Short-Time Impact of Soil Amendments with Medicago Plant Materials on Soil Nematofauna
Abstract
:1. Introduction
2. Results
2.1. Nematode Abundance and Biomass
2.2. Nematode Trophic Groups
2.3. Nematode Genera
2.4. Soil Food Web Indices
3. Discussion
4. Materials and Methods
4.1. Experimental Design
4.2. Nematode Extraction and Identification
4.3. Nematode Identification and Classification
4.4. Ecological and Functional Indices
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nicol, J.M.; Turner, S.J.; Coyne, D.L.; Nijs, L.; Hockland, S.; Maafi, Z.T. Current nematode threats to world agriculture. In Genomics and Molecular Genetics of Plant-Nematode Interactions; Jones, J., Gheysen, G., Fenoll, C., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 21–43. [Google Scholar]
- Möhring, N.; Dalhaus, T.; Enjolras, G.; Finger, R. Crop insurance and pesticide use in European agriculture. Agric. Syst. 2020, 184, 102902. [Google Scholar] [CrossRef]
- Akhtar, M.; Malik, A. Roles of organic soil amendments and soil organisms in the biological control of plant-parasitic nematodes: A review. Biores. Technol. 2000, 74, 35–47. [Google Scholar] [CrossRef]
- Renčo, M. Organic amendments of soil as useful tools of plant parasitic nematodes control. Helminthologia 2013, 50, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Bailey, K.L.; Lazarovits, G. Suppressing soil-borne diseases with residue management and organic amendments. Soil Till. Res. 2003, 72, 169–180. [Google Scholar] [CrossRef]
- Oka, Y. Mechanisms of nematode suppression by organic soil amendments-a review. Appl. Soil Ecol. 2010, 44, 101–115. [Google Scholar] [CrossRef]
- Kimpinski, J.; Arsenault, W.J.; Gallant, C.E.; Sanderson, J.B. The effect of marigolds (Tagetes spp.) and other cover crops on Pratylenchus penetrans and on following potato crops. J. Nematol. 2000, 32, 531–536. [Google Scholar]
- Aballay, E.; Sepúlveda, R.; Insunza, V. Evaluation of five nematode-antagonistic plants used as green manure to control Xiphinema index Thorne et Allen on Vitis vinifera L. Nematropica 2004, 34, 45–52. [Google Scholar]
- Tsay, T.T.; Wu, S.T.; Lin, Y.Y. Evaluation of Asteraceae plants for control of Meloidogyne incognita. J. Nematol. 2004, 36, 36–41. [Google Scholar]
- Wang, K.H.; McSorley, R.; Gallaher, R.N. Effect of Crotalaria juncea amendment on squash infected with Meloidogyne incognita. J. Nematol. 2004, 36, 290–296. [Google Scholar]
- Avato, P.; D’Addabbo, T.; Leonetti, P.; Argentieri, M.P. Nematicidal potential of Brassicaceae. Phytochem. Rev. 2013, 12, 791–802. [Google Scholar] [CrossRef]
- Valdes, Y.; Viaene, N.; Moens, M. Effects of yellow mustard amendments on the soil nematode community in a potato field with focus on Globodera rostochiensis. Appl. Soil Ecol. 2012, 59, 39–47. [Google Scholar] [CrossRef]
- Grabau, Z.J.; Maung, Z.T.Z.; Noyes, D.C.; Baas, D.G.; Werling, B.P.; Brainard, D.C.; Melakeberhan, H. Effects of cover crops on Pratylenchus penetrans and the nematode community in carrot production. J. Nematol. 2017, 49, 114–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Addabbo, T.; Avato, P.; Tava, A. Nematicidal potential of materials from Medicago spp. Eur. J. Plant Pathol. 2009, 125, 39–49. [Google Scholar] [CrossRef]
- D’Addabbo, T.; Radicci, V.; Avato, P.; Tava, A. Use of pelleted Medicago sativa meal for the control of root-knot and cyst nematodes. Acta Hortic. 2010, 883, 303–308. [Google Scholar]
- D’Addabbo, T.; Carbonara, T.; Leonetti, P.; Radicci, V.; Tava, A.; Avato, P. Control of plant parasitic nematodes with active saponins and biomass from Medicago sativa. Phytochem. Rev. 2011, 10, 503–519. [Google Scholar] [CrossRef]
- D’Addabbo, T.; Argentieri, M.P.; Żuchowski, J.; Biazzi, E.; Tava, A.; Oleszek, W.; Avato, P. Activity of saponins from Medicago species against phytoparasitic nematodes. Plants 2020, 9, 443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argentieri, M.P.; D’Addabbo, T.; Tava, A.; Agostinelli, A.; Jurzysta, M.; Avato, P. Evaluation of nematicidal properties of saponins from Medicago spp. Eur. J. Plant Pathol. 2008, 120, 189–197. [Google Scholar] [CrossRef]
- Rodriguez-Kabana, R. Organic and inorganic nitrogen amendments to soil as nematode suppressants. J. Nematol. 1986, 18, 129–134. [Google Scholar]
- Janzen, H.H.; McGinn, S.M. Volatile loss of nitrogen during decomposition of legume green manure. Soil Biol. Biochem. 1991, 23, 291–297. [Google Scholar] [CrossRef]
- Yeates, G.W.; Bongers, T.D.; De Goede, R.G.M.; Freckman, D.W.; Georgieva, S.S. Feeding habits in soil nematode families and genera-an outline for soil ecologists. J. Nematol. 1993, 25, 315–331. [Google Scholar]
- Ekschmitt, K.; Bakonyi, G.; Bongers, M.; Bongers, T.; Boström, S.; Dogan, H.; Harrison, A.; Kallimanis, A.; Nagy, P.; O’Donnell, A.G.; et al. Wolters V Effects of the nematofauna on microbial energy and matter transformation rates in European grassland soils. Plant Soil 1999, 212, 45–61. [Google Scholar] [CrossRef]
- Neher, D.A. Role of nematodes in soil health and their use as indicators. J. Nematol. 2001, 33, 161–168. [Google Scholar] [PubMed]
- Ferris, H.; Bongers, T.; de Goede, R.G.M. A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. Appl. Soil Ecol. 2001, 18, 13–29. [Google Scholar] [CrossRef]
- Briar, S.S.; Grewal, P.S.; Somasekhar, N.; Stinner, D.; Miller, S.A. Soil nematode community, organic matter, microbial biomass and nitrogen dynamics in field plots transitioning from conventional to organic management. Appl. Soil Ecol. 2007, 37, 256–266. [Google Scholar] [CrossRef]
- Cheng, Z.; Grewal, P.S.; Stinner, B.R.; Hurto, K.A.; Hamza, H.B. Effects of long-term turfgrass management practices on soil nematode community and nutrient pools. Appl. Soil Ecol. 2008, 38, 174–184. [Google Scholar] [CrossRef]
- Neher, D.A. Ecology of plant and free-living nematodes in natural and agricultural soil. Ann. Rev. Phytopathol. 2010, 48, 371–394. [Google Scholar] [CrossRef] [Green Version]
- Bongers, T.; Bongers, M. Functional diversity of nematodes. Appl. Soil Ecol. 1998, 10, 239–251. [Google Scholar] [CrossRef]
- Bongers, T.; Ferris, H. Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol. Evol. 1999, 14, 224–228. [Google Scholar] [CrossRef]
- Ferris, H.; Matute, M.M. Structural and functional succession in the nematode fauna of a soil food web. Appl. Soil Ecol. 2003, 23, 93–110. [Google Scholar] [CrossRef]
- Bongers, T. The maturity index: An ecological measure of environmental dis-turbance based on nematode species composition. Oecologia 1990, 83, 14–19. [Google Scholar] [CrossRef]
- Ferris, H. Form and function: Metabolic footprints of nematodes in the soil food web. Eur. J. Soil Biol. 2010, 46, 97–104. [Google Scholar] [CrossRef]
- Urzelai, A.; Hernández, A.J.; Pastor, J. Biotic indices based on soil nematode communities for assessing soil quality in terrestrial ecosystems. Sci. Tot. Envir. 2000, 247, 253–261. [Google Scholar] [CrossRef] [Green Version]
- Mulder, C.; Schouten, A.J.; Hund-Rinke, K.; Breure, A.M. The use of nematodes in ecological soil classification and assessment concepts. Ecotoxicol. Environ. Saf. 2005, 62, 278–289. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Moreno, S.; Nicola, N.L.; Ferris, H.; Zalom, F.G. Effects of agricultural management on nematode–mite assemblages: Soil food web indices as predictors of mite community composition. Appl. Soil Ecol. 2009, 41, 107–117. [Google Scholar] [CrossRef]
- Bulluck, L.R., III; Barker, K.R.; Ristaino, J.B. Influences of organic and synthetic soil fertility amendments on nematode trophic groups and community dynamics under tomatoes. Appl. Soil Ecol. 2002, 21, 233–250. [Google Scholar] [CrossRef]
- McSorley, R.; Frederick, J.J. Nematode population fluctuations during decomposition of specific organic amendments. J. Nematol. 1999, 31, 37–44. [Google Scholar]
- Gruver, L.S.; Weil, R.R.; Zasada, I.A.; Sardanelli, S.; Momen, B. Brassicaceous and rye cover crops altered free-living soil nematode community composition. Appl. Soil Ecol. 2010, 45, 1–12. [Google Scholar] [CrossRef]
- Chen, J.; Ferris, H. The effects of nematode grazing on nitrogen mineralization during fungal decomposition of organic matter. Soil Biol. Biochem. 1999, 31, 1265–1279. [Google Scholar] [CrossRef]
- Renčo, M.; Sasanelli, N.; D’Addabbo, T.; Papajova, I. Soil nematode community changes associated with compost amendments. Nematology 2010, 12, 681–692. [Google Scholar] [CrossRef]
- Hu, C.; Qi, Y. Abundance and diversity of soil nematodes as influenced by different types of organic manure. Helminthologia 2010, 47, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Nahar, M.S.; Grewal, P.S.; Miller, S.A.; Stinner, D.; Stinner, B.R.; Kleinhenz, M.D.; Wszelakia, A.; Doohan, D. Differential effects of raw and composted manure on nematode community, and its indicative value for soil microbial, physical and chemical properties. Appl. Soil Ecol. 2006, 34, 140–151. [Google Scholar] [CrossRef]
- Tabarant, P.; Villenave, C.; Risède, J.M.; Roger-Estrade, J.; Dorel, M. Effects of organic amendments on plant-parasitic nematode populations, root damage, and banana plant growth. Biol. Fertil. Soils 2011, 47, 341–347. [Google Scholar] [CrossRef]
- Treonis, A.M.; Austin, E.E.; Buyer, J.S.; Maul, J.E.; Spicer, L.; Zasada, I.A. Effects of organic amendment and tillage on soil microorganisms and microfauna. Appl. Soil Ecol. 2010, 46, 103–110. [Google Scholar] [CrossRef]
- McSorley, R.; Gallaher, R.N. Effect of yard waste compost on nematode densities and maize yield. J. Nematol. 1996, 28, 655–660. [Google Scholar] [PubMed]
- Garcıa-Alvarez, A.; Arias, M.; Díez-Rojo, M.A.; Bello, A. Effect of agricultural management on soil nematode trophic structure in a Mediterranean cereal system. Appl. Soil Ecol. 2004, 27, 197–210. [Google Scholar] [CrossRef]
- Wang, K.H.; McSorley, R.; Marshall, A.; Gallaher, R.N. Influence of organic Crotalaria juncea hay and ammonium nitrate fertilizers on soil nematode communities. Appl. Soil Ecol. 2006, 31, 186–198. [Google Scholar] [CrossRef]
- Okada, H.; Harada, H. Effects of tillage and fertilizer on nematode communities in a Japanese soybean field. Appl. Soil Ecol. 2007, 35, 582–598. [Google Scholar] [CrossRef]
- Forge, T.A.; Bittman, S.; Kowalenko, C.G. Responses of grassland soil nematodes and protozoa to multi-year and single-year applications of dairy manure slurry and fertilizer. Soil Biol. Biochem. 2005, 37, 1751–1762. [Google Scholar] [CrossRef]
- Porazinska, D.L.; Duncan, L.W.; McSorley, R.; Graham, J.H. Nematode communities as indicators of status and processes of a soil ecosystem influenced by agricultural management practices. Appl. Soil Ecol. 1999, 13, 69–86. [Google Scholar] [CrossRef]
- DuPont, S.T.; Ferris, H.; Van Horn, M. Effects of cover crop quality and quantity on nematode-based soil food webs and nutrient cycling. Appl. Soil Ecol. 2009, 41, 157–167. [Google Scholar] [CrossRef]
- Leroy, B.; Reheul, D.; Moens, M.; Ferris, H.; De Sutter, N. Short-term nematode population dynamics as influenced by the quality of exogenous organic matter. Nematology 2009, 11, 23–38. [Google Scholar] [CrossRef] [Green Version]
- Termorshuizen, A.; Korthals, G.; Thoden, T. Organic amendments and their influences on plant-parasitic and free-living nematodes: A promising method for nematode management? Nematology 2011, 13, 133–153. [Google Scholar] [CrossRef]
- Ferris, H.; Sánchez-Moreno, S.; Brennan, E.B. Structure, functions and interguild relationships of the soil nematode assemblage in organic vegetable production. Appl. Soil Ecol. 2012, 61, 16–25. [Google Scholar] [CrossRef]
- Hooper, D.J.; Hallmann, J.; Subottin, A.S. Methods for Extraction, Processing and Detection of Plant and Soil Nematodes. In Plant Parasitic Nematodes in Subtropical and Tropical Agriculture, 2nd ed.; Luc, M., Sikora, R.A., Bridge, J., Eds.; CABI Publishing: Wallingford, UK, 2005; pp. 53–86. [Google Scholar]
- Van Bezooijen, J. Methods and Techniques for Nematology; Wageningen University: Wageningen, The Netherlands, 2006; p. 112. [Google Scholar]
- Brzeski, M.W. Nematodes of Tylenchida in Poland and Temperate Europe; Museum of Institute of Zoology, Polish Academy of Sciences: Warsaw, Poland, 1998; p. 397. [Google Scholar]
- Loof, P.A.A. Nematoda: Adenophorea (Dorylaimida); Spektrum Akademischer Verlag: Heidelberg/Berlin, Germany, 1999; p. 264. [Google Scholar]
- Siddiqi, M.R. Tylenchida, Parasites of Plants and Insects, 2nd ed.; CABI Bioscience: Egham, UK, 2000; p. 848. [Google Scholar]
- Geraert, E. The Tylenchidae of the World. Identification of the Family Tylenchidae (Nematoda); Academia Press: Ghent, Belgium, 2008; p. 540. [Google Scholar]
- Wasilewska, L. Trophic classification of soil and plant nematodes. Wiadom. Ekol. 1971, 17, 379–388. [Google Scholar]
- Sieriebriennikov, B.; Ferris, H.; de Goede, R.G. NINJA: An automated calculation system for nematode-based biological monitoring. Eur. J. Soil Biol. 2014, 61, 90–93. [Google Scholar] [CrossRef]
- Yeates, G.W. Modification and qualification of the nematode maturity index. Pedobiologia 1994, 38, 97–101. [Google Scholar]
- Andrássy, I. The determination of volume and weight of nematodes. Acta Zool. 1956, 2, 1–15. [Google Scholar]
- Finney, D.J. Statistical Method in Biological Assay, 3rd ed.; Charles Griffin & Company Ltd.: High Wycombe, UK, 1978; p. 5. [Google Scholar]
Rate (g kg−1 soil) | MI | PPI | MI 2–5 | ∑MI | CI | EI | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
M. heyniana | ||||||||||||
0 | 2.09 ± 0.05 | a | 2.96 ± 0.05 | a | 2.21 ± 0.07 | a | 2.48 ± 0.09 | a | 48.9 ± 15.6 | a | 43.9 ± 8.46 | a |
10 | 1.47 ± 0.11 | b | 3.00 ± 0.00 | a | 2.17 ± 0.14 | a | 1.62 ± 0.11 | b | 9.6 ±4.7 | b | 86.8 ± 5.6 | b |
20 | 1.66 ± 0.5 | b | 2.96 ± 0.02 | a | 2.07 ± 0.03 | a | 1.82 ± 0.12 | b | 18.5 ± 4.5 | b | 75.4 ± 4.1 | b |
40 | 1.59 ± 0.12 | b | 3.00 ± 0.00 | a | 2.12 ± 0.04 | a | 1.64 ± 0.18 | b | 14.9 ± 5.0 | b | 81.2 ± 5.1 | b |
M. hybrida | ||||||||||||
0 | 2.09 ± 0.05 | a | 2.96 ± 0.05 | a | 2.21 ± 0.07 | a | 2.48 ± 0.09 | a | 48.9 ± 15.6 | a | 43.9 ± 8.46 | a |
10 | 1.53 ± 0.28 | b | 2.98 ± 0.02 | a | 2.42 ± 0.09 | b | 1.76 ± 0.23 | b | 7.6 ± 3.0 | b | 90.2 ± 3.9 | b |
20 | 1.71 ± 0.22 | a | 2.98 ± 0.02 | a | 2.29 ± 0.03 | a | 1.89 ± 0.22 | b | 17.4 ± 8.5 | b | 80.3 ± 8.6 | b |
40 | 1.69 ± 0.15 | b | 2.99 ± 0.02 | a | 2.11 ± 0.07 | a | 1.77 ± 0.17 | b | 14.5 ± 5.2 | b | 73.2 ± 10.4 | b |
M. lupulina | ||||||||||||
0 | 2.09 ± 0.05 | a | 2.96 ± 0.05 | a | 2.21 ± 0.07 | a | 2.48 ± 0.09 | a | 48.9 ± 15.6 | a | 43.9 ± 8.46 | a |
10 | 1.84 ± 0.01 | a | 3.00 ± 0.00 | a | 2.05 ± 0.03 | a | 1.91 ± 0.05 | b | 31.9 ± 4.3 | a | 60.6 ± 2.1 | b |
20 | 1.79 ± 0.05 | b | 2.88 ± 0.04 | a | 2.08 ± 0.04 | a | 1.82 ± 0.05 | b | 27.4 ± 7.9 | b | 66.8 ± 5.3 | b |
40 | 1.79 ± 0.16 | b | 3.00 ± 0.00 | a | 2.12 ± 0.07 | a | 1.82 ± 0.15 | b | 31.1 ± 13.3 | a | 67.8 ± 12.2 | b |
M. murex | ||||||||||||
0 | 2.09 ± 0.05 | a | 2.96 ± 0.05 | a | 2.21 ± 0.07 | a | 2.48 ± 0.09 | a | 48.9 ± 15.6 | a | 43.9 ± 8.46 | a |
10 | 2.08 ± 0.05 | a | 3.00 ± 0.00 | a | 2.27 ± 0.09 | a | 2.36 ± 0.12 | a | 32.8 ± 13.7 | a | 39.9 ± 9.7 | a |
20 | 2.03 ± 0.07 | a | 2.95 ± 0.07 | a | 2.12 ± 0.07 | a | 2.24 ± 0.07 | a | 48.8 ± 9.2 | a | 41.4 ± 8.2 | a |
40 | 2.09 ± 0.06 | a | 2.96 ± 0.02 | a | 2.17 ± 0.07 | a | 2.32 ± 0.04 | a | 40.8 ± 14.1 | a | 34.9 ± 9.8 | a |
M. sativa | ||||||||||||
0 | 2.09 ± 0.05 | a | 2.96 ± 0.05 | a | 2.21 ± 0.07 | a | 2.48 ± 0.09 | a | 48.9 ± 15.6 | a | 43.9 ± 8.46 | a |
10 | 1.96 ± 0.09 | a | 2.98 ± 0.02 | a | 2.13 ± 0.04 | a | 2.01 ± 0.15 | b | 36.5 ± 9.2 | a | 52.5 ± 9.7 | a |
20 | 1.69 ± 0.06 | b | 2.96 ± 0.02 | a | 2.09 ± 0.04 | a | 1.73 ± 0.06 | b | 17.2 ± 4.2 | b | 74.4 ± 4.7 | b |
40 | 1.86 ± 0.14 | a | 2.98 ± 0.04 | a | 2.14 ± 0.09 | a | 1.91 ± 0.14 | b | 27.9 ± 12.6 | b | 64.9 ± 6.6 | b |
M. truncatula | ||||||||||||
0 | 2.09 ± 0.05 | a | 2.96 ± 0.05 | a | 2.21 ± 0.07 | a | 2.48 ± 0.09 | a | 48.9 ± 15.6 | a | 43.9 ± 8.46 | a |
10 | 1.94 ± 0.39 | a | 3.00 ± 0.00 | a | 2.36 ± 0.30 | a | 2.41 ± 0.21 | a | 19.2 ± 11.9 | b | 72.5 ± 8.3 | b |
20 | 1.91 ± 0.15 | a | 2.99 ± 0.02 | a | 2.29 ± 0.12 | a | 2.42 ± 0.21 | a | 22.0 ± 5.8 | b | 70.5 ± 6.1 | b |
40 | 1.71 ± 0.13 | b | 3.00 ± 0.00 | a | 2.25 ± 0.09 | a | 2.33 ± 0.11 | a | 15.5 ± 5.1 | b | 78.8 ± 8.4 | b |
Rate (g kg−1 soil) | Cfoot | Efoot | Hfoot | Ffoot | Bfoot | Pfoot | Ofoot | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M. heyniana | ||||||||||||||
0 | 2027.6 ± 158.9 | a | 78.5 ± 23.3 | a | 1807.2 ± 92.4 | a | 18.8 ± 5.7 | a | 124.2 ± 37.9 | a | 11.6 ± 3.6 | a | 65.9 ± 12.7 | a |
10 | 573.5 ± 58.8 | b | 303.8 ± 52.4 | b | 237.5 ± 31.8 | b | 20.2± 2.4 | a | 302.9 ± 69.7 | b | 3.6 ± 2.1 | a | 9.5 ± 4.6 | b |
20 | 354.2 ± 18.8 | b | 177.3 ± 28.8 | b | 127.5 ± 53.8 | b | 24.9 ± 8.1 | a | 175.9 ± 55.8 | a | 1.8 ± 0.6 | a | 23.9 ± 14.2 | b |
40 | 492.8 ± 44.4 | b | 317.5 ± 44.7 | b | 109.0 ± 13.7 | b | 29.9 ± 6.4 | b | 307.7 ± 94.4 | b | 3.2 ± 2.0 | a | 43.6 ± 17.8 | ab |
M. hybrida | ||||||||||||||
0 | 2027.6 ± 158.9 | a | 78.5 ± 23.3 | a | 1807.2 ± 92.4 | a | 18.8 ± 5.7 | a | 124.2 ± 37.9 | a | 11.6 ± 3.5 | a | 65.9 ± 1 2.7 | a |
10 | 648.5 ± 88.7 | b | 193.8 ± 61.1 | b | 391.1 ± 45.6 | b | 11.2 ± 2.1 | b | 189.9 ± 38.88 | b | 3.5 ± 1.8 | a | 52.8 ± 23.1 | a |
20 | 558.5 ± 55.9 | b | 186.8 ± 56.8 | b | 297.5 ± 77.2 | b | 20.2 ± 3.9 | a | 183.0 ± 67.36 | b | 9.4 ± 2.6 | b | 48.5 ± 15.2 | a |
40 | 488.8 ± 35.4 | b | 207.6 ± 33.8 | b | 232.9 ± 55.7 | b | 20.4 ± 4.0 | a | 226.8 ± 77.1 | b | 3.0 ± 1.2 | a | 14.3 ± 3.2 | b |
M. lupulina | ||||||||||||||
0 | 2027.6 ± 158.9 | a | 78.5 ± 23.3 | a | 1807.2 ± 92.4 | a | 18.8 ± 5.7 | a | 124.2 ± 37.9 | a | 11.6 ± 3.5 | a | 65.9 ± 12.7 | a |
10 | 506.3 ± 69.9 | b | 350.2 ± 88.2 | b | 80.8 ± 12.8 | b | 36.5 ± 11.3 | b | 368.9 ± 83.2 | b | 5.1 ± 3.0 | b | 15.0 ± 5.9 | b |
20 | 514.5 ± 60.3 | b | 392.8 ± 69.4 | b | 60.2 ± 10.7 | b | 32.6 ± 10.8 | b | 403.7 ± 61.2 | b | 6.5 ± 1.5 | b | 11.8 ± 6.8 | b |
40 | 879.7 ± 55.6 | b | 745.3 ± 101.2 | b | 62.3 ± 30.8 | b | 50.1 ± 8.3 | b | 732.4 ± 115.2 | b | 6.9 ± 2.5 | b | 28.3 ± 12.4 | b |
M. murex | ||||||||||||||
0 | 2027.6 ± 158.9 | a | 78.5 ± 23.3 | a | 1807.2 ± 92.4 | a | 18.8 ± 5.7 | a | 124.2 ± 37.9 | a | 11.6 ± 3.6 | a | 65.9 ± 12.7 | a |
10 | 698.8 ± 64.5 | b | 115.8 ± 23.9 | b | 418.7 ± 115.9 | b | 13.3 ± 5.4 | a | 197.8 ± 52.3 | b | 10.2 ± 4.2 | b | 58.6 ± 10.2 | a |
20 | 681.4 ± 47.7 | b | 154.5 ± 30.6 | b | 330.3 ± 86.1 | b | 34.8 ± 12.8 | b | 215.0 ± 36.9 | b | 3.5 ± 1.2 | a | 97.9 ± 18.2 | b |
40 | 573.8 ± 88.2 | b | 122.1 ± 54.7 | b | 240.3 ± 52.4 | b | 16.4 ± 3.9 | a | 204.5 ± 54.5 | b | 11.5 ± 3.7 | b | 101.1 ± 31.3 | b |
M. sativa | ||||||||||||||
0 | 2027.6 ± 158.9 | a | 78.5 ± 23.3 | a | 1807.2 ± 92.4 | a | 18.8 ± 5.7 | a | 124.2 ± 37.9 | a | 11.6 ±3.6 | a | 65.9 ± 12.7 | a |
10 | 635.8 ± 66.2 | b | 374.7 ± 55.7 | b | 107.5 ± 27.2 | b | 35.8 ± 6.7 | b | 422.1 ± 69.4 | b | 2.3 ± 0.6 | b | 67.2 ± 20.2 | a |
20 | 1152.8 ± 114.8 | b | 972.4 ± 83.7 | b | 93.8 ± 15.5 | b | 35.0 ± 8.2 | b | 998.0 ± 155.5 | b | 1.3 ± 0.2 | b | 24.7 ± 6.7 | b |
40 | 518.7 ± 99.1 | b | 348.0 ± 69.3 | b | 73.9 ± 29.6 | b | 23.4 ± 6.9 | a | 377.9 ± 57.2 | b | 2.8 ± 1.0 | b | 41.0 ± 11.1 | b |
M. truncatula | ||||||||||||||
0 | 2027.6 ± 158.9 | a | 78.5 ± 23.3 | a | 1807.2 ± 92.4 | a | 18.8 ± 5.7 | a | 124.2 ± 37.9 | a | 11.6 ± 3.6 | a | 65.9 ± 12.7 | a |
10 | 1034.5 ± 42.6 | b | 394.9 ± 51.1 | b | 496.2 ± 60.2 | b | 23.9 ± 3.7 | a | 417.9 ±36.8 | b | 11.2 ± 3.1 | a | 85.5 ± 21.1 | a |
20 | 910.1 ± 63.8 | b | 304.3 ± 65.2 | b | 541.8 ± 98.3 | b | 16.5 ± 5.6 | a | 318.3 ± 48.3 | b | 3.2 ± 1.2 | b | 31.6 ± 8.3 | b |
40 | 1040.8 ± 86.4 | b | 389.1 ± 12.7 | b | 564.0 ± 61.3 | b | 14.9 ± 5.5 | a | 394.4 ± 63.7 | b | 5.5 ± 1.7 | b | 62.1 ± 5.9 | a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renčo, M.; Ntalli, N.; D’Addabbo, T. Short-Time Impact of Soil Amendments with Medicago Plant Materials on Soil Nematofauna. Plants 2021, 10, 145. https://doi.org/10.3390/plants10010145
Renčo M, Ntalli N, D’Addabbo T. Short-Time Impact of Soil Amendments with Medicago Plant Materials on Soil Nematofauna. Plants. 2021; 10(1):145. https://doi.org/10.3390/plants10010145
Chicago/Turabian StyleRenčo, Marek, Nikoletta Ntalli, and Trifone D’Addabbo. 2021. "Short-Time Impact of Soil Amendments with Medicago Plant Materials on Soil Nematofauna" Plants 10, no. 1: 145. https://doi.org/10.3390/plants10010145
APA StyleRenčo, M., Ntalli, N., & D’Addabbo, T. (2021). Short-Time Impact of Soil Amendments with Medicago Plant Materials on Soil Nematofauna. Plants, 10(1), 145. https://doi.org/10.3390/plants10010145