Element Accumulation Patterns of Native Plant Species under the Natural Geochemical Stress
Abstract
:1. Introduction
1.1. Geochemical Stress
1.2. Geochemical Provinces and Fields
2. Materials and Methods
2.1. Study Purpose and Objectives
2.2. Study Areas and Sampling Procedures
2.3. Data Acquisition and Interpretation
3. Results and Discussion
3.1. Regional Abundances in Soils and Plants
3.2. Element Uptake in the Areas of Lithogeochemical Anomalies
3.3. Plants of Explored and Mined Deposits
- Biogenic accumulation plays a significant role in all these elements.
- The content of Mo, Co, and Zn in the province′s plants is reduced if comparing by EFs at the developed deposits.
- The values of ionic radii and energy coefficients allow free migration over relatively long distances in an accessible form for plants.
- The elements are also characterized by accumulation on sorption barriers, which is especially important for nonmetallic clay deposits. The mining of quarries for the extraction of nonmetallic raw materials increases the area of contact of vadose water with clays, forming new sorption barriers.
3.4. General Biogeochemical Accumulation Patterns
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Selye, H. The Stress of Life; McGraw-Hill: New York, NY, USA, 1956. [Google Scholar]
- Nejad, Z.D.; Jung, M.C.; Kim, K.-H. Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology. Environ. Geochem. Health 2017, 40, 927–953. [Google Scholar] [CrossRef] [PubMed]
- Seenivasan, R.; Prasath, V.; Mohanraj, R. Restoration of sodic soils involving chemical and biological amendments and phytoremediation by Eucalyptus camaldulensis in a semiarid region. Environ. Geochem. Health 2014, 37, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Aleksandrov, A.; Aleksandrova, E.B.; Tikhonov, A.A. Stabilization of a programmed rotation mode for a satellite with electrodynamic attitude control system. Adv. Space Res. 2018, 62, 142–151. [Google Scholar] [CrossRef]
- Canney, F.C. Remote detection of metal anomalies on Pilot Mountain, Randolph County, North Carolina; discussion. Econ. Geol. 1984, 79, 1759–1760. [Google Scholar] [CrossRef]
- Carranza, E.J.M.; Hale, M. Remote Detection of Vegetation Stress for Mineral Exploration. In Proceedings of the IEEE 2001 International Geoscience and Remote Sensing Symposium, Sydney, Australia, 9–13 July 2001; Volume 3, pp. 1324–1326. [Google Scholar]
- Horler, D.N.H.; Barber, J.; Darch, J.P.; Ferns, D.C.; Barringer, A.R. Approaches to detection of geochemical stress in vegetation. Adv. Space Res. 1983, 3, 175–179. [Google Scholar] [CrossRef]
- Singhroy, V.; Saint-Jean, R.; Levesque, J.; Barnett, P. Reflectance Spectra of the Boreal Forest over Mineralized Sites. In Proceedings of the IEEE 2000 International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 24–28 July 2000; Volume 4, pp. 1379–1381. [Google Scholar]
- Götze, C.; Jung, A.; Merbach, I.; Wennrich, R.; Gläßer, C. Spectrometric analyses in comparison to the physiological condition of heavy metal stressed floodplain vegetation in a standardised experiment. Open Geosci. 2010, 2, 132–137. [Google Scholar] [CrossRef] [Green Version]
- Götze, C.; Gläßer, C.; Jung, A. Detecting heavy metal pollution of floodplain vegetation in a pot experiment using reflectance spectroscopy. Int. J. River Basin Manag. 2016, 14, 499–507. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, M.; Liu, X.; Zhou, G. A new vegetation index based on multitemporal Sentinel-2 images for discriminating heavy metal stress levels in rice. Sensors 2018, 18, 2172. [Google Scholar] [CrossRef] [Green Version]
- Licheng, Z.; Kezhun, Z. Background values of trace elements in the source area of the Yangtze River. Sci. Total Environ. 1992, 125, 391–404. [Google Scholar] [CrossRef]
- Sofo, A. Drought stress tolerance and photoprotection in two varieties of olive tree. Acta Agric. Scand. Sect. B Plant Soil Sci. 2011, 61, 711–720. [Google Scholar] [CrossRef]
- Mudzengi, B.K. The spatial distribution of soil lead pollution in the Middle Mukuvisi Catchment, Harare, Zimbabwe. Braz. J. Biol. Sci. 2018, 5, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Anjum, N.A.; Sofo, A.; Scopa, A.; Roychoudhury, A.; Gill, S.S.; Iqbal, M.; Lukatkin, A.S.; Pereira, E.; Duarte, A.C.; Ahmad, I. Lipids and proteins—Major targets of oxidative modifications in abiotic stressed plants. Environ. Sci. Pollut. Res. 2015, 22, 4099–4121. [Google Scholar] [CrossRef] [PubMed]
- Leshchinskiy, S.V. Enzootic diseases and extinction of mammoths as a reflection of deep geochemical changes in ecosystems of Northern Eurasia. Archaeol. Anthr. Sci. 2014, 7, 297–317. [Google Scholar] [CrossRef]
- Odhiambo, B.D. The place of geobotany in geology. Int. J. Geobot. Res. 2016, 6, 27–36. [Google Scholar]
- Rasheed, F.; Anjum, N.A.; Masood, A.; Sofo, A.; Khan, N.A. The key roles of salicylic acid and sulfur in plant salinity stress tolerance. J. Plant Growth Regul. 2020, 1–14. [Google Scholar] [CrossRef]
- Guarino, C.; Zuzolo, D.; Marziano, M.; Baiamonte, G.; Morra, L.; Benotti, D.; Gresia, D.; Stacul, E.R.; Cicchella, D.; Sciarrillo, R. Identification of native-metal tolerant plant species in situ: Environmental implications and functional traits. Sci. Total Environ. 2019, 650, 3156–3167. [Google Scholar] [CrossRef]
- Navarrete Gutiérrez, D.M.; Pons, M.-N.; Cuevas Sánchez, J.A.; Echevarria, G. Is metal hyperaccumulation occurring in ul-tramafic vegetation of central and southern Mexico? Ecol. Res. 2018, 33, 641–649. [Google Scholar] [CrossRef]
- Robson, T.; Stevens, J.C.; Dixon, K.; Reid, N. Sulfur accumulation in gypsum-forming thiophores has its roots firmly in calcium. Environ. Exp. Bot. 2017, 137, 208–219. [Google Scholar] [CrossRef]
- Reimann, C.; Koller, F.; Frengstad, B.; Kashulina, G.; Niskavaara, H.; Englmaier, P. Comparison of the element composition in several plant species and their substrate from a 1 500 000-km2 area in Northern Europe. Sci. Total Environ. 2001, 278, 87–112. [Google Scholar] [CrossRef]
- Ginzburg, I.I. Principles of Geochemical Prospecting: Techniques of Prospecting for Non-Ferrous Ores and Rare Metals; Pergamon Press: London, UK, 1960. [Google Scholar]
- Bezel’, V.S.; Zhuikova, T.V.; Dulya, O.V.; Balyberdina, N.S. Intraspecific Variability of Metal Tolerance in Taraxacum officinale Wigg. s.l. Seed Progeny: Analysis Based on Dose–Response Relationship. Russ. J. Ecol. 2019, 50, 331–336. [Google Scholar] [CrossRef]
- Drozdova, I.; Alekseeva-Popova, N.; Dorofeyev, V.; Bech, J.; Belyaeva, A.; Roca, N. A comparative study of the accumulation of trace elements in Brassicaceae plant species with phytoremediation potential. Appl. Geochem. 2019, 108, 104377. [Google Scholar] [CrossRef]
- Ivashov, P.V. Biogeochemical Indication of Tin Mineralization; Nauka: Moscow, Russia, 1987. (In Russian) [Google Scholar]
- Pérez-Sirvent, C.; Hernández-Pérez, C.; Martínez-Sánchez, M.J.; García-Lorenzo, M.L.; Bech, J. Metal uptake by wetland plants: Implications for phy-toremediation and restoration. J. Soils Sediments 2017, 17, 1384–1393. [Google Scholar] [CrossRef]
- Fersman, A.E. Selected Works; Publishing House of the USSR Academy of Sciences: Moscow, Russia, 1959. (In Russian) [Google Scholar]
- Dunn, C.E. Biogeochemistry in Mineral Exploration; Handbook of Exploration and Environmental Geochemistry; Elsevier: London, UK, 2007; Volume 9, p. 462. [Google Scholar]
- Seredin, R.M. Flora and Vegetation of the North Caucasus; Kuban State University Publishing House: Krasnodar, Russia, 1979. (In Russian) [Google Scholar]
- Zhou, Z.; Zhou, K.; Hou, X.; Luo, H. Arc/Spark Optical Emission Spectrometry: Principles, Instrumentation, and Recent Applications. Appl. Spectrosc. Rev. 2005, 40, 165–185. [Google Scholar] [CrossRef]
- Kukharchyk, T.; Kakareka, S.; Giginyak, Y. Trace elements in soils of oases of Enderby Land (on an example of Vecherny oasis). Czech Polar Rep. 2018, 8, 162–177. [Google Scholar] [CrossRef]
- Aleksandrova, T.; Talovina, I.; Duryagina, A. Gold–sulphide deposits of the Russian Arctic zone: Mineralogical features and prospects of ore benefication. Geochemistry 2020, 80, 125510. [Google Scholar] [CrossRef]
- Korolev, N.; Melnik, A.E.; Li, X.; Skublov, S.G. The oxygen isotope composition of mantle eclogites as a proxy of their origin and evolution: A review. Earth Sci. Rev. 2018, 185, 288–300. [Google Scholar] [CrossRef]
- Litvinenko, V.; Leitchenkov, G.; Vasiliev, N. Anticipated sub-bottom geology of Lake Vostok and technological approaches considered for sampling. Geochemistry 2020, 80. [Google Scholar] [CrossRef]
- Vernadsky, V.I. Chemical Structure of the Earth’s Biosphere and Its Environment; Nauka: Moscow, Russia, 1965. (In Russian) [Google Scholar]
- Kowalska, J.B.; Mazurek, R.; Gąsiorek, M.; Zaleski, T. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination—A review. Environ. Geochem. Health 2018, 40, 2395–2420. [Google Scholar] [CrossRef] [Green Version]
- Polynov, B.B. The geological role of organisms. Probl. Geogr. 1953, 33, 45–64. [Google Scholar]
- Cartledge, G.H. Studies on the periodic system. I. The ionic potential as a periodic function. J. Am. Chem. Soc. 2005, 50, 2855–2863. [Google Scholar] [CrossRef]
- Morris, P.A. Using regolith and spinifex chemistry to detect fault-controlled fluids in the Ngururrpa area of northeastern Western Australia, with implications for Pb–Zn mineralization. Geochem. Explor. Environ. Anal. 2019, 20, 35–49. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press/Taylor & Francis Group: Boca Raton, FL, USA, 2010. [Google Scholar] [CrossRef]
- Tkalich, S.M. Phytogeochemical Method of Mineral Deposit Exploration; Nedra: Leningrad, Russia, 1970. (In Russian) [Google Scholar]
- Drozdova, I.; Machs, E.; Kalimova, I.; Terentyeva, L.; Bech, J.; Roca, N.; Latypov, I. Accumulation of potentially toxic elements by plants of North Caucasian Alyssum species and their molecular phylogenetic analysis. Environ. Geochem. Health 2020, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Perel’man, A. Geochemical barriers: Theory and practical applications. Appl. Geochem. 1986, 1, 669–680. [Google Scholar] [CrossRef]
- Iakovleva, E.; Belova, M.; Popov, A. Mining and Environmental Monitoring at Open-Pit Mineral Deposits. J. Ecol. Eng. 2019, 20, 172–178. [Google Scholar] [CrossRef]
- Lobacheva, O.; Dzhevaga, N. Rare-Earth Elements Recovery on the Example of Europium (III) from Lean Technogenic Raw Materials. J. Ecol. Eng. 2017, 18, 122–126. [Google Scholar] [CrossRef]
- Lytaeva, T.A.; Isakov, A.E. Environmental impact of the stored dust-like zinc and iron containing wastes. J. Ecol. Eng. 2017, 18, 37–42. [Google Scholar] [CrossRef]
- Ponomarenko, T.V.; Khan-Tsai, E.A.; Bavuu, C. Integrated mining projects in underdeveloped territories of Russia: Sub-stantiation of implementation parameters. J. Min. Inst. 2019, 240, 724–730. [Google Scholar] [CrossRef] [Green Version]
- Dmitrieva, D.; Ilinova, A.; Kraslawski, A. Strategic management of the potash industry in Russia. Resour. Policy 2017, 52, 81–89. [Google Scholar] [CrossRef]
- Guerra, D.D.; Iakovleva, E.; Shklyarskiy, A. Alternative Measures to Reduce Carbon Dioxide Emissions in the Republic of Cuba. J. Ecol. Eng. 2020, 21, 55–60. [Google Scholar] [CrossRef]
- Kremcheev, E.A.; Danilov, A.S.; Smirnov, Y.D. Metrological support of monitoring systems based on unmanned aerial vehicles. J. Min. Inst. 2019, 235, 96–105. [Google Scholar] [CrossRef]
- Matveeva, V.; Lytaeva, T.; Danilov, A. Application of steel-smelting slags as material for reclamation of degraded lands. J. Ecol. Eng. 2018, 19, 97–103. [Google Scholar] [CrossRef]
- Nevskaya, M.A.; Seleznev, S.G.; Masloboev, V.A.; Klyuchnikova, E.M.; Makarov, D.V. Environmental and business chal-lenges presented by mining and mineral processing waste in the Russian Federation. Minerals 2019, 9, 445. [Google Scholar] [CrossRef] [Green Version]
- Pivovarova, I. Optimization methods for hydroecological monitoring systems. J. Ecol. Eng. 2016, 17, 30–34. [Google Scholar] [CrossRef] [Green Version]
- Smirnov, Y.D.; Ivanov, A.V. Investigation of Dust Transfer Processes During Loading and Unloading Operations Using Software Simulation. J. Ecol. Eng. 2018, 19, 29–33. [Google Scholar] [CrossRef]
- Suprun, I.K.; Kuznetsov, V.S.; Ivanov, A.V. Development of an Engineer Operation Aimed at the Reduction of Atmospheric Dust Pollution in the Decommissioning of Iron-Ore Treatment Waste. J. Ecol. Eng. 2019, 20, 23–28. [Google Scholar] [CrossRef]
- Bech, J.; Duran, P.; Roca, N.; Poma, W.; Sánchez, I.; Roca-Pérez, L.; Boluda, R.; Barceló, J.; Poschenrieder, C. Accumulation of Pb and Zn in Bidens triplinervia and Senecio sp. spontaneous species from mine spoils in Peru and their potential use in phytoremediation. J. Geochem. Explor. 2012, 123, 109–113. [Google Scholar] [CrossRef]
- Alekseenko, V.A. Geochemical Methods for Mineral Deposits Prospecting; Logos: Moscow, Russia, 2005. (In Russian) [Google Scholar]
- Rankama, K. Über eine neue Prospektionsmethode. Geol. Rundsch. 1942, 32, 575–578. [Google Scholar] [CrossRef]
- Warren, H.V.; Delavault, R.E.; Irish, R.I. Preliminary studies on the biogeochemistry of iron and manganese. Econ. Geol. 1952, 47, 131–145. [Google Scholar] [CrossRef]
- Alekseenko, V.A. Geobotanical Studies for the Solution of a Number of Ecological Tasks and Exploration of Mineral Deposits; Logos: Moscow, Russia, 2011. (In Russian) [Google Scholar]
- Mishra, T.; Pandey, V.C.; Praveen, A.; Singh, N.; Singh, D.P. Phytoremediation ability of naturally growing plant species on the electroplating wastewater-contaminated site. Environ. Geochem. Health 2020, 42, 4101–4111. [Google Scholar] [CrossRef]
- Peng, J.-S.; Guan, Y.-H.; Lin, X.-J.; Xu, X.-J.; Xiao, L.; Wang, H.-H.; Meng, S. Comparative understanding of metal hyperaccumulation in plants: A mini-review. Environ. Geochem. Health 2020, 1–9. [Google Scholar] [CrossRef]
- Shtangeeva, I.; Viksna, A.; Grebnevs, V. Geochemical (soil) and phylogenetic (plant taxa) factors affecting accumulation of macro- and trace elements in three natural plant species. Environ. Geochem. Health 2019, 42, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Perelman, A.I. Geochemistry; Vyshaya Shkola: Moscow, Russia, 1989. (In Russian) [Google Scholar]
Deposit | Series of EF Increase |
---|---|
Buron, lead–zinc | Mo3.8–Zn2.8–Pb2.6–Sn2.5–Li2.4–Co2.3–W2.2–Cu1.6–Sr1.4–Ge1.0–Ni0.7 *–Ba0.5–V0.5–Mn0.5–Ti0.4–Ag0.3–Cr0.2 |
Urup, copper–zinc | Ag4.6–W2.2–Sr2.1–Ba1.8–Zn1.8–Cu1.7–Co1.4–Li1.4–Ge1.0–Ni1.0–Sn1.0–Mo0.8–V0.8–Mn0.7–Pb0.7–Ti0.4–Cr0.1 |
Sakhalinskoe, mercury | Sr2.2–Mo1.9–Zn1.8–Ba1.4–Co1.4–V1.3–Ge1.0–Sn0.8–Ti0.8–Ag0.7–Ni0.7–Li0.6–Pb0.5–Mn0.4–Cr0.2 |
Deposit | Series of BAC Increase |
---|---|
Buron, lead–zinc | Mo2.5–Mn2.0–Sr1.7–W1.7–Cu1.3–Li1.3–Zn1.2–Ag1.0–Ni1.0–Ba0.7–Ge0.7–Co0.5–Sn0.3–Cr0.2–Pb0.2–Ti0.1–V0.1 |
Urup, copper–zinc | Ag16.0–Mn3.8–Ba2.7–Sr2.3–Zn1.9–Cu1.7–W1.2–Ni0.8–Mo0.5–Ge0.5–Co0.4–Li0.4–Pb0.4–Sn0.4–Cr0.1–Ti0.1–V0.1 |
Sakhalinskoe, mercury | Ag5.0–Cu2.8–Sr2.6–Zn1.7–Ba1.6–Mn1.3–Mo1.0–Ni0.6–Sn0.4–Pb0.2–Ti0.1–V0.1 |
Plants | Ore-Free Rocks | Low-Grade Ore | High-Grade Ore | ||||||
---|---|---|---|---|---|---|---|---|---|
Pb | Cu | Mo | Pb | Cu | Mo | Pb | Cu | Mo | |
Cherry (Cerasus fruticosa Pall.) | - | - | - | 4.0 × 10−3 | 8.0 × 10−3 | 1.0 × 10−4 | 4.0 × 10−2 | 7.0 × 10−3 | 1.7 × 10−4 |
Meadowsweet (Spiraea hypericifolia L.) | 1.3 × 10−3 | 1.4 × 10−3 | 5.0 × 10−4 | 6.9 × 10−3 | 7.4 × 10−3 | 1.0 × 10−4 | 2.5 × 10−2 | 6.2 × 10−3 | 1.0 × 10−3 |
Sophora (Pseudosophora alopecuroides (L.) Sweet) | 1.1 × 10−3 | 2.3 × 10−3 | 1.5 × 10−3 | 6.0 × 10−3 | 6.4 × 10−3 | - | 1.3 × 10−2 | 6.4 × 10−3 | - |
Site | Average Pb Content in the Bedrock, % | The Proportion of the Total Pb Content in the Rock by Containing Minerals, % | Average Pb Content in the Biogeochemical Anomaly, % | |||
---|---|---|---|---|---|---|
Galena (PbS) | Plumbojarosite (PbFe6[SO4]4[OH]12) | Anglesite (PbSO4) | Cerussite (PbCO3) | |||
K1 | 3.90 | 33.0 | 8.8 | 18.0 | 38.0 | 5.3 × 10−3 |
K2 | 3.10 | 1.8 | 1.8 | 9.7 | 80.1 | 2.2 × 10−2 |
K3 | 0.14 | - | 70.0 | 10.0 | 20.0 | 8.6 × 10−3 |
Landform | Element | Content % | |||
---|---|---|---|---|---|
Average | Anomalous | ||||
Number of Correlating Samples | Single Samples | ||||
9 | 2 | ||||
Subhorizontal surface | Cr | 0.002 | 0.003 | 0.005 | 0.006 |
Valley-shaped lowland | 0.001 | 0.002 | 0.003 | 0.0036 | |
Talus slope | Ni | 0.0005 | 0.001 | 0.003 | 0.007 |
Valley-shaped lowland | 0.0006 | 0.0009 | 0.0012 | 0.0015 | |
Sheetwash slope | Cu | 0.007 | 0.009 | 0.011 | 0.013 |
Subhorizontal surface | 0.008 | 0.014 | 0.023 | 0.04 |
Ag | Ba | Co | Cr | Cu | Ge | Li | Mn | Mo | Ni | Pb | Sn | Sr | Ti | V | W | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Urup copper–zinc mine | ||||||||||||||||
2.6 | 0.4 | 2.3 | 0.2 | 3.0 | 1.0 | 1.2 | 1.0 | 2.3 | 0.7 | 1.0 | 1.0 | 1.8 | 0.6 | 1.1 | 2.2 | 14.5 |
Perevalnoe mercury mine | ||||||||||||||||
0.1 | 1.5 | 0.9 | 0.4 | 1.1 | 0.1 | 0.3 | 1.2 | 3.1 | 0.8 | 0.6 | 1.0 | 2.4 | 0.5 | 0.8 | 2.2 | 1.6 |
Sakhalinskoe mercury mine | ||||||||||||||||
1.1 | 0.8 | 0.7 | 0.4 | 1.5 | 1.0 | 0.9 | 0.3 | 1.5 | 0.5 | 0.4 | 0.8 | 3.6 | 0.8 | 1.7 | 2.2 | 2.8 |
Buron lead–zinc mine | ||||||||||||||||
0.9 | 0.6 | 9.1 | 1.0 | 1.7 | 1.0 | 2.4 | 2.0 | 3.1 | 1.0 | 4.1 | 3.0 | 1.2 | 2.5 | 4.4 | 2.2 | 7.9 |
Gelendzhik clay mine | ||||||||||||||||
0.1 | 0.5 | 1.4 | 0.2 | 1.0 | 1.0 | 2.4 | 0.2 | 1.9 | 0.4 | 0.5 | 2.0 | 4.8 | 0.4 | 0.5 | 2.2 | 2.4 |
Krymsk clay mine | ||||||||||||||||
0.4 | 0.6 | 4.3 | 0.4 | 0.8 | 1.0 | 3.6 | 1.6 | 3.8 | 1.1 | 0.6 | 2.0 | 0.8 | 2.0 | 2.5 | 2.2 | 2.4 |
Kinzhal clay mine | ||||||||||||||||
0.1 | 0.2 | 11.4 | 0.1 | 0.9 | 1.0 | 3.0 | 0.3 | 1.5 | 1.4 | 0.4 | 1.5 | 16.6 | 0.2 | 0.5 | 2.2 | 4.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alekseenko, V.A.; Shvydkaya, N.V.; Alekseenko, A.V.; Machevariani, M.M.; Bech, J.; Pashkevich, M.A.; Puzanov, A.V.; Nastavkin, A.V.; Roca, N. Element Accumulation Patterns of Native Plant Species under the Natural Geochemical Stress. Plants 2021, 10, 33. https://doi.org/10.3390/plants10010033
Alekseenko VA, Shvydkaya NV, Alekseenko AV, Machevariani MM, Bech J, Pashkevich MA, Puzanov AV, Nastavkin AV, Roca N. Element Accumulation Patterns of Native Plant Species under the Natural Geochemical Stress. Plants. 2021; 10(1):33. https://doi.org/10.3390/plants10010033
Chicago/Turabian StyleAlekseenko, Vladimir A., Natalya V. Shvydkaya, Alexey V. Alekseenko, Maria M. Machevariani, Jaume Bech, Mariya A. Pashkevich, Alexander V. Puzanov, Aleksey V. Nastavkin, and Núria Roca. 2021. "Element Accumulation Patterns of Native Plant Species under the Natural Geochemical Stress" Plants 10, no. 1: 33. https://doi.org/10.3390/plants10010033
APA StyleAlekseenko, V. A., Shvydkaya, N. V., Alekseenko, A. V., Machevariani, M. M., Bech, J., Pashkevich, M. A., Puzanov, A. V., Nastavkin, A. V., & Roca, N. (2021). Element Accumulation Patterns of Native Plant Species under the Natural Geochemical Stress. Plants, 10(1), 33. https://doi.org/10.3390/plants10010033