Metabolite Profile and Antioxidant Activity of Some Species of Genus Scutellaria Growing in Bulgaria
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Plant Material
4.3. Extraction of Polyphenols
4.4. Determination of Total Phenolic/Flavonoid Contents
4.5. Extraction and HPLC Analysis of Individual Flavonoids
4.6. Extraction of Carbohydrates and Organic Acids
4.7. HPLC Analysis of Carbohydrates/Organic Acids
4.8. Determination of Antioxidant Activity
4.8.1. Oxygen Radical Absorbance Capacity (ORAC) Assay
4.8.2. Hydroxyl Radical Averting Capacity (HORAC) Assay
4.8.3. Electrochemical Method for Determination of AOA
4.9. Statistics
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shang, X.; He, X.; He, X.; Li, M.; Zhang, R.; Fan, P.; Zhang, Q.; Jia, Z. The genus Scutellaria an ethnopharmacological and phytochemical review. J. Ethnopharmacol. 2010, 128, 279–313. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-L.; Wang, S.; Kuang, Y.; Hu, Z.-M.; Qiao, X.; Min, Y. A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of Scutellaria baicalensis. Pharm. Boil 2018, 56, 465–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Q.; Chen, Y.; Martin, C. Scutellaria baicalensis, the golden herb from the garden of Chinese medicinal plants. Sci. Bull. 2016, 61, 1391–1398. [Google Scholar] [CrossRef] [Green Version]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef]
- Bejenaru, C.; Mogoşanu, G.D.; Bejenaru, L.E.; Biţă, A.; Bălşeanu, T.-A.; Ionică, F.E. Effect of Scutellariae herba extracts in experimental model of skin burns: Histological and immunohistochemical assessment. Rom. J. Morphol. Embryol. 2016, 57, 1285–1294. [Google Scholar] [PubMed]
- Grzegorczyk-Karolak, I.; Kuz´ma, Ł.; Wysokin´ska, H. Study on the chemical composition and antioxidant activity of extracts from shoot culture and regenerated plants of Scutellaria altissima L. Acta Physiol. Plant. 2015, 37, 1736–1740. [Google Scholar] [CrossRef] [Green Version]
- Bruno, M.; Piozzi, F.; Rosselli, S. Natural and hemisynthetic neoclerodane diterpenoids from Scutellaria and their antifeedant activity. Nat. Prod. Rep. 2002, 19, 357–378. [Google Scholar] [CrossRef]
- Gousiadou, C.; Karioti, A.; Heilmann, J.; Skaltsa, H. Iridoids from Scutellaria albida ssp. Albida. Phytochem. 2007, 68, 1799–1804. [Google Scholar] [CrossRef]
- Roriz, C.L.; Barros, L.; Carvalho, A.-M.; Ferreira, I.C.F.R. HPLC-Profiles of Tocopherols, Sugars, and Organic Acids in Three Medicinal Plants Consumed as Infusions. Int. J. Food Sci. 2014, 2014, 1–5. [Google Scholar] [CrossRef]
- Lopez-Bucio, J.; Nieto-Jacobo, M.F.; Ram´ırez-Rodr´ıguez, V.; Herrera-Estrella, L. Organic acid metabolism in plants: From adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci. 2000, 160, 1–13. [Google Scholar] [CrossRef]
- Hernandez-Marin, E.; Martínez, A. Carbohydrates and Their Free Radical Scavenging Capability: A Theoretical Study. Phys. Chem. 2012, 16, 9668–9675. [Google Scholar] [CrossRef] [PubMed]
- Gibson, S. Plant sugar-response pathways. Part of a complex regulatory web. Plant Physiol. 2000, 124, 1532–1539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, C.; Kim, Y.; Li, X.; Kim, H.; Arasu, M.; Al-Dhabi, N.; Leed, S.; Park, S. Influence of Different Carbohydrates on Flavonoid Accumulation in Hairy Root Cultures of Scutellaria baicalensis. Nat. Prod. Commun. 2016, 11, 799–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Pandey, A. Chemistry and biological activities of flavonoids: An Overview. Sci. World J. 2013, 2013, 16. [Google Scholar] [CrossRef] [Green Version]
- Halliwell, B. Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Arch. Biochem. Biophys. 2008, 476, 107–112. [Google Scholar] [CrossRef]
- Delipavlov, D.; Cheshmedzhiev, I.; Popova, M.; Terzijski, D.; Kovatchev, I. Key to the Plant in Bulgaria; Acad. Press Agrar. Univ.: Plovdiv, Bulgaria, 2003; p. 591. (In Bulgarian) [Google Scholar]
- Bozov, P.; Malakov, P.; Papanov, G.; de la Torre, M.; Rodríguez, B.; Perales, A. Scutalpin A, a neo-clerodane diterpene from Scutellaria alpina. Phytochemistry 1993, 34, 453–456. [Google Scholar] [CrossRef]
- Bozov, P.; Penchev, P.; Vasileva, T.; Iliev, I. Diterpenoids from Scutellaria galericulata. Chem. Nat. Comp. 2014, 49, 479–480. [Google Scholar] [CrossRef]
- Bozov, P.; Girova, T.; Prisadova, N.; Hristova, Y.; Gochev, V. Antimicrobial Activity of neo-Clerodane Diterpenoids isolated from Lamiaceae Species against Pathogenic and Food Spoilage Microorganisms. Nat. Prod. Commun. 2015, 10, 1797–1800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bozov, P.; Georgieva, Y. Antifeedant Activity of Neo-clerodane Diterpenoids from Scutellaria altissima against Colorado Potato Beetle Larvae. Nat. Prod. Commun. 2017, 12, 327–328. [Google Scholar] [CrossRef] [Green Version]
- Bray, E. Molecular responses to water deficit. Plant Physiol. 1993, 103, 1035–1040. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Yuan, Y.; Luo, Y.; Huang, L.; Li, X. Effects of light on flavonoids accumulation and related gene expression in suspension cultures of Scutellaria baicalensis. China J. Chin. Mat. Med. 2010, 35, 49–52. [Google Scholar]
- Yuan, Y.; Liu, Y.; Luo, Y.; Huang, L.; Chen, S.; Yang, Z.; Qin, S. High temperature effects on flavones accumulation and antioxidant system in Scutellaria baicalensis Georgi cells. Afr. J. Biotech. 2011, 10, 5182–5192. [Google Scholar]
- Yuan, Y.; Liu, Y.; Wu, C.; Chen, S.; Wang, Z.; Yang, Z.; Qin, S.; Huang, L. Water deficit affected flavonoid accumulation by regulating hormone metabolism in Scutellaria baicalensis Georgi roots. PLoS ONE 2012, 7, e42946. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, B.; Brearley, T.; Joshee, N. Antioxidant Capacity of Fresh and Dry Leaf Extracts of Sixteen Scutellaria Species. JMAP 2014, 2, 42–49. [Google Scholar]
- Senol, F.; Orhan, I.; Yilmaz, G.; Cicek, M.; Sener, B. Acetylcholinesterase, butyrylcholinesterase, and tyrosinase inhibition studies and antioxidant activities of 33 Scutellaria L. taxa from Turkey. Food Chem. Toxicol. 2010, 48, 781–788. [Google Scholar] [CrossRef] [PubMed]
- Matsa, M.; Bardakci, H.; Gousiadoua, C.; Kirmizibekmez, H.; Skaltsa, H. Secondary metabolites from Scutellaria albida L. ssp. velenovskyi (Rech. f.) Greuter & Burdet. Biochem. Syst. Ecol. 2019, 83, 71–76. [Google Scholar]
- Bardakci, H.; Acar, E.T.; Kırmızıbekmez, H. Simultaneous quantification of six flavonoids in four Scutellaria taxa by HPLC-DAD method. Rev. Bras. Farmacogn. 2019, 29, 17–23. [Google Scholar] [CrossRef]
- Georgiev, M.; Alipieva, K.; Orhan, I.; Abrashev, R.; Denev, P.; Angelova, M. Antioxidant and cholinesterases inhibitory activities of Verbascum xanthophoeniceum Griseb. and its phenylethanoid glycosides. Food Chem. 2011, 128, 100–105. [Google Scholar] [CrossRef]
- Lohani, M.; Ahuja, M.; Buabeid, M.A.; Schwartz, D.; Shannon, D.; Suppiramaniam, V.; Kemppainen, B.; Dhanasekaran, M. Anti-oxidative and DNA Protecting Effects of Flavonoids-rich Scutellaria lateriflora. Nat. Prod. Commun. 2013, 8, 1415–1418. [Google Scholar] [CrossRef] [Green Version]
- Olennikov, D.; Chirikova, N.; Tankhaeva, L. Lamiaceae carbohydrates. IV. Water- soluble polysaccharides from Scutellaria baicalensis. Chem. Nat. Compd. 2008, 44, 556–559. [Google Scholar] [CrossRef]
- Nishizawa, A.; Yabuta, Y.; Shigeoka, S. Galactinol and Raffinose Constitute a Novel Function to Protect Plants from Oxidative Damage. Plant Physiol. 2008, 147, 1251–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, F.; Zhang, M.; Liao, S.; Yu, S.; Chi, J.; Wei, Z. Antioxidant Activity of Polysaccharide-enriched Fractions Extracted from Pulp Tissue of Litchi Chinensis Sonn. Molecules 2010, 15, 2152–2165. [Google Scholar] [CrossRef] [PubMed]
- Chirikova, N.K.; Olennikov, D.N.; Rokhin, A. Organic acids from medicinal plants. 4. Scutellaria baicalensis. Chem. Nat. Compd. 2008, 44, 84–85. [Google Scholar] [CrossRef]
- Kratchanova, M.; Denev, P.; Ciz, M.; Lojek, A.; Mihailov, A. Evaluation of the antioxidant activity of medicinal plants containing polyphenol compounds. Comparison of two extraction systems. Acta Biochim. Pol. 2010, 57, 229–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singleton, V.; Rossi, J. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Chang, C.; Yang, M.; Wen, H.; Chern, J. Estimation of total flavonoid content in propolis by complementary colorimetric methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar]
- Georgieva, Y.; Katsarova, M.; Gercheva, K.; Bozov, P.; Dimitrova, S. HPLC analysis of flavonoids from Scutellaria altissima. Bulgarian. Chem. Commun. Spec. Issue D 2019, 5, 119–123. [Google Scholar]
- Ou, B.; Hampsh-Woodill, M.; Prior, R. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef]
- Ou, B.; Hampsch-Woodill, M.; Flanagan, J.; Deemer, E.; Prior, R.; Huang, D. Novel fluorometric assay for hydroxyl radical prevention capacity using fluorescein as the probe. J. Agric. Food Chem. 2002, 50, 2772–2777. [Google Scholar] [CrossRef]
- Korotkova, E.; Karbainov, Y.; Shevchuk, A. Study of antioxidant properties by voltammetry. J. Electroanal. Chem. 2002, 518, 56–60. [Google Scholar] [CrossRef]
Scutellaria Species | Total Contents | |
Polyphenols, mg GAE 1/100g dry wt | Flavonoids, mg QE 2/100g dry wt | |
S. altissima (M) | 3498.5 e ± 61.6 | 610.7 c ± 32.4 |
S. galericulata (P) | 3256.5 d ± 87.8 | 747.2 d ± 5.8 |
S. altissima (B) | 2048.1 c ± 31.6 | 296.4 b ± 24.9 |
S. albida (M) | 1863.4 b ± 38.7 | 255.6 b ± 10.9 |
S. albida (A) | 1353.1 a ± 33.6 | 162.0 a ± 4.3 |
Carbohydrate, | Scutellaria Species | ||||
---|---|---|---|---|---|
mg/100g dry wt | S. albida(M) | S. albida(A) | S. altissima(B) | S. altissima(M) | S. galericulata(P) |
Fructose | 2160.5 d ± 173.1 | 1584.5 c ± 118.5 | 1095.1 b ± 89.5 | 1297.0 b ± 109.7 | 507.5 a ± 35.8 |
Glucose | 2306.8 b ± 203.7 | 2319.7 b ± 213.7 | 2206.4 b ± 190.6 | 2148.7 b ± 190.8 | 901.4 a ± 65.1 |
Galactose | 1137.2 b ± 83.7 | 1150.8 b ± 91.1 | 2238.0 c ± 183.8 | 1035.4 b ± 73.5 | 384.3 a ± 25.4 |
Rhamnose | 203.2 c ± 12.3 | 152.5 b ± 9.3 | 254.9 d ± 15.5 | 127.7 a ± 6.7 | 157.9 b ± 8.5 |
Xylose | 1264.7 d ± 106.5 | 1012.5 d ± 93.3 | 624.6 c ± 52.5 | 256.7 b ± 18.7 | 120.7 a ± 8.1 |
Sucrose | 873.7 bc ± 77.4 | 1240.1 d ± 94.1 | 756.9 b ± 56.9 | 590.8 a ± 29.1 | 1018.8 cd ± 90.9 |
Cellobiose | 344.6 a ± 24.5 | 337.3 a ± 13.7 | 546.9 b ± 34.7 | 806.5 c ± 50.6 | 458.1 b ± 27.8 |
1 Total | 8290.8 | 7797.4 | 7722.8 | 6262.8 | 3548.7 |
Acid, | Scutellaria Species | ||||
---|---|---|---|---|---|
mg/100 g dry wt | S. albida(A) | S. altissima (M) | S. altissima(B) | S. albida (M) | S. galericulata(P) |
Quinic | 2918.9 d ± 34.1 | 222.4 a ± 21.7 | 1724.4 c ± 120.3 | 413.4 b ± 28.6 | 203.1 a ± 20.6 |
Malic | 538.9 b ± 26.6 | 120.7 a ± 10.5 | 113.8 a ± 12.0 | 112.4 a ± 17.0 | 115.3 a ± 11.8 |
Ascorbic | 93.7 b ± 5.3 | 93.7 b ± 5.3 | 148.9 c ± 10.9 | 60.7 a ± 3.3 | 91.1 b ± 6.4 |
Citric | 267.3 a ± 25.5 | 1029.1 c ± 57.1 | 615.9 b ± 28.6 | 621.3 b ± 46.1 | 608.5 b ± 53.7 |
α-Ketoglutaric | 259.8 c ± 18.3 | 86.4 a ± 8.7 | 152.2 b ± 13.9 | 100.1 a ± 9.9 | 132.1 b ± 8.9 |
Succinic | 4823.2 e ± 124.8 | 2538.5 d ± 152.8 | 929.3 b ± 35.9 | 1803.7 c ± 114.1 | 294.5 a ± 27.6 |
Oxalic | 495.9 e ± 10.4 | 19.5 b ± 1.6 | 332.1 d ± 8.2 | 67.9 ± 3.7 | 8.9 a ± 0.2 |
Tartaric | n.d. | 25.4 b ± 2.7 | 113.2 c ± 6.0 | 22.6 b ± 1.7 | 9.8 a ± 0.7 |
1 Total | 9397.7 | 4148.4 | 4129.8 | 3220.1 | 1463.3 |
Scutellaria Species | Antioxidant Activity | |
ORAC, µmol TE 1/g | HORAC, µmol GAE 2/g | |
S. altissima (M) | 1280.2 c ± 79.7 | 387.5 c ± 29.4 |
S. galericulata (P) | 1155.2 b,c ± 119.2 | 302.4 b ± 27.2 |
S. albida (M) | 1005.6 b ± 68.8 | 653.8 d ± 22.2 |
S. altissima (B) | 926.9 b ± 66.2 | 583.0 d ± 32.1 |
S. albida (A) | 652.3 a ± 51.9 | 201.3 a ± 12.4 |
Scutellaria Species | Extract | K, μmol/L per min ± SD | AOA |
---|---|---|---|
S. altissima (M) | H2O | 17.000 c ± 1.009 | 5.8 |
70% EtOH | 29.392 b ± 2.043 | 10.1 | |
96% EtOH | 22.824 b ± 2.134 | 7.8 | |
MeOH | 31.481 ab ± 3.003 | 10.8 | |
S. albida (A) | H2O | 8.368 a ± 0.148 | 2.9 |
70% EtOH | 24.741 a ± 1.242 | 8.5 | |
96% EtOH | 20.991 b ± 2.213 | 7.2 | |
MeOH | 34.811 b ± 1.983 | 11.9 | |
S. albida (M) | H2O | 10.055 b ± 0.654 | 3.5 |
70% EtOH | 23.192 a ± 1.842 | 7.9 | |
96% EtOH | 20.263 b ± 1.325 | 6.9 | |
MeOH | 46.815 c ± 2.301 | 16.1 | |
S. galericulata (P) | H2O | 9.924 b ± 0.492 | 3.4 |
70% EtOH | 26.157 a ± 1.992 | 8.9 | |
96% EtOH | 24.743 b ± 2.891 | 8.5 | |
MeOH | 43.784 c ± 3.231 | 15.0 | |
S. altissima (B) | H2O | 7.163 a ± 1.016 | 2.5 |
70% EtOH | 22.981 a ± 1.194 | 7.9 | |
96% EtOH | 22.706 b ± 1.891 | 7.8 | |
MeOH | 29.450 a ± 0.990 | 10.1 | |
Trolox | 96% EtOH | 2.911 a ± 0.010 | 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georgieva, Y.; Katsarova, M.; Stoyanov, P.; Mladenov, R.; Denev, P.; Teneva, D.; Plotnikov, E.; Bozov, P.; Dimitrova, S. Metabolite Profile and Antioxidant Activity of Some Species of Genus Scutellaria Growing in Bulgaria. Plants 2021, 10, 45. https://doi.org/10.3390/plants10010045
Georgieva Y, Katsarova M, Stoyanov P, Mladenov R, Denev P, Teneva D, Plotnikov E, Bozov P, Dimitrova S. Metabolite Profile and Antioxidant Activity of Some Species of Genus Scutellaria Growing in Bulgaria. Plants. 2021; 10(1):45. https://doi.org/10.3390/plants10010045
Chicago/Turabian StyleGeorgieva, Yoana, Mariana Katsarova, Plamen Stoyanov, Rumen Mladenov, Petko Denev, Desislava Teneva, Evgeniy Plotnikov, Petko Bozov, and Stela Dimitrova. 2021. "Metabolite Profile and Antioxidant Activity of Some Species of Genus Scutellaria Growing in Bulgaria" Plants 10, no. 1: 45. https://doi.org/10.3390/plants10010045
APA StyleGeorgieva, Y., Katsarova, M., Stoyanov, P., Mladenov, R., Denev, P., Teneva, D., Plotnikov, E., Bozov, P., & Dimitrova, S. (2021). Metabolite Profile and Antioxidant Activity of Some Species of Genus Scutellaria Growing in Bulgaria. Plants, 10(1), 45. https://doi.org/10.3390/plants10010045