, K.; Nouhra, E.; Peay, K.G.; et al. Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. Mol. Ecol. 2012, 21, 4160–4170. [Google Scholar] [CrossRef]
- Han, J.Y.; Xiao, H.F.; Gao, J.Y. Seasonal dynamics of mycorrhizal fungi in Paphiopedilum spicerianum (Rchb. f) Pfitzer-A critically endangered orchid from China. Glob. Ecol. Conserv. 2016, 6, 327–338. [Google Scholar] [CrossRef]
- Lendenmann, M.; Thonar, C.; Barnard, R.L.; Salmon, Y.; Werner, R.A.; Frossard, E.; Jansa, J. Symbiont identity matters: Carbon and phosphorus fluxes between Medicago truncatula and different arbuscular mycorrhizal fungi. Mycorrhiza 2011, 21, 689–702. [Google Scholar] [CrossRef] [Green Version]
- Bellino, A.; Alfani, A.; Selosse, M.A.; Guerrieri, R.; Borghetti, M.; Baldantoni, D. Nutritional regulation in mixotrophic plants: New insights from Limodorum abortivum. Oecologia 2014, 175, 875–885. [Google Scholar] [CrossRef]
- Rasmussen, H.M.; Whigham, D.F. Phenology of roots and mycorrhiza in orchid species differing in phototrophic strategy. New Phytol. 2002, 154, 797–807. [Google Scholar] [CrossRef] [Green Version]
- Bruns, T.D.; Bidartondo, M.I.; Taylor, D.L. Host specificity in ectomycorrhizal communities: What do the exceptions tell us? Integr. Comp. Biol. 2002, 42, 352–359. [Google Scholar] [CrossRef] [Green Version]
- Hynson, N.A.; Preiss, K.; Gebauer, G. Is it better to give than receive? A stable isotope perspective to orchid–fungal carbon transport in the green orchid species Goodyera repens and G. oblongifolia. New Phytol. 2009, 182, 8–11. [Google Scholar] [CrossRef]
- Mujica, M.I.; Saez, N.; Cisternas, M.; Manzano, M.; Armesto, J.J.; Perez, F. Relationship between soil nutrients and mycorrhizal associations of two Bipinnula species (Orchidaceae) from central Chile. Ann. Bot. 2016, 118, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, Y.; Ogura-Tsujita, Y.; Ito, K.; Suetsugu, K.; Yokoyama, J.; Yamazaki, J.; Yukawa, T.; Maki, M. The tiny-leaved orchid Cephalanthera subaphylla obtains most of its carbon via mycoheterotrophy. J. Plant Res. 2016, 129, 1013–1020. [Google Scholar] [CrossRef]
- Selosse, M.A.; Faccio, A.; Scappaticci, G.; Bonfante, P. Chlorophyllous and achlorophyllous specimens of Epipactis microphylla (Neottieae, Orchidaceae) are associated with ectomycorrhizal septomycetes, including truffles. Microb. Ecol. 2004, 47, 416–426. [Google Scholar] [CrossRef]
- Cameron, D.D.; Johnson, I.; Read, D.J.; Leake, J.R. Giving and receiving: Measuring the carbon cost of mycorrhizas in the green orchid, Goodyera repens. New Phytol. 2008, 180, 176–184. [Google Scholar] [CrossRef]
- Hynson, N.A.; Bruns, T.D. Evidence of a myco-heterotroph in the plant family Ericaceae that lacks mycorrhizal specificity. Proc. R. Soc. Lond. B 2009, 276, 4053–4059. [Google Scholar] [CrossRef] [Green Version]
- Andersson, S. Floral costs in Nigella sativa (Ranunculaceae): Compensatory responses to perianth removal. Am. J. Bot. 2005, 92, 279–283. [Google Scholar] [CrossRef]
- Flora of China Editorial Committee. Flora of China; Science press: Beijing, China, 1999; p. 46. [Google Scholar]
- Qian, C.D.; Jiang, F.S.; Yu, H.S.; Fu, Y.H.; Cheng, D.Q.; Gan, L.S.; Ding, Z.S. Antibacterial biphenanthrenes from the fibrous roots of Bletilla striata. J. Nat. Prod. 2015, 78, 939–943. [Google Scholar] [CrossRef]
- Bidartondo, M.I.; Burghardt, B.; Gebauer, G.; Bruns, T.D.; Read, D.J. Changing partners in the dark: Isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc. R. Soc. B Biol. Sci. 2004, 271, 1799–1806. [Google Scholar] [CrossRef] [Green Version]
- Gebauer, G.; Schulze, E.D. Carbon and nitrogen isotope ratios in different compartments of a healthy and a declining Picea abies forest in the Fichtelgebirge, NE Bavaria. Oecologia 1991, 87, 198–207. [Google Scholar] [CrossRef]
δ13C (‰) | δ15N (‰) | |||||||
---|---|---|---|---|---|---|---|---|
Florescence | Fruiting | Emergence | Relaxation | Florescence | Fruiting | Emergence | Relaxation | |
B. striata | −26.02 ± 0.12 aA | −27.22 ± 0.2 aA | −27.1 ± 0.26 aA | −27.29 ± 0.52 aA | 1.46 ± 0.26 aA | −0.63 ± 0.13 bB | 1.51 ± 0.18 aA | 1.15 ± 0.25 aA |
B. ochracea | −27.5 ± 0.18 bAB | −28.9 ± 0.18 bB | −26.53 ± 0.24 aA | −26.93 ± 0.12 aA | 1.66 ± 0.25 aA | −0.48 ± 0.42 bB | 1.76 ± 0.13 aA | 1.83 ± 0.25 aA |
ref | −31.4 ± 0.22 cC | −30.17 ± 0.24 cA | −30.19 ± 0.20 bAB | −31.18 ± 0.27 bBC | 0.33 ± 0.25 bC | 3.18 ± 0.32 aA | 1.88 ± 0.52 aB | 2.25 ± 0.47 aAB |
Season | Phenological Stage | Species | Sampling Dates | Leaf Samples (Bletilla Individuals) | Reference Plant Species |
---|---|---|---|---|---|
Late spring | Flourishing with eighty percent flowers bloom. | B. striata | 04-May-2018 | 5 | Erigeron annuus (L.) Pers., Bischofia javanica Bl., Morus alba L., Broussonetia papyrifera (Linn.) LHer. ex Vent., Conyza canadensis (L.) Cronq. |
B. ochracea | 14-May-2018 | 5 | |||
Summer | Fruiting with capsules mature but closed. | B. striata | 27-Aug-2018 | 5 | Cirsium setosum (Willd.) MB., Celtis sinensis Pers., Metaplexis japonica (Thunb.) Makino, Morus alba L. |
B. ochracea | 27-Aug-2018 | 5 | |||
Winter | Plant dormancy. Leaves and floral stem have been dried out. | B. striata | 18-Dec-2018 | 0 | NA |
B. ochracea | 18-Dec-2018 | 0 | |||
Early spring | Buds emergence with leaves stacked together, and the tuber produces some roots. | B. striata | 13-Mar-2019 | 3 | Cirsium setosum, Sonchus oleraceus L., Conyza canadensis |
B. ochracea | 25-Mar-2019 | 3 | |||
Middle spring | Shoots developed with leaves expanded, and floral stems are produced. | B. striata | 02-Apr-2019 | 3 | Sonchus oleraceus, Conyza canadensis, Solanum nigrum L. |
B. ochracea | 17-Apr-2019 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, X.; Diao, H.; Ni, Z.; Shao, L.; Jiang, K.; Hu, C.; Huang, Q.; Huang, W. Temporal Variation in Community Composition of Root Associated Endophytic Fungi and Carbon and Nitrogen Stable Isotope Abundance in Two Bletilla Species (Orchidaceae). Plants 2021, 10, 18. https://doi.org/10.3390/plants10010018
Zeng X, Diao H, Ni Z, Shao L, Jiang K, Hu C, Huang Q, Huang W. Temporal Variation in Community Composition of Root Associated Endophytic Fungi and Carbon and Nitrogen Stable Isotope Abundance in Two Bletilla Species (Orchidaceae). Plants. 2021; 10(1):18. https://doi.org/10.3390/plants10010018
Chicago/Turabian StyleZeng, Xinhua, Haixin Diao, Ziyi Ni, Li Shao, Kai Jiang, Chao Hu, Qingjun Huang, and Weichang Huang. 2021. "Temporal Variation in Community Composition of Root Associated Endophytic Fungi and Carbon and Nitrogen Stable Isotope Abundance in Two Bletilla Species (Orchidaceae)" Plants 10, no. 1: 18. https://doi.org/10.3390/plants10010018
APA StyleZeng, X., Diao, H., Ni, Z., Shao, L., Jiang, K., Hu, C., Huang, Q., & Huang, W. (2021). Temporal Variation in Community Composition of Root Associated Endophytic Fungi and Carbon and Nitrogen Stable Isotope Abundance in Two Bletilla Species (Orchidaceae). Plants, 10(1), 18. https://doi.org/10.3390/plants10010018