Synanthropic Plants as an Underestimated Source of Bioactive Phytochemicals: A Case of Galeopsis bifida (Lamiaceae)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Metabolites of Galeopsis bifida: LC-MS Profile and Chemotaxonomic Significance
2.1.1. Iridoid Glycosides
No | tR(min) a | Compound b | UV Pattern c | CE (eV) d | ESI-MS (m/z) | ||
---|---|---|---|---|---|---|---|
MS e | MS/MS (I, %) f | Adducts g | |||||
Positive ionization | |||||||
1 | 1.20 i | Harpagide O-Hex L [45,46] | IG | +25 | 527 | [527]: 365 (100), 351 (11), 203 (15) | 549 Na |
2 | 1.35 i | Galiridoside O-Hex L [46,47] | IG | +25 | 509 | [509]: 347 (100), 331 (9), 185 (17) | 531 Na |
3 | 1.48 i | Harpagide S [45] | IG | +20 | 365 | [365]: 351 (5), 203 (100) | 387 Na |
4 | 1.69 i | Galiridoside L [47] | IG | +20 | 347 | [347]: 331 (2), 185 (100) | 369 Na |
5 | 1.84 i | Desoxy-harpagide L [48] | IG | +20 | 349 | [349]: 187 (100) | 371 Na |
6 | 2.02 i | Antirrhinoside O-Hex L [46,49] | IG | +25 | 525 | [525]: 363 (100), 347 (4), 201 (10) | 547 Na |
7 | 2.43 i | Galiridoside O-Ac L [46,47] | IG | +25 | 389 | [389]: 247 (5), 227 (100), 185 (25) | 411 Na |
8 | 2.73 i | Antirrhinoside L [49] | IG | +20 | 363 | [363]: 347 (8), 201 (100) | 385 Na |
9 | 5.04 i | Harpagide O-Ac-O-Hex L [45,46] | IG | +15 | 569 | [569]: 407 (100) [407]: 365 (12), 245 (100), 203 (19) | 591 Na |
10 | 5.12 i | Harpagide O-Ac-O-Hex L [45,46] | IG | +20 | 569 | [569]: 407 (100) [407]: 365 (14), 245 (100), 203 (24) | 591 Na |
11 | 5.42 i | Antirrhinoside O-Ac L [46,49] | IG | +25 | 405 | [405]: 363 (11), 243 (100), 201 (22) | 427 Na |
12 | 5.56 i | Antirrhinoside O-Ac L [46,49] | IG | +25 | 405 | [405]: 363 (9), 243 (100), 201 (20) | 427 Na |
13 | 5.68 i | Harpagide O-Ac2-O-Hex L [45,46] | IG | +20 | 611 | [611]: 569 (23), 407 (100) [407]: 365 (12), 245 (100), 203 (20) | 633 Na |
14 | 6.14 i | Harpagide O-Ac2-O-Hex L [45,46] | IG | +20 | 611 | [611]: 569 (22), 407 (100) [407]: 365 (9), 245 (100), 203 (25) | 633 Na |
15 | 6.48 i | Harpagide 8-O-Ac S [45,46] | IG | +20 | 407 | [407]: 365 (15), 245 (100), 203 (24) | 429 Na |
16 | 6.78 i | Reptoside or ajugoside O-Hex L [46,48,50] | IG | +22 | 553 | [553]: 319 (100) [391]: 349 (6), 229 (100), 187 (19) | 575 Na |
17 | 6.97 i | Reptoside or ajugoside O-Hex L [46,48,50] | IG | +22 | 553 | [553]: 319 (100) [391]: 349 (16), 229 (100), 187 (19) | 575 Na |
18 | 7.12 i | Harpagide O-Ac3-O-Hex2 L [45,46] | IG | +22 | 815 | [815]: 653 (100), 491 (54) [491]: 449 (7), 407 (12), 245 (100) [407]: 365 (9), 245 (100), 203 (17) | 837 Na |
19 | 7.26 i | Harpagide O-Ac3-O-Hex2 L [45,46] | IG | +22 | 815 | [815]: 653 (100), 491 (50) [491]: 449 (5), 407 (16), 245 (100) [407]: 365 (10), 245 (100), 203 (21) | 837 Na |
20 | 7.45 i | Ajugol S [50] | IG | +25 | 349 | [349]: 187 (100), 171 (5) | 371 Na |
21 | 7.68 i | Harpagide O-Ac2 [45,46] | IG | +25 | 449 | [449]: 407 (100), 245 (29) [407]: 365 (8), 245 (100), 203 (10) | 471 Na |
22 | 7.79 i | Harpagide O-Ac2 L [45,46] | IG | +25 | 449 | [449]: 407 (100), 245 (25) [407]: 365 (10), 245 (100), 203 (15) | 471 Na |
23 | 7.98 i | Secologanin S [46] | IG | +28 | 389 | [389]: 375 (11), 227 (100), 213 (8) | 411 Na |
24 | 8.18 i | Harpagide O-Ac3-O-Hex L [45,46] | IG | +22 | 653 | [653]: 491 (100) [491]: 449 (6), 407 (10), 245 (100) [407]: 365 (10), 245 (100), 203 (15) | 675 Na |
25 | 8.33 i | Reptoside S [48] | IG | +25 | 391 | [391]: 349 (4), 229 (100), 187 (17) | 413 Na |
26 | 8.49 i | Harpagide O-Ac3-O-Hex L [45,46] | IG | +22 | 653 | [653]: 491 (100) [491]: 449 (4), 407 (11), 245 (100) [407]: 365 (12), 245 (100), 203 (14) | 675 Na |
27 | 8.97 i | Ajugoside S [50] | IG | + 25 | 391 | [391]: 349 (15), 229 (100), 187 (15) | 413 Na |
28 | 9.29 i | Harpagide O-Ac3 L [45,46] | IG | +25 | 491 | [491]: 449 (3), 407 (12), 245 (100) [407]: 365 (10), 245 (100), 203 (12) | 513 Na |
29 | 8.67 i | Harpagide O-Ac3 L [45,46] | IG | +25 | 491 | [491]: 449 (5), 407 (10), 245 (100) [407]: 365 (8), 245 (100), 203 (7) | 513 Na |
30 | 10.01 i | Harpagide O-Ac3 L [45,46] | IG | +25 | 491 | [491]: 449 (3), 407 (14), 245 (100) [407]: 365 (4), 245 (100), 203 (14) | 513 Na |
31 | 17.85 i | Reptoside or ajugoside O-Ac S [46,48,50] | IG | +25 | 433 | [433]: 391 (9), 229 (100) [391]: 349 (27), 229 (100), 187 (14) | 455 Na |
32 | 19.09 i | Reptoside or ajugoside O-Ac L [46,48,50] | IG | +25 | 433 | [433]: 391 (26), 229 (100) [391]: 349 (14), 229 (100), 187 (17) | 455 Na |
33 | 19.57 i | Reptoside or ajugoside O-Ac L [46,48,50] | IG | +25 | 433 | [433]: 391 (21), 229 (100) [391]: 349 (11), 229 (100), 187 (15) | 455 Na |
Negative ionization | |||||||
34 | 6.48 ii | Verbascoside/ isoverbascoside O-Pent2 L [51] | PEG | −30 | 887 | [887]: 755 (100), 593 (20) [593]: 461 (100), 315 (24), 153 (4) | |
35 | 7.02 ii | Verbascoside/ isoverbascoside O-Pent2 L [51] | PEG | −30 | 887 | [887]: 755 (69), 623 (100), 491 (11), 461 (26) [461]: 315 (100), 153 (27) | |
36 | 7.09 ii | Verbascoside/ isoverbascoside O-Pent2 L [51] | PEG | −30 | 887 | [887]: 755 (73), 623 (100), 491 (15), 461 (19) [461]: 315 (100), 153 (16) | |
37 | 7.38 ii | Hydroxy-verbascoside L [51] | PEG | −25 | 639 | [639]: 493 (15), 477 (100), 331 (12) [477]: 331 (100), 169 (14) | 685 FA |
38 | 7.97 ii | Lavandulifolioside S [51,52] | PEG | −25 | 755 | [755]: 623 (5), 603 (1), 593 (100), 461 (45) [461]: 315 (100), 153 (26) | 801 FA |
39 | 8.11 ii | Leucosceptoside A O-Pent2 L [51,52] | PEG | −25 | 901 | [901]: 769 (63), 637 (100) [637]: 505 (10), 461 (100) [461]: 315 (100), 153 (9) | |
40 | 8.23 ii | Verbascoside/ isoverbascoside O-Pent L [51] | PEG | −30 | 755 | [755]: 623 (11), 603 (2), 593 (100), 461 (40) [461]: 315 (100), 153 (14) | 801 FA |
41 | 8.33 ii | Leucosceptoside A O-Pent L [51,52] | PEG | −25 | 769 | [769]: 637 (11), 617 (1), 593 (100), 461 (14) [461]: 315 (100), 153 (18) | 815 FA |
42 | 8.51 ii | Verbascoside S [51] | PEG | −25 | 623 | [623]: 477 (2), 471 (1), 461 (100), 161 (23) [461]: 315 (100), 153 (31) | 669 FA |
43 | 8.77 ii | Leonoside A S [51] | PEG | −25 | 769 | [769]: 637 (9), 617 (2), 593 (100), 461 (27) [461]: 315 (100), 153 (30) | 815 FA |
44 | 8.92 ii | Luteolin 7-O-Glc S [53] | LG | −20 | 447 | [447]: 285 (100) | 493 FA |
45 | 9.06 ii | Isoverbascoside S [51] | PEG | −25 | 623 | [623]: 477 (1), 471 (1), 461 (100), 161 (19) [461]: 315 (100), 153 (26) | 669 FA |
46 | 9.43 ii | Leucosceptoside A S [51,52] | PEG | −25 | 637 | [637]: 505 (12), 461 (100) [461]: 315 (100), 153 (12) | 683 FA |
47 | 9.56 ii | Leonoside B S [51] | PEG | −27 | 783 | [783]: 651 (5), 607 (100), 475 (14) [607]: 475 (100), 329 (32), 167 (14) | 829 FA |
48 | 9.72 ii | Verbascoside/ isoverbascoside O-Pent2-O-Caf L [46,51] | PEG | −35 | 1049 | [1049]: 887 (62), 755 (32), 623 (100) [623]: 477 (5), 471 (2), 461 (100), 161 (14) [461]: 315 (100), 153 (29) | |
49 | 9.92 ii | Verbascoside/ isoverbascoside O-Pent2-O-Caf L [46,51] | PEG | −35 | 1049 | [1049]: 887 (54), 755 (52), 623 (100) [623]: 477 (3), 471 (1), 461 (100), 161 (19) [461]: 315 (100), 153 (25) | |
50 | 10.12 ii | Apigenin 7-O-Glc S [53] | AG | −20 | 431 | [431]: 269 (100) | 477 FA |
51 | 10.45 ii | Verbascoside/ isoverbascoside O-Pent2-O-Caf L [46,51] | PEG | −35 | 1049 | [1049]: 887 (52), 755 (63), 623 (100) [623]: 477 (1), 471 (1), 461 (100), 161 (26) [461]: 315 (100), 153 (18) | |
52 | 11.15 ii | Martynoside S [52] | PEG | −30 | 651 | [651]: 505 (2), 475 (100) [475]: 329 (100), 167 (29) | 697 FA |
53 | 12.41 ii | Verbascoside/ isoverbascoside O-Pent-O-Caf L [46,51] | PEG | −35 | 917 | [917]: 755 (48), 623 (100), 461 (11) [623]: 477 (5), 471 (1), 461 (100), 161 (14) [461]: 315 (100), 153 (26) | |
54 | 13.25 ii | Verbascoside/ isoverbascoside O-Pent-O-Caf L [46,51] | PEG | −35 | 917 | [917]: 755 (36), 623 (100), 461 (15) [623]: 477 (3), 471 (1), 461 (100), 161 (18) [461]: 315 (100), 153 (14) | |
55 | 13.90 ii | Leucosceptoside A O-Pent-O-Caf L [46,51] | PEG | −30 | 931 | [931]: 769 (89), 637 (100) [637]: 505 (16), 461 (100) [461]: 315 (100), 153 (14) | |
56 | 14.22 ii | Leucosceptoside A O-Pent-O-Caf L [46,51] | PEG | −30 | 931 | [931]: 769 (73), 637 (100) [637]: 505 (15), 461 (100) [461]: 315 (100), 153 (9) | |
57 | 14.48 ii | Leonoside B O-Pent-O-Caf L [46,51] | PEG | −35 | 1077 | [1077]: 915 (73), 783 (100) [783]: 651 (7), 607 (100), 475 (12) [607]: 475 (100), 329 (30), 167 (10) | |
58 | 14.96 ii | Verbascoside/ isoverbascoside O-Pent-O-Caf2 L [46,51] | PEG | −35 | 1079 | [1079]: 917 (76), 755 (93), 623 (100) [623]: 477 (7), 461 (100), 161 (17) [461]: 315 (100) | |
59 | 15.48 ii | Verbascoside/ isoverbascoside O-Pent-O-Caf2 L [46,51] | PEG | −35 | 1079 | [1079]: 917 (63), 755 (82), 623 (100) [623]: 477 (11), 461 (100), 161 (14) [461]: 315 (100) | |
60 | 15.59 ii | Leucosceptoside A O-Pent-O-Caf2 L [46,51] | PEG | −35 | 1093 | [1093]: 931 (64), 769 (83), 637 (100) [637]: 505 (18), 461 (100) [461]: 315 (100), 153 (14) | |
61 | 16.47 ii | Leucosceptoside A O-Pent-O-Caf2 L [46,51] | PEG | −35 | 1093 | [1093]: 931 (60), 769 (85), 637 (100) [637]: 505 (15), 461 (100) [461]: 315 (100), 153 (11) | |
62 | 17.97 ii | Leonoside B O-Pent-O-Caf2 L [46,51] | PEG | −38 | 1239 | [1239]: 1077 (22), 915 (94), 783 (100) [783]: 651 (4), 607 (100) [607]: 475 (100), 329 (25), 167 (12) | |
63 | 18.87 ii | Verbascoside/ isoverbascoside O-Pent-O-Caf2-O-Fer L [46,51] | PEG | −35 | 1255 | [1255]: 1093 (52), 1079 (12), 931 (76), 755 (100) [755]: 623 (100) [623]: 477 (10), 461 (100), 161 (12) [461]: 315 (100) | |
64 | 19.02 ii | Verbascoside/ isoverbascoside O-Pent-O-Caf2-O-Fer L [46,51] | PEG | −35 | 1255 | [1255]: 1093 (48), 1079 (9), 931 (78), 755 (100) [755]: 623 (100) [623]: 477 (11), 461 (100), 161 (4) [461]: 315 (100) | |
65 | 11.21 iii | 1-O-Caffeoylquinic acid S [54] | CQA | −15 | 353 | [353]: 191 (100), 179 (5) | 399 FA |
66 | 11.48 iii | 4-O-Caffeoylquinic acid S [54] | CQA | −15 | 353 | [353]: 191 (35), 179 (100), 135 (18) | 399 FA |
67 | 12.32 iii | Phaselic acid S [55] | CQA | −15 | 293 | [293]: 179 (100) | 339 FA |
68 | 12.98 iii | 5-O-Caffeoylquinic acid S [54] | CQA | −15 | 353 | [353]: 191 (100), 179 (6), 135 (5) | 399 FA |
69 | 14.17 iii | 3-O-Caffeoylquinic acid S [54] | CQA | −15 | 353 | [353]: 191 (100), 179 (5), 135 (12) | 399 FA |
70 | 14.36 iii | 6-Hydroxyluteolin O-HexA-O-Hex L [46,56,57] | HLG | −20 | 639 | [639]: 477 (32), 301 (100) | |
71 | 14.92 iii | Luteolin O-HexA-O-Hex L [46,56] | LG | −20 | 623 | [623]: 461 (28), 285 (100) | |
72 | 15.29 iii | Apigenin O-HexA-O-Hex L [46,58] | AG | −22 | 607 | [607]: 445 (38), 269 (100) | |
73 | 16.97 iii | 6-Hydroxyluteolin 7-O-GlcA S [46,56,57] | HLG | −20 | 477 | [477]: 301 (100) | 523 FA |
74 | 17.69 iii | Luteolin 7-O-GlcA S [58] | LG | −20 | 461 | [461]: 285 (100) | 507 FA |
75 | 18.42 iii | Luteolin O-pCou-O-HexA-O-Hex L [46,59] | LGC | −25 | 769 | [769]: 623 (100), 461 (25) [623]: 461 (39), 285 (100) | |
76 | 18.91 iii | Scutellarein 7-O-GlcA S [60] | SG | −30 | 461 | [461]: 285 (100) | 507 FA |
77 | 19.26 iii | 6-Hydroxyluteolin O-pCou-O-HexA L [57,59] | LGC | −25 | 623 | [623]: 477 (32), 301 (100) | |
78 | 20.02 iii | Apigenin 7-O-GlcA S [58] | AG | −20 | 445 | [445]: 269 (100) | 491 FA |
79 | 20.42 iii | Luteolin O-HexA L [57,59] | LG | −20 | 461 | [461]: 285 (100) | 507 FA |
80 | 23.03 iii | Luteolin O-pCou-O-HexA L [54,56] | LGC | −25 | 607 | [607]: 461 (15), 431 (2), 285 (100) | |
81 | 24.85 iii | Luteolin O-pCou-O-HexA L [54,59] | LGC | −25 | 607 | [607]: 461 (17), 431 (3), 285 (100) | 653 FA |
82 | 27.91 iii | Scutellarein O-pCou-O-HexA L [59,60] | SGC | −30 | 607 | [607]: 461 (35), 285 (100) | |
83 | 29.12 iii | Apigenin O-pCou-O-HexA L [58] | AGC | −25 | 591 | [591]: 445 (37), 415 (3), 269 (100) | 637 FA |
84 | 29.93 iii | Luteolin 7-O-(6’’-O-pCou)-Glc S [58] | LGC | −20 | 593 | [593]: 447 (27), 285 (100) | 639 FA |
85 | 30.05 iii | Apigenin O-pCou-O-Hex L [58,59] | AGC | −30 | 591 | [591]: 445 (53), 269 (100) | |
86 | 30.94 iii | Apigenin 7-O-(6’’-O-pCou)-Glc S [58] | AGC | −30 | 591 | [591]: 445 (42), 269 (100) | 637 FA |
87 | 32.88 iii | Luteolin O-pCou2-O-HexA L [58,59] | LGC | −35 | 753 | [753]: 607 (2), 461 (30), 285 (100) | |
88 | 34.20 iii | Apigenin O-pCou2-O-HexA L [58,59] | AGC | −35 | 737 | [737]: 591 (1), 445 (27), 269 (100) | |
89 | 36.22 iii | Apigenin O-pCou2-O-Hex L [58,59] | AGC | −35 | 737 | [737]: 591 (2), 445 (31), 269 (100) | |
90 | 38.14 iii | Apigenin O-pCou2-O-Hex L [58,59] | AGC | −35 | 737 | [737]: 591 (1), 445 (18), 269 (100) |
2.1.2. Phenylethanoid Glycosides
2.1.3. Hydroxycinnamates
2.1.4. Neutral Flavone Glycosides
2.1.5. Acidic Flavone Glycosides
2.1.6. Chemotaxonomic Significance of G. bifida Metabolites
2.2. Quantification of G. Bibida Metabolites: Organ Distribution and Two Siberian Chemotypes
2.2.1. Distribution of Selected Metabolites in G. bifida Organs
2.2.2. Two Siberian Chemotypes of G. bifida
2.3. Bioactivity of G. bifida Extracts: Acute Toxicity and Antioxidant Potential
3. Materials and Methods
3.1. Plant Material and Chemicals
3.2. Plant Extracts Preparation
3.3. Polyamide Solid-Phase Extraction
3.4. High-Performance Liquid Chromatography with Photodiode Array Detection and Electrospray Ionization Triple Quadrupole Mass Spectrometric Detection (HPLC-PDA-ESI-tQ-MS)
3.5. Metabolite Quantification
3.6. Acute Toxicity
3.7. Antioxidant Activity
3.8. Statistical and Multivariate Analysis
4. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- El-Sabaawi, R. Trophic structure in a rapidly urbanizing planet. Funct. Ecol. 2018, 32, 1718–1728. [Google Scholar] [CrossRef] [Green Version]
- Mashkova, I.V.; Krupnova, T.G.; Kostryukova, A.M.; Vlasov, N.E. Biodiversity of weeds in Ilmen State Reserve, Russia. Biodiversitas 2018, 19, 106–111. [Google Scholar] [CrossRef]
- Cardinale, B.J.; Duffy, J.E.; Gonzalez, A.; Hooper, D.U.; Perrings, C.; Venail, P.; Narwani, A.; MacE, G.M.; Tilman, D.; Wardle, D.A.; et al. Biodiversity loss and its impact on humanity. Nature 2012, 486, 59–67. [Google Scholar] [CrossRef]
- The Plant List. Available online: http://www.theplantlist.org/1.1/browse/A/Lamiaceae/Galeopsis/ (accessed on 1 November 2020).
- Bendiksby, M.; Thorbek, L.; Scheen, A.-C.; Lindqvist, C.; Ryding, O. An updated phylogeny and classification of Lamiaceae subfamily Lamioideae. Taxon 2011, 60, 471–484. [Google Scholar] [CrossRef]
- Sticher, O.; Rogenmoser, E.; Weisflog, A. Neue iridoidglucoside aus Galeopsis tetrahit L. und Galeopsis pubescens Bess. (Labiatae). Tetrahedr. Lett. 1975, 16, 291–294. [Google Scholar] [CrossRef]
- Wieffering, J.H. Chromosome numbers, scutellarin and iridoid patterns in the genus Galeopsis (Labiatae). Bot. Helv. 1983, 93, 239–253. [Google Scholar]
- Wieffering, J.H.; Fikenscher, L.H. Aucubinartige glucoside als systematische merkmale bei Labiaten II. Galeopsis. Biochem. Syst. Ecol. 1974, 2, 39–46. [Google Scholar] [CrossRef]
- Wieffering, J.H. Aucubinartige glucoside (pseudoindikane) und verwandte heteroside als systematische merkmale. Phytochemistry 1966, 5, 1053–1064. [Google Scholar] [CrossRef]
- Sticher, O. Galiridosid, ein neues iridoidglucosid aus Galeopsis tetrahit L. (Labiatae). Tetrahedr. Lett. 1970, 11, 3197–3200. [Google Scholar] [CrossRef]
- Venditti, A.; Serrilli, A.M.; Bianco, A. A new flavonoid and other polar compounds from Galeopsis angustifolia Ehrh. ex Hoffm. Nat. Prod. Res. 2013, 27, 412–416. [Google Scholar] [CrossRef]
- Rodriguez, B.; Savona, G. Diterpenoids from Galeopsis angustifolia. Phytochemistry 1980, 19, 1805–1807. [Google Scholar] [CrossRef]
- Pérez-Sirvent, L.; Rodríguez, B.; Savona, G.; Servetta, O. Rearranged labdane diterpenoids from Galeopsis angustifolia. Phytochemistry 1983, 22, 527–530. [Google Scholar] [CrossRef]
- Savona, G.; Bruno, M.; Servettaz, O.; Rodríguez, B. Galeuterone and pregaleuterone, labdane diterpenoids from Galeopsis reuteri. Phytochemistry 1984, 23, 2958–2959. [Google Scholar] [CrossRef]
- Trotin, F.; Pinkas, M. The polyphenols of Galeopsis ochroleuca Lam. (Labiata). Plant. Med. Phytother. 1979, 13, 94–98. [Google Scholar]
- Calis, I.; Lahloub, M.F.; Rogenmoser, E.; Sticher, O. Isomartynoside, a phenylpropanoid glycoside from Galeopsis pubescens. Phytochemistry 1984, 23, 2313–2315. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; Gil, M.I.; Ferreres, F.; Tomás-Lorente, F. Correlations between flavonoid composition and infrageneric taxonomy of some European Galeopsis species. Phytochemistry 1991, 30, 3311–3314. [Google Scholar] [CrossRef]
- Gritsenko, E.N.; Litvinenko, V.I. New flavonoid compounds from Galeopsis ladanum. Chem. Nat. Comp. 1969, 5, 48–49. [Google Scholar] [CrossRef]
- Uriarte-Pueyo, I.; Calvo, M.I. Structure–activity relationships of acetylated flavone glycosides from Galeopsis ladanum L. (Lamiaceae). Food Chem. 2010, 120, 679–683. [Google Scholar] [CrossRef]
- Savona, G.; Piozzi, F.; Rodriguez, B.; Servettaz, O. Galangustin, a new flavone from Galeopsis angustifolia. Heterocycles 1982, 19, 1581–1584. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; Gil, M.I.; Ferreres, F.; Tomás-Lorente, F. Flavonoid p-coumaroylglucosides and 8-hydroxyflavone allosylglucosides in some Labiatae. Phytochemistry 1992, 31, 3097–3102. [Google Scholar] [CrossRef]
- Gusakova, S.D.; Vinokurov, I.I.; Umarov, A.U. Epoxy and hydroxy acids of the seed oil of Galeopsis bifida. Chem. Nat. Comp. 1981, 17, 217–223. [Google Scholar] [CrossRef]
- Gusakova, S.D.; Khomova, T.V. New oxo acids of the seed oil of Galeopsis bifida. Chem. Nat. Comp. 1984, 20, 266–270. [Google Scholar] [CrossRef]
- Asilbekova, D.T.; Gusakova, S.D.; Moiseeva, G.P.; Glushenkova, A.I. New epoxy acids of Galeopsis bifida. Chem. Nat. Comp. 1987, 23, 186–192. [Google Scholar] [CrossRef]
- Gusakova, S.D.; Asilbekova, D.T. Hydroxy acids of the reserve lipids of Galeopsis bifida. Chem. Nat. Comp. 1991, 27, 655–663. [Google Scholar] [CrossRef]
- Khomova, T.V.; Gusakova, S.D.; Umarov, A.U. Structure of the triacyl- and epoxyacyldiacylglycerols of the seeds of Galeopsis bifida. Chem. Nat. Comp. 1983, 19, 225–226. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Dudareva, L.V.; Tankhaeva, L.M. Chemical composition of essential oils from Galeopsis bifida and Phlomoides tuberosa. Chem. Nat. Comp. 2010, 46, 316–318. [Google Scholar] [CrossRef]
- Flamini, G.; Cioni, P.L.; Morelli, I. Essential oils of Galeopsis pubescens and G. tetrahit from Tuscany (Italy). Flavour Fragr. J. 2004, 19, 327–329. [Google Scholar] [CrossRef]
- Czarnecki, R.; Librowski, T.; Zélbala, K.; Kohlmünzer, S. Pharmacological properties of a lyophilizate from Galeopsis ladanum on the central nervous system of rodents. Phytother. Res. 1993, 7, 9–12. [Google Scholar] [CrossRef]
- Matkowski, A.; Piotrowska, M. Antioxidant and free radical scavenging activities of some medicinal plants from the Lamiaceae. Fitoterapia 2006, 77, 346–353. [Google Scholar] [CrossRef]
- Uriarte, P.I.; Calvo, M.I. Phytochemical study and evaluation of antioxidant, neuroprotective and acetylcholinesterase inhibitor activities of Galeopsis ladanum L. extracts. Phcog. Mag. 2009, 5, 287–290. [Google Scholar] [CrossRef]
- Beketova, O.A. Analysis of the weeds species diversity in the Sukhobuzimsky district. Bull. Kazan State Agrar. Univ. 2016, 20, 108–114. [Google Scholar]
- Illi, I.E.; Takalanadze, G.O.; Illi, A.I. Elimination of weeds from agrocenoses in the conditions of adaptive landscape agriculture in the Irkutsk region. Sci. Lett. Trans-Baikal State Human. Pedagog. Univ. 2013, 3, 96–101. [Google Scholar]
- Kletter, C.; Kriechbaum, M. Tibetan Medicinal Plants; Medpharm Scientific Publ.: Stuttgart, Germany, 2001; pp. 120–127. [Google Scholar]
- Aseeva, T.A.; Dashiev, D.B.; Dashiev, A.D.; Nikolaev, S.M.; Surkova, N.A.; Chekhirova, G.V.; Yurina, T.A. Tibetan Medicine of Buryats; Publishing House SB RAS: Novosibirsk, Russia, 2008; pp. 217–263. [Google Scholar]
- Shreter, A.I. Medical Flora of Soviet Far East; Meditsina: Moscow, Russia, 1975; pp. 236–244. [Google Scholar]
- Minaeva, V.G. Medical Plants of Siberia; Nauka: Novosibirsk, Russia, 1970; pp. 158–159. [Google Scholar]
- Makarov, A.A. Biologically Active Substances of Plants of Yakutia; YaNTs: Yakutsk, Russia, 1989; pp. 70–72. [Google Scholar]
- Alimbaeva, P.K.; Goncharova, A.V. Wild-Growing Medical Plants of Kirgizia; Nauka: Frunze, USSR, 1971; pp. 42–45. [Google Scholar]
- Sokolov, P.D. Plant Recourses of USSR: Family Hippuridaceae–Lobeliaceae; Nauka: St. Petersburg, Russia, 1991; pp. 25–27. [Google Scholar]
- Beloruchev, E. Toxicity of Galeopsis speciosa. Gigiena i Sanitariia 1950, 5, 48–49. [Google Scholar] [PubMed]
- Jutmann. Vergiftungszufälle vom fetten Oel der gelben Hanfnessel, Galeopsis cannabina (versicolor). Arch. Pharm. 1839, 68, 297–298. [Google Scholar] [CrossRef] [Green Version]
- Uriarte-Pueyo, I.; Goicoechea, M.; Gil, A.G.; López de Cerain, A.; López de Munain, A.; Calvo, M.I. Negative evidence for stachydrine or Galeopsis ladanum L. seeds as the causal agents of coturnism after quail meat ingestion. J. Agric. Food Chem. 2009, 25, 11055–11059. [Google Scholar] [CrossRef] [PubMed]
- Komissarenko, N.F.; Derkach, A.I.; Sheremet, I.P.; Pakali, D.A. Harpagide and harpagide acetate from some species of the family Labiatae. Chem. Nat. Comp. 1977, 12, 101–102. [Google Scholar] [CrossRef]
- Grąbkowska, R.; Mielicki, W.; Wielanek, M.; Wysokińska, H. Changes of phenylethanoid and iridoid glycoside distribution in various tissues of shoot cultures and regenerated plants of Harpagophytum procumbens (Burch.) DC. ex Meisn. S. Afr. J. Bot. 2014, 95, 159–164. [Google Scholar] [CrossRef] [Green Version]
- Olennikov, D.N.; Gadimli, A.I.; Isaev, J.I.; Kashchenko, N.I.; Prokopyev, A.S.; Katayeva, T.N.; Chirikova, N.K.; Vennos, C. Caucasian Gentiana species: Untargeted LC-MS metabolic profiling, antioxidant and digestive enzyme inhibiting activity of six plants. Metabolites 2019, 9, 271. [Google Scholar] [CrossRef] [Green Version]
- Tasdemir, D.; Scapozza, L.; Zerbe, O.; Linden, A.; Çalis, I.; Sticher, O. Iridoid glycosides of Leonurus persicus. J. Nat. Prod. 1999, 62, 811–816. [Google Scholar] [CrossRef]
- Venditti, A.; Frezza, C.; Lorenzetti, L.M.; Maggi, F.; Serafini, M.; Bianco, A. Reassessment of the polar fraction of Stachys alopecuros (L.) Benth. subsp. divulsa (Ten.) Grande (Lamiaceae) from the Monti Sibillini National Park: A potential source of bioactive compounds. J. Intercult. Ethnopharmacol. 2017, 6, 144–153. [Google Scholar] [CrossRef]
- Mahran, E.; Morlock, G.E.; Keusgen, M. Guided isolation of new iridoid glucosides from Anarrhinum pubescens by high-performance thin-layer chromatography-acetylcholinesterase assay. J. Chromatogr. A 2020, 1609, 460438. [Google Scholar] [CrossRef] [PubMed]
- Luca, S.V.; Miron, A.; Aprotosoaie, A.C.; Mihai, C.-T.; Vochita, G.; Gherghel, D.; Ciocarlan, N.; Skalicka-Woźniak, K. HPLC-DAD-ESI-Q-TOF-MS/MS profiling of Verbascum ovalifolium Donn ex Sims and evaluation of its antioxidant and cytogenotoxic activities. Phytochem. Anal. 2019, 30, 34–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitschmann, A.; Zehl, M.; Heiss, E.; Purevsuren, S.; Urban, E.; Dirsch, V.M.; Glasl, S. Quantitation of phenylpropanoids and iridoids in insulin-sensitising extracts of Leonurus sibiricus L. (Lamiaceae). Phytochem. Anal. 2015, 27, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Grzegorczyk-Karolak, I.; Kiss, A.K. Determination of the phenolic profile and antioxidant properties of Salvia viridis L. shoots: A comparison of aqueous and hydroethanolic extracts. Molecules 2018, 23, 1468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olennikov, D.N.; Kashchenko, N.I.; Chirikova, N.K.; Gornostai, T.G.; Selyutina, I.Y.; Zilfikarov, I.N. Effect of low temperature cultivation on the phytochemical profile and bioactivity of Arctic plants: A case of Dracocephalum palmatum. Int. J. Molec. Sci. 2017, 18, 2579. [Google Scholar] [CrossRef] [Green Version]
- Olennikov, D.N.; Chirikova, N.K.; Kashchenko, N.I.; Nikolaev, V.M.; Kim, S.-W.; Vennos, C. Bioactive phenolics of the genus Artemisia (Asteraceae): HPLC-DAD-ESI-TQ-MS/MS profile of the Siberian species and their inhibitory potential against α-amylase and α-glucosidase. Front. Pharmacol. 2018, 9, 756. [Google Scholar] [CrossRef]
- Sullivan, M.L. Identification of bean hydroxycinnamoyl-CoA:tetrahydroxyhexanedioate hydroxycinnamoyl transferase (HHHT): Use of transgenic alfalfa to determine acceptor substrate specificity. Planta 2017, 245, 397–408. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Kashchenko, N.I.; Chirikova, N.K.; Vasil’eva, A.G.; Gadimli, A.I.; Isaev, J.I.; Vennos, C. Caffeoylquinic acids and flavonoids of fringed sagewort (Artemisia frigida Willd.): HPLC-DAD-ESI-QQQ-MS profile, HPLC-DAD quantification, in vitro digestion stability, and antioxidant capacity. Antioxidants 2019, 8, 307. [Google Scholar] [CrossRef] [Green Version]
- Olennikov, D.N.; Kashchenko, N.I. New flavonoids and turkesterone-2-O-cinnamate from leaves of Rhaponticum uniflorum. Chem. Nat. Comp. 2019, 55, 256–264. [Google Scholar] [CrossRef]
- Kashchenko, N.I.; Olennikov, D.N. Phenolome of Asian agrimony tea (Agrimonia asiatica Juz., Rosaceae): LC-MS profile, α-glucosidase inhibitory potential and stability. Foods 2020, 9, 1348. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Vasilieva, A.G.; Chirikova, N.K. Fragaria viridis fruit metabolites: Variation of LC-MS profile and antioxidant potential during ripening and storage. Pharmaceuticals 2020, 13, 262. [Google Scholar] [CrossRef] [PubMed]
- Olennikov, D.N.; Chirikova, N.K.; Tankhaeva, L.M. Phenolic compounds of Scutellaria baicalensis Georgi. Russ. J. Bioorg. Chem. 2010, 36, 816–824. [Google Scholar] [CrossRef]
- Morteza-Semnani, K.; Ghanbarimasir, Z. A review on traditional uses, phytochemistry and pharmacological activities of the genus Ballota. J. Ethnopharmacol. 2019, 233, 197–217. [Google Scholar] [CrossRef] [PubMed]
- Yalçin, F.N.; Kaya, D. Ethnobotany, pharmacology and phytochemistry of the genus Lamium (Lamiaceae). Fabad J. Pharm. Sci. 2006, 31, 43–53. [Google Scholar]
- Amor, I.L.-B.; Boubaker, J.; Sgaier, M.B.; Skandrani, I.; Bhouri, W.; Neffati, A.; Kilani, S.; Bouhlel, I.; Ghedira, K.; Chekir-Ghedira, L. Phytochemistry and biological activities of Phlomis species. J. Ethnopharmacol. 2009, 125, 183–202. [Google Scholar] [CrossRef] [PubMed]
- Tundis, R.; Peruzzi, L.; Menichini, F. Phytochemical and biological studies of Stachys species in relation to chemotaxonomy: A review. Phytochemistry 2014, 102, 7–39. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Chirikova, N.K. New flavonol glycosides from Rhodiola quadrifida. Chem. Nat. Comp. 2020, 56, 1048–1054. [Google Scholar] [CrossRef]
- Mansour, R.M.A.; Saleh, N.A.M.; Boulos, L. A chemosystematic study of the phenolics of Sonchus. Phytochemistry 1983, 22, 489–492. [Google Scholar] [CrossRef]
- Harborne, J.B. Plant polyphenols. X. Flavone and aurone glycosides of Antirrhinum. Phytochemistry 1963, 2, 327–334. [Google Scholar] [CrossRef]
- Li, Q.; Wang, L.; Dai, P.; Zeng, X.; Qi, X.; Zhu, L.; Yan, T.; Wang, Y.; Lu, L.; Hu, M.; et al. A combined strategy of mass fragmentation, post-column cobalt complexation and shift in ultraviolet absorption spectra to determine the uridine 5’-diphospho-glucuronosyltransferase metabolism profiling of flavones after oral administration of a flavone mixture in rats. J. Chromatogr. A 2015, 1395, 116–128. [Google Scholar] [CrossRef]
- Heitz, A.; Carnat, A.; Fraisse, D.; Carnat, A.-P.; Lamaison, J.-L. Luteolin 3′-glucuronide, the major flavonoid from Melissa officinalis subsp. officinalis. Fitoterapia 2000, 71, 201–202. [Google Scholar] [CrossRef] [PubMed]
- Ram, S.N.; Roy, R.; Singh, B.; Singh, R.P.; Pandey, V.B. An acylflavone glucoside of Echinops echinatus flowers. Planta Med. 1996, 62, 187. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, P.K.; Thakur, R.S. An acylated flavone apigenin 7-O-β-D-(4″cis-p-coumaroyl)glucoside from Echinops echinatus. Phytochemistry 1987, 25, 1770–1771. [Google Scholar] [CrossRef]
- Gabrieli, C.; Kokkalou, E. A glucosylated acylflavone from Sideritis raeseri. Phytochemistry 1990, 29, 681–683. [Google Scholar] [CrossRef]
- Mohan Rao, L.J.; Kumari, G.N.K.; Rao, N.S.P. Two further acylated flavone glucosides from Anisomeles ovata. Phytochemistry 1983, 22, 1058–1060. [Google Scholar] [CrossRef]
- Murata, T.; Endo, Y.; Miyase, T.; Yoshizaki, F. Iridoid glycoside constituents of Stachys lanata. J. Nat. Prod. 2008, 71, 1768–1770. [Google Scholar] [CrossRef]
- Alipieva, K.; Korkina, L.; Orhan, I.E.; Georgiev, M.I. Verbascoside—A review of its occurrence, (bio)synthesis and pharmacological significance. Biotechnol. Adv. 2014, 32, 1065–1076. [Google Scholar] [CrossRef]
- Litvinenko, V.I.; Popova, T.P.; Simonjan, A.V. ‘Tannins’ and derivatives of hydroxycinnamic acid in Labiatae. Planta Med. 1975, 27, 372–380. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; Husain, S.Z.; Gil, M.I. The distribution of methylated flavones in the Lamiaceae. Biochem. Syst. Ecol. 1988, 16, 43–46. [Google Scholar] [CrossRef]
- Grayer, R.J.; Bryan, S.E.; Veitch, N.C.; Goldstone, F.J.; Paton, A.; Wollenweber, E. External flavones in sweet basil, Ocimum basilicum, and related taxa. Phytochemistry 1996, 43, 1041–1047. [Google Scholar] [CrossRef]
- Tezuka, Y.; Stampoulis, P.; Banskota, A.H.; Awale, S.; Tran, K.Q.; Saiki, I.; Kadota, S. Constituents of the Vietnamese medicinal plant Orthosiphon stamineus. Chem. Pharm. Bull. 2000, 48, 1711–1719. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Liu, J.; Yu, Z.-B.; Ye, Y.-H.; Zhou, Y.-W. Studies on flavones in of Lavandula augustifolia. Zhongguo Zhongyao Zazhi 2007, 32, 821–823. [Google Scholar] [PubMed]
- Grayer, R.J.; Eckert, M.R.; Lever, A.; Kite, G.C.; Paton, A.J. Distribution of exudate flavonoids in the genus Plectranthus. Biochem. Syst. Ecol. 2010, 38, 335–341. [Google Scholar] [CrossRef]
- Ferreres, F.; Tomás-Barberán, F.A.; Tomás-Lorente, F. Flavonoid compounds from Ballota hirsuta. J. Nat. Prod. 1986, 49, 554–555. [Google Scholar] [CrossRef]
- Çitoǧlu, G.S.; Aksit, F. Occurence of marrubiin and ladanein in Marrubium trachyticum Boiss. from Turkey. Biochem. Syst. Ecol. 2002, 30, 885–886. [Google Scholar]
- Bai, N.; He, K.; Roller, M.; Pan, M.-H.; Ho, C.-T. Flavonoids and phenolic compounds from Rosmarinus officinalis. J. Agric. Food Chem. 2010, 58, 5363–5367. [Google Scholar] [CrossRef]
- Gohari, A.R.; Saeidnia, S.; Malmir, M.; Hadjiakhoondi, A.; Ajani, Y. Flavones and rosmarinic acid from Salvia limbata. Nat. Prod. Res. 2010, 24, 1902–1906. [Google Scholar] [CrossRef]
- Wang, S.-Q.; Han, X.-Z.; Li, X.; Wang, X.-N.; Lou, H.-X. Flavonoids from Dracocephalum tanguticum and their cardioprotective effects against doxorubicin-induced toxicity in H9c2 cells. Bioorg. Med. Chem. Lett. 2010, 20, 6411–6415. [Google Scholar] [CrossRef]
- Háznagy-Radnai, E.; Czigle, S.; Janicsák, G.; Máthé, I. Iridoids of Stachys species growing in Hungary. J. Planar Chromatogr. 2006, 19, 187–190. [Google Scholar] [CrossRef]
- Zhogova, A.A.; Perova, I.B.; Samylina, I.A.; Eller, K.I.; Ramenskaya, G.V. Identification and quantitative determination of the main biologically active substances in motherwort herb by HPLC–mass spectrometry. Pharm. Chem. J. 2014, 48, 461–466. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Chirikova, N.K. Caffeoylglucaric acids and other phenylpropanoids of the Siberian Leonurus species. Chem. Nat. Comp. 2016, 52, 780–782. [Google Scholar] [CrossRef]
- Sytar, O.; Hemmerich, I.; Zivcak, M.; Rauh, C.; Brestic, M. Comparative analysis of bioactive phenolic compounds composition from 26 medicinal plants. Saudi J. Biol. Sci. 2018, 25, 631–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olennikov, D.N.; Tankhaeva, L.M. Quantitative determination of phenolic compounds in Mentha piperita leaves. Chem. Nat. Comp. 2010, 46, 22–27. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Tankhaeva, L.M. Chemical investigation of Panzerina lanata herb. Chem. Nat. Comp. 2011, 47, 802–804. [Google Scholar] [CrossRef]
- Chirikova, N.K.; Olennikov, D.N. Phenolic compounds from Siberian species Thymus baicalensis and T. sibiricus. Chem. Nat. Comp. 2018, 54, 572–576. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Akobirshoeva, A.A. Flavonoids and phenypropanoids from Nepeta glutinosa u Ziziphora pamiroalaica. Chem. Nat. Comp. 2016, 52, 775–777. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Chirikova, N.K.; Okhlopkova, Z.M.; Zulfugarov, I.S. Chemical composition and antioxidant activity of Tánara Ótó (Dracocephalum palmatum Stephan), a medicinal plant used by the North-Yakutian nomads. Molecules 2013, 18, 14105–14121. [Google Scholar] [CrossRef] [Green Version]
- Chirikova, N.K.; Olennikov, D.N.; Tankhaeva, L.M. Quantitative determination of flavonoid content in the aerial part of Baical scullcap (Scutellaria baicalensis Georgi). Russ. J. Bioorg. Chem. 2010, 36, 915–922. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Chekhirova, G.V. 6″-Galloylpicein and other phenolic compounds from Arctostaphylos uva-ursi. Chem. Nat. Comp. 2013, 49, 1–5. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Kashchenko, N.I.; Chirikova, N.K. Phenolic profile of Potentilla anserina L. (Rosaceae) herb of Siberian origin and development of a rapid method for simultaneous determination of major phenolics in P. anserina pharmaceutical products by microcolumn RP-HPLC-UV. Molecules 2015, 20, 224–248. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Kashchenko, N.I.; Chirikova, N.K.; Tankhaeva, L.M. Iridoids and flavonoids of four Siberian gentians: Chemical profile and gastric stimulatory effect. Molecules 2015, 20, 19172–19188. [Google Scholar] [CrossRef] [PubMed]
- Olennikov, D.N.; Kashchenko, N.I.; Chirikova, N.K. Spinacetin, a new caffeoylglucoside, and other phenolic compounds from Gnaphalium uliginosum. Chem. Nat. Comp. 2015, 51, 1085–1090. [Google Scholar] [CrossRef]
- Olennikov, D.N. Guaiane-type sesquiterpenes from Rhaponticum uniflorum. Chem. Nat. Comp. 2019, 55, 157–159. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Fedorov, I.A.; Kashchenko, N.I.; Chirikova, N.K.; Vennos, C. Khellactone derivatives and other phenolics of Phlojodicarpus sibiricus (Apiaceae): HPLC-DAD-ESI-QQQ-MS/MS and HPLC-UV profile, and antiobesity potential of dihydrosamidin. Molecules 2019, 24, 2286. [Google Scholar] [CrossRef] [Green Version]
- Capecka, E.; Mareczek, A.; Leja, M. Antioxidant activity of fresh and dry herbs of some Lamiaceae species. Food Chem. 2005, 93, 223–226. [Google Scholar] [CrossRef]
- Özgen, U.; Mavi, A.; Terzi, Z.; Yιldιrιm, A.; Coşkun, M.; Houghton, P.J. Antioxidant properties of some medicinal Lamiaceae (Labiatae) species. Pharm. Biol. 2006, 44, 107–112. [Google Scholar] [CrossRef] [Green Version]
- Chirikova, N.K.; Olennikov, D.N.; Grogor’ev, R.O.; Klyushin, A.G.; Nosov, A.M. Acylquinic acids, flavonoids, and maltol O-glycoside from Panax vietnamensis. Chem. Nat. Comp. 2019, 55, 1161–1163. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Kashchenko, N.I.; Vennos, C. A new esculetin glycoside from Calendula officinalis (Asteraceae) and its bioactivity. Farmacia 2017, 65, 698–702. [Google Scholar]
- Olennikov, D.N.; Kashchenko, N.I.; Chirikova, N.K. Bitter gentian teas: Nutritional and phytochemical profiles, polysaccharide characterisation and bioactivity. Molecules 2015, 20, 20014–20030. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Health and Social Development of Russian Federation, Scientific Center of Drug Expertise. Guidelines for Preclinical Drug Trials; Grif Co.: Moscow, Russia, 2001; pp. 13–40.
- Olennikov, D.N.; Chirikova, N.K.; Vasilieva, A.G.; Fedorov, I.A. LC-MS profile, gastrointestinal and gut microbiota stability and antioxidant activity of Rhodiola rosea herb metabolites: A comparative study with subterranean organs. Antioxidants 2020, 9, 526. [Google Scholar] [CrossRef]
- Pellegrini, N.; Serafini, M.; Colombi, B.; Del Rio, D.; Salvatore, S.; Bianchi, M.; Brighenti, F. Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J. Nutrit. 2003, 133, 2812–2819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Comp. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Tankhaeva, L.M.; Agafonova, S.V. Antioxidant components of Laetiporus sulphureus (Bull.: Fr.) Murr. fruit bodies. Appl. Biochem. Microbiol. 2011, 47, 419–425. [Google Scholar] [CrossRef]
Compound | Found in Galeopsis Species of Subgenus | |
---|---|---|
Galeopsis (Tetrahit) | Ladanum | |
Iridoids | ||
6-Desoxyharpagide | G. pubescens [6] | |
G. tetrahit [7] | ||
Harpagide | G. bifida [8] | G. ladanum [9] |
G. pubescens [9] | G. ladanum subsp. angustifolia [9] | |
G. speciosa [9] | G. pyrenaica [8] | |
G. tetrahit [9] | G. reuteri [8] | |
G. segetum [9] | ||
Harpagide 8-O-acetate | G. pubescens [8] | G. ladanum [8] |
G. ladanum subsp. angustifolia [9] | ||
G. pyrenaica [8] | ||
G. segetum [8] | ||
Galiridoside | G. bifida [8] | G. ladanum [8] |
G. pubescens [8] | G. pyrenaica [8] | |
G. speciosa [9] | G. segetum [8] | |
G. tetrahit [10] | ||
Gluroside | G. pubescens [6] | |
G. tetrahit [6] | ||
Reptoside | G. pubescens [7] | G. ladanum [7] |
G. tetrahit [7] | G. ladanum subsp. angustifolia [7] | |
G. pyrenaica [7] | ||
G. segetum [7] | ||
Ajugoside | G. bifida [7] | |
G. tetrahit [7] | ||
Antirrhinoside | G. segetum [7] | |
Antirrhinoside 5-O-glucoside | G. segetum [7] | |
Daunoside | G. pubescens [7] | |
G. tetrahit [7] | ||
8-Epiloganin | G. ladanum subsp. angustifolia [11] | |
Diterpenoids | ||
Hispanolone | G. ladanum subsp. angustifolia [12] | |
Galeopsin | G. ladanum subsp. angustifolia [12] | |
Pregaleopsin | G. ladanum subsp. angustifolia [12] | |
Galepsitrione | G. ladanum subsp. angustifolia [13] | |
Galeolone | G. ladanum subsp. angustifolia [13] | |
Galepsinolone | G. ladanum subsp. angustifolia [13] | |
Hispanone | G. ladanum subsp. angustifolia [13] | |
Galeuterone | G. reuteri [14] | |
Pregaleuterone | G. reuteri [14] | |
Triterpenoids | ||
Hederagenin | G. ladanum subsp. angustifolia [13] | |
Benzoic acids | ||
4-Hydroxybenzoic acid | G. segetum [15] | |
Vanillic acid | G. segetum [15] | |
Hydroxycinnamates | ||
p-Coumaric acid | G. segetum [15] | |
Caffeic acid | G. segetum [15] | |
Ferulic acid | G. segetum [15] | |
Martynoside | G. pubescens [16] | |
Isomartynoside | G. pubescens [16] | |
Flavones | ||
5,7,4′-Trisubstituted flavones | ||
Apigenin | G. segetum [15] | |
Apigenin 7-O-glucoside | G. bifida [17] | G. ladanum [17] |
G. pubescens [17] | G. ladanum subsp. angustifolia [17] | |
G. speciosa [9] | G. pyrenaica [17] | |
G. tetrahit [17] | G. × wirtgenii [17] | |
Apigenin 7-O-(6″-O-p-coumaroyl)-glucoside | G. bifida [17] | G. pyrenaica [17] |
G. pubescens [17] | G. segetum [17] | |
G. speciosa [9] | G. × wirtgenii [17] | |
G. tetrahit [17] | ||
Apigenin 7-O-glucuronide | G. bifida [17] | G. ladanum [17] |
G. pubescens [17] | G. ladanum subsp. angustifolia [17] | |
G. speciosa [9] | G. pyrenaica [17] | |
G. tetrahit [17] | G. segetum [17] | |
G. × wirtgenii [17] | ||
5,6,7,4′-Tetrasubstituted flavones | ||
Scutellarein 7-O-glucuronide | G. pubescens [17] | |
G. tetrahit [17] | ||
Ladanetin | G. ladanum [18] | |
Ladanein | G. ladanum [18] | |
Salvigenin | G. ladanum subsp. angustifolia [13] | |
5,7,8,4′-Tetrasubstituted | ||
Isoscutellarein 7-O-(2″-O-allosyl)-glucoside | G. ladanum [17] | |
G. ladanum subsp. angustifolia [17] | ||
G. pyrenaica [17] | ||
G. segetum [17] | ||
G. × wirtgenii [17] | ||
Isoscutellarein 7-O-(2″-O-(6″’-O-acetyl)-allosyl)-glucoside | G. ladanum [17] | |
G. ladanum subsp. angustifolia [17] | ||
G. pyrenaica [17] | ||
G. segetum [17] | ||
G. × wirtgenii [17] | ||
Isoscutellarein 7-O-(2″-O-(6″’-O-acetyl)-allosyl-6″-O-acetyl)- | G. ladanum [17] | |
glucoside | G. ladanum subsp. angustifolia [17] | |
G. pyrenaica [17] | ||
G. segetum [17] | ||
G. × wirtgenii [17] | ||
Isoscutellarein 4′-methyl ester 7-O-(2″-O-(6″’-O-acetyl)-allosyl- 6″-O-acetyl)-glucoside | G. ladanum [19] | |
Galangustin | G. ladanum subsp. angustifolia [20] | |
5,7,3′,4′-Tetrasubstituted | ||
Luteolin | G. segetum [15] | |
Luteolin 7-O-glucuronude | G. bifida [17] | G. ladanum [17] |
G. pubescens [17] | G. ladanum subsp. angustifolia [17] | |
G. speciosa [9] | G. pyrenaica [17] | |
G. tetrahit [17] | G. segetum [17] | |
G. × wirtgenii [17] | ||
5,7,8,3′,4′-Pentasubstituted flavones | ||
8-Hydroxychrysoeriol 7-O-(2″-O-allosyl)-glucoside | G. ladanum subsp. angustifolia [21] | |
8-Hydroxychrysoeriol 7-O-(2″-O-(6″’-O-acetyl)-allosyl)-glucoside | G. ladanum subsp. angustifolia [21] | |
8-Hydroxychrysoeriol 7-O-(2″-O-(6″’-O-acetyl)-allosyl- 6″-O-acetyl)-glucoside | G. ladanum subsp. angustifolia [21] | |
Hypolaetin 7-O-(2″-O-allosyl)-glucoside | G. ladanum subsp. angustifolia [17] | |
Hypolaetin 7-O-(2″-O-(6″’-O-acetyl)-allosyl)-glucoside | G. ladanum [17] | |
G. ladanum subsp. angustifolia [17] | ||
G. pyrenaica [17] | ||
G. segetum [17] | ||
G. × wirtgenii [17] | ||
Hypolaetin 7-O-(2″-O-(6″’-O-acetyl)-allosyl- 6″-O-acetyl)-glucoside | G. ladanum [17] | |
G. ladanum subsp. angustifolia [17] | ||
G. segetum [17] | ||
Hypolaetin 4′-methyl ester 7-O-(2″-O-allosyl)-glucoside | G. ladanum [17] | |
G. ladanum subsp. angustifolia [17] | ||
G. segetum [17] | ||
Hypolaetin 4′-methyl ester 7-O-(2″-O-(6″’-O-acetyl)-allosyl)- | G. ladanum [17] | |
glucoside | G. ladanum subsp. angustifolia [17] | |
G. pyrenaica [17] | ||
G. segetum [17] | ||
Hypolaetin 4′-methyl ester 7-O-(2″-O-(6″’-O-acetyl)-allosyl- | G. ladanum [17] | |
6″-O-acetyl)-glucoside | G. ladanum subsp. angustifolia [17] | |
G. pyrenaica [17] | ||
G. segetum [17] | ||
G. × wirtgenii [17] | ||
Various | ||
Fatty acids | G. bifida [22,23,24,25] | |
Acylglycerols | G. bifida [26] | |
Essential oil | G. bifida [27] | |
G. pubescens [28] | ||
G. tetrahit [28] |
Compound | Content, mg/g of Dry Plant Weight ± S.D. | |||
---|---|---|---|---|
Leaves | Flowers | Stems | Roots | |
Iridoid glycosides | ||||
Harpagide | 11.35 ± 0.23 | 5.18 ± 0.11 | 9.37 ± 0.19 | 0.50 ± 0.01 |
Harpagide 8-O-acetate | 25.69 ± 0.51 | 10.37 ± 0.20 | 18.53 ± 0.37 | 1.62 ± 0.03 |
Phenylethanoid glycosides | ||||
Verbascoside | 21.56 ± 0.51 | 18.98 ± 0.56 | 5.32 ± 0.14 | 2.63 ± 0.06 |
Isoverbascoside | 14.88 ± 0.38 | 9.15 ± 0.23 | 2.15 ± 0.06 | 2.08 ± 0.05 |
Lavandulifolioside | 10.21 ± 0.06 | 16.37 ± 0.40 | 8.79 ± 0.26 | 1.57 ± 0.04 |
Leucosceptoside A | 9.37 ± 0.18 | 3.16 ± 0.06 | 1.75 ± 0.03 | 0.93 ± 0.02 |
Leonoside A | 3.76 ± 0.07 | 1.58 ± 0.03 | 0.32 ± 0.01 | 0.11 ± 0.00 |
Leonoside B | 1.60 ± 0.03 | 0.82 ± 0.02 | 0.14 ± 0.00 | <0.01 |
Caffeoylquinic acids | ||||
1-O-Caffeoylquinic acid | 0.53 ± 0.01 | 0.18 ± 0.00 | <0.01 | <0.01 |
3-O-Caffeoylquinic acid | 0.92 ± 0.02 | 2.61 ± 0.06 | 0.94 ± 0.02 | <0.01 |
4-O-Caffeoylquinic acid | 0.86 ± 0.02 | 0.25 ± 0.00 | <0.01 | <0.01 |
5-O-Caffeoylquinic acid | 45.20 ± 1.31 | 12.97 ± 0.38 | 8.30 ± 0.25 | 2.90 ± 0.08 |
Flavone glycosides | ||||
Luteolin 7-O-glucuronide | 29.73 ± 0.59 | 39.63 ± 0.79 | 3.75 ± 0.07 | 0.15 ± 0.00 |
Apigenin 7-O-glucuronide | 19.32 ± 0.37 | 1.93 ± 0.04 | 0.45 ± 0.01 | 0.14 ± 0.00 |
6-Hydroxyluteolin 7-O-glucuronide | 2.63 ± 0.05 | 3.84 ± 0.07 | 0.35 ± 0.00 | 0.10 ± 0.00 |
Scutellarein 7-O-glucuronide | 4.16 ± 0.08 | 5.22 ± 0.10 | 0.26 ± 0.00 | 0.11 ± 0.00 |
Luteolin 7-O-(6″-O-p-coumaroyl)-glucoside | 11.79 ± 0.23 | 1.84 ± 0.03 | 0.27 ± 0.00 | <0.01 |
Apigenin 7-O-(6″-O-p-coumaroyl)-glucoside | 12.93 ± 0.25 | 1.02 ± 0.02 | 1.53 ± 0.03 | <0.01 |
Total content | ||||
Iridoid glucosides | 37.04 | 15.55 | 27.90 | 2.12 |
Phenylethanoid glucosides | 61.38 | 50.06 | 18.47 | 7.32 |
Caffeoylquinic acids | 47.51 | 16.01 | 9.21 | 2.90 |
Flavone glycosides | 80.56 | 53.48 | 6.61 | 0.50 |
Phenolic compounds | 189.45 | 119.55 | 34.29 | 10.72 |
Compound | Content in Populations, mg/g of Dry Plant Weight ± S.D. (Variation Coefficient, %) | |||||||
---|---|---|---|---|---|---|---|---|
P1 (n = 21) a | P2 (n = 30) a | P3 (n = 34) a | P4 (n = 28) a | P5 (n = 18) a | P6 (n = 25) a | P7 (n = 20) a | P8 (n = 17) a | |
Iridoid glycosides | ||||||||
Harpagide | 8.57 ± 0.42 (4.9) | 10.36 ± 0.61 (5.9) | 14.69 ± 1.29 (8.8) | 18.33 ± 1.41 (7.7) | 2.95 ± 0.20 (6.8) | 4.14 ± 0.23 (5.6) | 2.16 ± 0.16 (7.4) | <0.01 |
Harpagide 8-O-acetate | 14.53 ± 1.14 (7.9) | 10.69 ± 1.10 (10.3) | 11.82 ± 0.98 (8.3) | 9.35 ± 1.09 (11.7) | 24.52 ± 1.83 (7.5) | 27.18 ± 1.47 (5.4) | 31.82 ± 1.56 (4.9) | 27.53 ± 1.73 (6.3) |
Phenylethanoid glycosides | ||||||||
Verbascoside | 10.32 ± 0.64 (6.2) | 8.54 ± 0.79 (9.3) | 5.63 ± 0.47 (8.3) | 5.07 ± 0.52 (10.3) | 20.67 ± 1.01 (4.9) | 25.16 ± 1.24 (4.9) | 22.67 ± 1.79 (7.9) | 27.59 ± 2.23 (8.1) |
Isoverbascoside | <0.01 | <0.01 | <0.01 | <0.01 | 15.02 ± 0.85 (5.7) | 12.76 ± 0.51 (4.0) | 17.73 ± 1.98 (11.2) | 18.67 ± 1.56 (8.4) |
Lavandulifolioside | 1.53 ± 0.09 (5.9) | 0.94 ± 0.08 (8.5) | 0.27 ± 0.03 (11.1) | 0.59 ± 0.05 (8.5) | 10.86 ± 0.67 (6.2) | 9.82 ± 0.81 (8.2) | 11.67 ± 0.57 (4.9) | 10.33 ± 0.60 (5.8) |
Leucosceptoside A | 0.56 ± 0.05 (8.9) | 0.42 ± 0.04 (9.5) | 0.31 ± 0.03 (9.7) | 0.12 ± 0.01 (8.3) | 9.95 ± 0.91 (9.2) | 10.53 ± 0.39 (3.7) | 8.64 ± 0.51 (5.9) | 9.37 ± 0.62 (6.6) |
Leonoside A | 0.32 ± 0.03 (9.4) | 0.43 ± 0.03 (7.0) | <0.01 | <0.01 | 3.09 ± 0.33 (10.7) | 4.29 ± 0.27 (6.3) | 3.52 ± 0.15 (4.3) | 2.11 ± 0.10 (4.7) |
Leonoside B | <0.01 | <0.01 | <0.01 | 1.72 ± 0.17 (9.9) | 1.57 ± 0.14 (8.9) | 1.43 ± 0.11 (7.7) | 1.93 ± 0.09 (4.7) | 1.72 ± 0.17 (9.9) |
Caffeoylquinic acids | ||||||||
1-O-Caffeoylquinic acid | <0.01 | <0.01 | <0.01 | <0.01 | 0.62 ± 0.03 (4.8) | 0.27 ± 0.02 (7.4) | <0.01 | <0.01 |
3-O-Caffeoylquinic acid | 0.94 ± 0.08 (8.5) | 0.52 ± 0.05 (9.6) | 0.37 ± 0.03 (8.1) | <0.01 | 1.02 ± 0.05 (4.9) | 0.53 ± 0.03 (5.7) | 0.47 ± 0.03 (6.4) | <0.01 |
4-O-Caffeoylquinic acid | 0.22 ± 0.02 (9.1) | <0.01 | <0.01 | <0.01 | 0.73 ± 0.05 (6.8) | 0.56 ± 0.05 (8.9) | 0.18 ± 0.02 (11.1) | <0.01 |
5-O-Caffeoylquinic acid | 12.67 ± 1.06 (8.4) | 11.73 ± 1.45 (12.4) | 9.69 ± 0.56 (5.8) | 5.33 ± 0.55 (10.3) | 42.53 ± 1.65 (3.9) | 41.75 ± 3.95 (9.5) | 36.18 ± 4.23 (11.7) | 35.02 ± 2.94 (8.4) |
Flavone glycosides | ||||||||
Luteolin 7-O-glucuronide | 32.59 ± 1.89 (5.8) | 46.14 ± 2.26 (4.9) | 45.53 ± 3.82 (8.3) | 42.76 ± 3.12 (7.3) | 27.63 ± 2.32 (8.4) | 25.85 ± 1.47 (5.7) | 22.63 ± 2.47 (10.9) | 19.07 ± 0.95 (5.0) |
Apigenin 7-O-glucuronide | 22.73 ± 1.45 (6.4) | 25.82 ± 1.49 (5.8) | 27.59 ± 1.71 (6.2) | 25.07 ± 1.43 (5.7) | 17.67 ± 2.19 (12.4) | 15.72 ± 1.07 (6.8) | 12.04 ± 1.01 (8.4) | 10.35 ± 0.51 (4.9) |
6-Hydroxyluteolin 7-O-glucuronide | 3.67 ± 0.21 (5.7) | 4.57 ± 0.18 (3.9) | 4.96 ± 0.35 (7.1) | 4.50 ± 0.35 (7.8) | 2.90 ± 0.22 (7.6) | 1.27 ± 0.10 (7.9) | 0.95 ± 0.06 (6.3) | 1.11 ± 0.10 (9.0) |
Scutellarein 7-O-glucuronide | 2.75 ± 0.18 (6.5) | 3.57 ± 0.17 (4.8) | 4.18 ± 0.22 (5.3) | 4.09 ± 0.39 (9.5) | 3.84 ± 0.23 (6.0) | 2.04 ± 0.11 (5.3) | 1.57 ± 0.09 (5.7) | 2.47 ± 0.23 (9.3) |
Luteolin 7-O-(6″-O-p-coumaroyl)-glucoside | 0.52 ± 0.05 (9.6) | 0.37 ± 0.03 (8.1) | 0.11 ± 0.01 (9.1) | <0.01 | 12.04 ± 0.89 (7.4) | 12.64 ± 0.87 (6.9) | 27.35 ± 2.19 (8.0) | 17.36 ± 1.02 (5.9) |
Apigenin 7-O-(6″-O-p-coumaroyl)-glucoside | <0.01 | <0.01 | <0.01 | <0.01 | 14.07 ± 0.73 (5.2) | 17.53 ± 0.86 (4.9) | 29.11 ± 1.14 (3.9) | 20.63 ± 1.44 (7.0) |
Total content | ||||||||
Iridoid glucosides | 23.10 | 21.05 | 26.51 | 27.68 | 25.47 | 31.32 | 33.98 | 27.53 |
Phenylethanoid glucosides | 12.73 | 10.33 | 6.21 | 7.50 | 61.16 | 63.99 | 66.16 | 69.79 |
Saffeoylquinic acids | 13.83 | 12.25 | 10.06 | 5.33 | 44.90 | 43.11 | 36.83 | 35.02 |
Non-acylated flavone glycosides | 61.74 | 80.05 | 82.26 | 76.42 | 52.04 | 44.88 | 37.19 | 33.00 |
Acylated flavone glycosides | 0.52 | 0.37 | 0.11 | <0.01 | 26.11 | 30.17 | 56.46 | 37.99 |
Flavone glycosides | 62.26 | 80.42 | 82.37 | 76.42 | 78.15 | 75.05 | 93.65 | 70.99 |
Extract No | DPPH | ABTS | SSA | FRAP | ORAC | CBA |
---|---|---|---|---|---|---|
P1 | 286.6 ± 5.7 a | 293.4 ± 8.8 g | 182.4 ± 7.2 y | 103.9 ± 4.1 l | 253.0 ± 7.5 p | 298.3 ± 14.9 t |
P2 | 347.1 ± 6.9 c | 326.2 ± 9.7 h | 193.6 ± 7.7 y | 115.2 ± 4.6 lm | 296.1 ± 8.9 p | 343.1 ± 17.1 u |
P3 | 353.2 ± 8.9 c | 373.8 ± 11.2 i | 202.8 ± 8.1 y | 125.9 ± 5.0 m | 315.2 ± 9.4 q | 374.1 ± 18.7 v |
P4 | 302.1 ± 6.0 b | 325.6 ± 9.7 h | 189.4 ± 7.5 y | 109.6 ± 4.4 l | 310.6 ± 9.3 pq | 357.2 ± 17.8 uv |
P5 | 533.8 ± 10.6 d | 618.2 ± 18.5 j | 294.7 ± 11.8 z | 306.2 ± 12.2 n | 576.3 ± 17.2 r | 657.6 ± 32.8 w |
P6 | 587.1 ± 11.7 e | 624.3 ± 18.7 j | 326.8 ± 12.9 z | 312.4 ± 12.4 n | 582.9 ± 17.4 r | 699.2 ± 34.9 w |
P7 | 632.4 ± 12.5 f | 693.0 ± 19.5 k | 363.7 ± 14.5 ã | 329.1 ± 12.9 no | 631.0 ± 18.3 s | 734.8 ± 36.2 x |
P8 | 604.4 ± 12.0 e | 646.2 ± 19.2 j | 318.2 ± 12.7 z | 361.2 ± 14.0 o | 596.7 ± 17.9 rs | 701.4 ± 35.0 wx |
Compounds | DPPH | ABTS | SSA | FRAP | ORAC | CBA |
---|---|---|---|---|---|---|
Iridoid glucosides | 0.1726 | 0.1671 | 0.1726 | 0.0948 | 0.1488 | 0.1498 |
Phenylethanoid glucosides | 0.9565 | 0.9437 | 0.9349 | 0.9828 | 0.9477 | 0.9540 |
Caffeoylquinic acids | 0.8935 | 0.8880 | 0.8722 | 0.8960 | 0.8861 | 0.8954 |
Non-acylated flavone glycosides | 0.6792 | 0.7288 | 0.7124 | 0.7862 | 0.7454 | 0.7352 |
Acylated flavone glycosides | 0.9325 | 0.9237 | 0.9486 | 0.9109 | 0.9114 | 0.9102 |
Flavone glycosides | 0.4458 | 0.5264 | 0.4333 | 0.5797 | 0.5868 | 0.5631 |
Number | Collection Place | Population Area, km2 | Collection Date | Coordinates | Height (m a.s.l.) | Voucher Specimens No |
---|---|---|---|---|---|---|
P1 | Kizhinga, Kizhinginskii District, Republic Buryatia | 2.5 | 20.VI.2019 | 51°47′44.0″ N, 109°52′24.6″ E | 670 | BU/LAM-0619/59–114 |
P2 | Babushkin, Kabanskii District, Republic Buryatia | 2.8 | 20.VI.2019 | 51°41′18.3″ N, 105°50′39.4″ E | 660 | BU/LAM-0619/63–127 |
P3 | Tsakir, Zakamenskii District, Republic Buryatia | 1.7 | 20.VI.2019 | 50°24′54.7″ N, 103°34′42.0″ E | 1100 | BU/LAM-0619/76–139 |
P4 | Tamir, Kyakhtinskii District, Republic Buryatia | 0.9 | 20.VI.2019 | 50°12′51.8″ N, 107°25′34.7″ E | 1150 | BU/LAM-0619/79–146 |
P5 | Vilyuisk, Viluiskii Ulus, Republic Sakha (Yakutia) | 0.5 | 20.VI.2019 | 63°43′07.3″ N, 121°38′55.9″ E | 110 | YA/LAM-0619/269–418 |
P6 | Yakutsk, Republic Sakha (Yakutia) | 0.4 | 20.VI.2019 | 62°00′51.1″ N, 129°38′06.6″ E | 100 | YA/LAM-0619/273–425 |
P7 | Ust-Nera, Oymyakonskii Ulus, Republic Sakha (Yakutia) | 0.9 | 20.VI.2019 | 64°32′23.6″ N, 143°14′49.4″ E | 690 | YA/LAM-0619/293–453 |
P8 | Verkhoyansk, Verkhoyanskii Ulus, Republic Sakha (Yakutia) | 0.2 | 20.VI.2019 | 67°27′53.3″ N, 133°24′37.0″ E | 400 | YA/LAM-0619/299–457 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olennikov, D.N. Synanthropic Plants as an Underestimated Source of Bioactive Phytochemicals: A Case of Galeopsis bifida (Lamiaceae). Plants 2020, 9, 1555. https://doi.org/10.3390/plants9111555
Olennikov DN. Synanthropic Plants as an Underestimated Source of Bioactive Phytochemicals: A Case of Galeopsis bifida (Lamiaceae). Plants. 2020; 9(11):1555. https://doi.org/10.3390/plants9111555
Chicago/Turabian StyleOlennikov, Daniil N. 2020. "Synanthropic Plants as an Underestimated Source of Bioactive Phytochemicals: A Case of Galeopsis bifida (Lamiaceae)" Plants 9, no. 11: 1555. https://doi.org/10.3390/plants9111555
APA StyleOlennikov, D. N. (2020). Synanthropic Plants as an Underestimated Source of Bioactive Phytochemicals: A Case of Galeopsis bifida (Lamiaceae). Plants, 9(11), 1555. https://doi.org/10.3390/plants9111555