A Small Number of Gametophytes with Gametangia and Stunted Sporophytes of Antrophyum obovatum Baker (Pteridaceae): The Suppression of Functional Sporophyte Production by Prezygotic and Postzygotic Sterility
Abstract
:1. Introduction
2. Results
2.1. Identification Based on the rbcL Sequence
2.2. Habitat
2.3. Morphological Characteristics of Gametophytes and the Juvenile Sporophyte
3. Discussion
3.1. Suppression of Archegonia and Gemmae by Micro-Environmental Factors
3.2. Suppression of Sporophyte Growth by Environmental Factors
4. Materials and Methods
4.1. Surveys and Sampling
4.2. Observation of Morphological Characters
4.3. DNA Extraction and PCR Amplification of the rbcL Region for Molecular Identification
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nayar, B.K.; Kaur, S. Gametophytes of homosporous ferns. Bot. Rev. 1971, 37, 295–396. [Google Scholar] [CrossRef]
- Imaichi, R. A new classification of the gametophyte development of homosporous ferns, focusing on meristem behaviour. Fern Gaz. 2013, 19, 141–156. [Google Scholar]
- Farrar, D.R.; Dassler, C.; Watkins, J.E.; Skelton, C. Gametophyte ecology. In Biology and Evolution of Ferns and Lycophytes; Haufler, C.H., Ranker, T.A., Eds.; Cambridge University Press: Cambridge, UK, 2008; pp. 222–256. [Google Scholar] [CrossRef]
- Pinson, J.B.; Chambers, S.M.; Nitta, J.H.; Kuo, L.Y.; Sessa, E.B. The Separation of Generations: Biology and Biogeography of Long-Lived Sporophyteless Fern Gametophytes. Int. J. Plant Sci. 2017, 178, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Britton, E.G.; Taylor, A. The life history of Vittaria lineata. Mem. Torrey Bot. Club 1902, 8, 185–211. [Google Scholar]
- Wagner, W.H.; Sharp, A.J. A Remarkably Reduced Vascular Plant in the United States. Science 1963, 142, 1483–1484. [Google Scholar] [CrossRef]
- Emigh, V.D.; Farrar, D.R. Gemmae: A role in sexual reproduction in the fern genus vittaria. Science 1977, 198, 297–298. [Google Scholar] [CrossRef] [PubMed]
- Farrar, D.R. Gametophytes of four tropical fern genera reproducing independently of their sporophytes in the southern appalachians. Science 1967, 155, 1266–1267. [Google Scholar] [CrossRef] [PubMed]
- Farrar, D.R.; Mickel, J.T. Vittaria appalachiana: A name for the “Appalachian gametophyte”. Am. Fern J. 1991, 81, 69–75. [Google Scholar] [CrossRef]
- Raine, C.A.; Farrar, D.R.; Sheffield, E. A New Hymenophyllum Species in the Appalachians Represented by Independent Gametophyte Colonies. Am. Fern J. 1991, 81, 109–118. [Google Scholar] [CrossRef]
- Farrar, D.R. Trichomanes intricatum: The independent Trichomanes gametophyte in the eastern United States. Am. Fern J. 1992, 82, 68–74. [Google Scholar] [CrossRef]
- Dassler, C.L.; Farrar, D.R. Significance of form in fern gametophytes: Clonal, gemmiferous gametophytes of Callistopteris baueriana (Hymenophyllaceae). Int. J. Plant Sci. 1997, 158, 622–639. [Google Scholar] [CrossRef]
- Duffy, A.M.; Stensvold, M.C.; Farrar, D.R. Independent Gametophytes of Hymenophyllum wrightii in North America: Not as Rare as We Thought. Am. Fern J. 2015, 105, 45–55. [Google Scholar] [CrossRef]
- Kuo, L.Y.; Chen, C.W.; Shinohara, W.; Ebihara, A.; Kudoh, H.; Sato, H.; Huang, Y.M.; Chiou, W.L. Not only in the temperate zone: Independent gametophytes of two vittarioid ferns (Pteridaceae, Polypodiales) in East Asian subtropics. J. Plant Res. 2017, 130, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.W.; Huang, Y.M.; Kuo, L.Y.; Nguyen, Q.D.; Luu, H.T.; Callado, J.R.; Farrar, D.R.; Chiou, W.L. trnL-F is a powerful marker for DNA identification of field vittarioid gametophytes (Pteridaceae). Ann. Bot. 2013, 111, 663–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.W.; Tan, B.C.; Buchbender, V.; Moran, R.C.; Rouhan, G.; Wang, C.N.; Quandt, D. Identifying a mysterious aquatic fern gametophyte. Plant Syst. Evol. 2009, 281, 77–86. [Google Scholar] [CrossRef]
- Rumsey, F.; Sheffield, E. Inter-generational ecological niche separation and the ‘independent gametophyte’ phenomenon. In Pteridology in Perspective; Royal Botanic Gardens Kew: London, UK, 1996; pp. 563–570. [Google Scholar]
- Dassler, C.L.; Farrar, D.R. Significance of gametophyte form in long-distance colonization by tropical, epiphytic ferns. Brittonia 2001, 53, 352–369. [Google Scholar] [CrossRef]
- Rumsey, F.; Sheffield, E.; Farrar, D. British filmy-fern gametophytes. Pteridologist 1990, 2, 40–42. [Google Scholar]
- Ebihara, A.; Yamaoka, A.; Mizukami, N.; Sakoda, A.; Nitta, J.H.; Imaichi, R. A survey of the fern gametophyte flora of Japan: Frequent independent occurrences of noncordiform gametophytes. Am. J. Bot. 2013, 100, 735–743. [Google Scholar] [CrossRef]
- Ebihara, A.; Nitta, J.H.; Matsumoto, Y.; Fukazawa, Y.; Kurihara, M.; Yokote, H.; Sakuma, K.; Azakami, O.; Hirayama, Y.; Imaichi, R. Growth dynamics of independent gametophytes of Pleurosoriopsis makinoi (Polypodiaceae). Bull. Nat. Mus. Nat. Sci. B 2019, 45, 77–86. [Google Scholar]
- Zhang, X. Genus Antrophyum Kaulf. from China and neighboring regions. Bull. Bot. Res. 1998, 18, 107–118. [Google Scholar]
- Park, S.H.; Kim, J.S.; Kim, H.T. Study of the independent gametophytes found on Jeju Island in South Korea and the first record of the obligate independent gametophyte of Antrophyum obovatum Baker. Ecol. Evol. 2020, 10, 7826–7838. [Google Scholar] [CrossRef] [PubMed]
- Schneider, H.; Schuettpelz, E. Identifying fern gametophytes using DNA sequences. Mol. Ecol. Notes 2006, 6, 989–991. [Google Scholar] [CrossRef]
- Ebihara, A.; Matsumoto, S.; Ito, M. Hybridization involving independent gametophytes in the Vandenboschia radicans complex (Hymenophyllaceae): A new perspective on the distribution of fern hybrids. Mol. Ecol. 2009, 18, 4904–4911. [Google Scholar] [CrossRef] [PubMed]
- Group, C.P.W.; Hollingsworth, P.M.; Forrest, L.L.; Spouge, J.L.; Hajibabaei, M.; Ratnasingham, S.; van der Bank, M.; Chase, M.W.; Cowan, R.S.; Erickson, D.L. A DNA barcode for land plants. Proc. Natl. Acad. Sci. USA 2009, 106, 12794–12797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebihara, A.; Nitta, J.H.; Ito, M. Molecular species identification with rich floristic sampling: DNA barcoding the pteridophyte flora of Japan. PLoS ONE 2010, 5, e15136. [Google Scholar] [CrossRef] [PubMed]
- Schuettpelz, E.; Pryer, K.M. Fern phylogeny inferred from 400 leptosporangiate species and three plastid genes. TAXON 2007, 56, 1037–1050. [Google Scholar] [CrossRef] [Green Version]
- Hasebe, M.; Wolf, P.G.; Pryer, K.M.; Ueda, K.; Ito, M.; Sano, R.; Gastony, G.J.; Yokoyama, J.; Manhart, J.R.; Murakami, N.; et al. Fern phylogeny based on rbcL nucleotide sequences. Fern J. 1995, 85, 134–181. [Google Scholar] [CrossRef]
- Li, F.W.; Kuo, L.Y.; Rothfels, C.J.; Ebihara, A.; Chiou, W.L.; Windham, M.D.; Pryer, K.M. rbcL and matK earn two thumbs up as the core DNA barcode for ferns. PLoS ONE 2011, 6, e26597. [Google Scholar] [CrossRef]
- Crane, E.H. A revised circumscription of the genera of the fern family Vittariaceae. Syst. Bot. 1997, 22, 509–517. [Google Scholar] [CrossRef]
- Schuettpelz, E.; Chen, C.-W.; Kessler, M.; Pinson, J.B.; Johnson, G.; Davila, A.; Cochran, A.T.; Huiet, L.; Pryer, K.M. A revised generic classification of vittarioid ferns (Pteridaceae) based on molecular, micromorphological, and geographic data. TAXON 2016, 65, 708–722. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Raven, P.; Hong, D. Pteridophytes. In Flora of China; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MO, USA, 2013. [Google Scholar]
- Powell, J.R. The Founder-Flush Speciation Theory: An Experimental Approach. Evolution 1978, 32, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Farrar, D.R. Gemmiferous Fern Gametophytes-Vittariaceae. Am. J. Bot. 1974, 61, 146–155. [Google Scholar] [CrossRef]
- Farrar, D.R. Problems in the Identity and Origin of the Appalachian Vittaria Gametophyte, a Sporophyteless Fern of the Eastern United States. Am. J. Bot. 1978, 65, 1–12. [Google Scholar] [CrossRef]
- Blazquez, M.A.; Ahn, J.H.; Weigel, D. A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nat. Genet. 2003, 33, 168–171. [Google Scholar] [CrossRef] [PubMed]
- Fitter, A.H.; Fitter, R.S. Rapid changes in flowering time in British plants. Science 2002, 296, 1689–1691. [Google Scholar] [CrossRef]
- Sato, T.; Sakai, A. Cold Tolerance of Gametophytes and Sporophytes of Some Cool Temperate Ferns Native to Hokkaido. Can. J. Bot. 1981, 59, 604–608. [Google Scholar] [CrossRef]
- Watkins, J.E., Jr.; Mack, M.C.; Sinclair, T.R.; Mulkey, S.S. Ecological and evolutionary consequences of desiccation tolerance in tropical fern gametophytes. New Phytol. 2007, 176, 708–717. [Google Scholar] [CrossRef]
- Rumsey, F.; Jermy, A.; Sheffield, E. The independent gametophytic stage of Trichomanes speciosum Willd. (Hymenophyllaceae), the Killarney Fern and its distribution in the British Isles. Watsonia 1998, 22, 1–20. [Google Scholar]
- Farrar, D.R. Species and evolution in asexually reproducing independent fern gametophytes. Syst. Bot. 1990, 15, 98–111. [Google Scholar] [CrossRef]
Rumsey and Sheffield (1996) | Kuo et al., (2017) | ||
---|---|---|---|
Precondition | Gametophyte population maintained only by asexual reproduction | ||
Type | Species level | Population level | |
Obligate | Definition | Absence of conspecific functional sporophytes in nature | Absence of conspecific functional sporophytes in the geographic range of gametophytes |
Example | Only three species: Vittaria appalachiana Farrar & Mickel Crepidomanes intricatum (Farrar) Ebihara & Weakley Hymenophyllum tayloriae Farrar & Raine | Including Rumsey and Sheffield’s obligate gametophytes Hymenophyllum wrightii Bosch (Duffy et al., 2015) Haplopteris sp. (Kuo et al., 2017) | |
Facultative | Definition | Presence of conspecific functional sporophytes out of the geographic range of gametophytes | Presence of conspecific functional sporophytes in the geographic range of gametophytes but not in touch |
Example | Independent gametophytes except three obligate ones | Loxogramme grammitoides (Baker) C. Chr. (Park et al., 2020) Pleurosoriopsis makinoi (Maxim.) Fomin (Ebihara et al., 2019) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.H.; Kim, J.S.; Kim, H.T. A Small Number of Gametophytes with Gametangia and Stunted Sporophytes of Antrophyum obovatum Baker (Pteridaceae): The Suppression of Functional Sporophyte Production by Prezygotic and Postzygotic Sterility. Plants 2021, 10, 170. https://doi.org/10.3390/plants10010170
Park SH, Kim JS, Kim HT. A Small Number of Gametophytes with Gametangia and Stunted Sporophytes of Antrophyum obovatum Baker (Pteridaceae): The Suppression of Functional Sporophyte Production by Prezygotic and Postzygotic Sterility. Plants. 2021; 10(1):170. https://doi.org/10.3390/plants10010170
Chicago/Turabian StylePark, Sang Hee, Jung Sung Kim, and Hyoung Tae Kim. 2021. "A Small Number of Gametophytes with Gametangia and Stunted Sporophytes of Antrophyum obovatum Baker (Pteridaceae): The Suppression of Functional Sporophyte Production by Prezygotic and Postzygotic Sterility" Plants 10, no. 1: 170. https://doi.org/10.3390/plants10010170
APA StylePark, S. H., Kim, J. S., & Kim, H. T. (2021). A Small Number of Gametophytes with Gametangia and Stunted Sporophytes of Antrophyum obovatum Baker (Pteridaceae): The Suppression of Functional Sporophyte Production by Prezygotic and Postzygotic Sterility. Plants, 10(1), 170. https://doi.org/10.3390/plants10010170