Biological Control of Celery Powdery Mildew Disease Caused by Erysiphe heraclei DC In Vitro and In Vivo Conditions
Abstract
:1. Introduction
2. Results
2.1. In Vitro, Antifungal Activity of Biocontrol Agents against E. heraclei Conidia Germination and Germ Tube Length
2.2. Investigation of the Potentiality of Biocontrol Agents against the Severity of Powdery Mildew and AUDPC
2.3. In Vivo, the Efficiency of Biocontrol Agents in Suppressing Celery Powdery Mildew
2.4. Growth and Yield Characteristics
2.5. Chlorophyll and Carotenoid Content
2.6. Defense-Related Enzyme Activities and Total Phenol Content
3. Discussion
4. Material and Methods
4.1. Plant Material and Treatment Description
4.2. In Vitro, Evaluation of the Inhibitory Effect of Tested Treatments
4.2.1. Preparation of Biocontrol Agent Inocula
4.2.2. Preparation of Pathogenic Inoculum
4.2.3. Conidia Germination Assay
4.3. In Vivo, Experimental Design
4.3.1. Greenhouse Experiments
4.3.2. Field Experiments
4.4. Measurements
4.4.1. Disease Assessment
4.4.2. Growth and Yield Attributes
4.4.3. Essential Oil Extraction
4.5. Biochemical Assays
4.5.1. Leaf Pigments
4.5.2. Peroxidase (PO) Activity
4.5.3. Polyphenol Oxidase (PPO) Activity
4.5.4. Total Phenol Content (TPC)
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, M.Y.; Feng, K.; Hou, X.L.; Jiang, Q.; Xu, Z.S.; Wang, G.L.; Liu, J.X.; Wang, F.; Xiong, A.S. The genome sequence of celery (Apium graveolens L.), an important leaf vegetable crop rich in apigenin in the Apiaceae family. Hortic. Res. 2020, 7, 9. [Google Scholar] [CrossRef] [Green Version]
- Dolati, K.; Rakhshandeh, H.; Golestani, M.; Forouzanfar, F.; Sadeghnia, R.; Sadeghnia, H.R. Inhibitory effects of Apium graveolens on xanthine oxidase activity and serum uric acid levels in hyperuricemic. Prev. Nutr. Food Sci. 2018, 23, 127–133. [Google Scholar] [CrossRef]
- Malhotra, S.K. Celery. In Handbook of Herbs and Spices, 2nd ed.; Woodhead Publishing Limited: Sawston, UK, 2012. [Google Scholar]
- Hassanen, N.H.; Eissa, A.M.F.; Hafez, S.A.M.; Mosa, E.A. Antioxidant and antimicrobial activity of celery (Apium graveolens) and coriander (Coriandrum sativum) herb and seed essential oils. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 284–296. [Google Scholar]
- Li, J.; Ma, W.; Feng, J.; Xu, K.; Xiong, A.S. Transcriptome profiling of β-carotene biosynthesis genes and β-carotene accumulation in leaf blades and petioles of celery cv. Jinnanshiqin. Acta Biochem. Biophys. Sin. 2019, 51, 116–119. [Google Scholar] [CrossRef]
- Dąbrowska, J.A.; Kunicka-Styczyńska, A.; Śmigielski, K.B. Biological, chemical, and aroma profiles of essential oil from waste celery seeds (Apium graveolens L.). J. Essent. Oil Res. 2020, 32, 308–315. [Google Scholar] [CrossRef]
- Liu, D.K.; Xu, C.C.; Zhang, L.; Ma, H.; Chen, X.J.; Sui, Y.C.; Zhang, H.Z. Evaluation of bioactive components and antioxidant capacity of four celery (Apium graveolens L.) leaves and petioles. Int. J. Food Prop. 2020, 23, 1097–1109. [Google Scholar] [CrossRef]
- Powanda, M.C.; Whitehouse, M.W.; Rainsford, K.D. Celery seed and related extracts with antiarthritic, antiulcer, and antimicrobial activities. In Novel Natural Products: Therapeutic Effects in Pain, Arthritis and Gastro-Intestinal Diseases; Springer: Berlin/Heidelberg, Germany, 2015; pp. 133–153. [Google Scholar] [CrossRef]
- Kiss, L. A review of fungal antagonists of powdery mildews and their potential as biocontrol agents. Pest Manag. Sci. 2003, 59, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.M.; Yu, G.C.; Wang, X.Y.; Meng, X.N.; Lv, C.M. Genetics and resistance mechanism of the cucumber (Cucumis sativus L.) against powdery mildew. J. Plant Growth Regul. 2020, 4, 147–153. [Google Scholar] [CrossRef]
- Trdan, S.; Valic, N.; Jerman, J.; Ban, D.; Znidarcic, D. Efficacy of three natural chemicals to reduce the damage of Erysiphe cichoracearum on chicory in two meteorologically different growing seasons. J. Phytopathol. 2004, 152, 567–574. [Google Scholar] [CrossRef]
- Agrios, G.N. Plant Pathology, 5th ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Kusch, S.; Panstruga, R. Mlo-based resistance: An apparently universal “weapon” to defeat powdery mildew disease. Mol. Plant-Microbe Interact. 2017, 30, 179–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babosha, A.V.; Ryabchenko, A.S.; Avetisyan, G.A.; Avetisyan, T.V. Visualization of the halo region in plant-powdery mildew interactions by cryoscanning electron microscopy. J. Plant Pathol. 2020, 102, 103–111. [Google Scholar] [CrossRef]
- Glawe, D.A. The powdery mildews: A review of the world’s most familiar (yet poorly known) plant pathogens. Ann. Rev. Phytopathol. 2008, 46, 27–51. [Google Scholar] [CrossRef]
- Spencer, D.M. The Powdery Mildews; Academic Press: Amsterdam, The Netherlands, 1978. [Google Scholar]
- Koike, S.T.; Saenz, G.S. First report of powdery mildew caused by Erysiphe heraclei on celery in North America. Plant Dis. 1997, 81, 231. [Google Scholar] [CrossRef]
- Shin, H.D. Erysiphaceae of Korea; National Institute of Agricultural Science and Technology Suwon Korea Republic: Suwon, Korea, 2000; 320p.
- Koike, S.T.; Saenz, G.S. First report of powdery mildew caused by Erysiphe heraclei on chervil in California. Plant Dis. 2004, 88, 1163. [Google Scholar] [CrossRef] [PubMed]
- Lebeda, A.; McGrath, M.T.; Sedlakova, B. Fungicide resistance in cucurbit powdery mildew fungi. Fungicides 2010, 11, 221–246. [Google Scholar]
- Vielba-Fernández, A.; Polonio, A.; Ruiz-Jiménez, L.; Vicente, A.; Pérez-García, A.; Fernández-Ortuño, D. Fungicide resistance in powdery mildew fungi. Microorganisms 2020, 8, 1431. [Google Scholar] [CrossRef]
- Ons, L.; Bylemans, D.; Thevissen, K.; Cammue, B.P.A. Combining biocontrol agents with chemical fungicides for integrated plant fungal disease control. Microorganisms 2020, 8, 1930. [Google Scholar] [CrossRef] [PubMed]
- Sellitto, V.M.; Zara, S.; Fracchetti, F.; Capozzi, V.; Nardi, T. Microbial biocontrol as an alternative to synthetic fungicides: Boundaries between pre- and postharvest applications on vegetables and fruits. Fermentation 2021, 7, 60. [Google Scholar] [CrossRef]
- Maroni, M.; Fanetti, A.C.; Metruccio, F. Risk assessment and management of occupational exposure to pesticides in agriculture. La Med. Del Lav. 2006, 97, 430–437. [Google Scholar]
- Hafez, Y.M.; El-Nagar, A.S.; Elzaawely, A.A.; Kamel, S.; Maswada, H.F. Biological control of Podosphaera xanthii the causal agent of squash powdery mildew disease by upregulation of defense-related enzymes. Egypt J. Biol. Pest Control 2018, 28, 57. [Google Scholar] [CrossRef]
- Sarhan, E.A.D.; Abd-Elsyed, M.H.F.; Ebrahiem, A.M.Y. Biological control of cucumber powdery mildew (Podosphaera xanthii) (Castagne) under greenhouse conditions. Egypt. J. Biologic. Pest Control 2020, 30, 1–7. [Google Scholar] [CrossRef]
- Tanaka, K.; Fukuda, M.; Amaki, Y. Importance of prumycin produced by Bacillus amyloliquefaciens SD-32 in biocontrol against cucumber powdery mildew disease. Pest Manag. Sci. 2017, 73, 2419–2428. [Google Scholar] [CrossRef]
- Rur, M.; Rämert, B.; Hökeberg, M.; Vetukuri, R.R.; Grenville-Briggs, L.; Liljeroth, E. Screening of alternative products for integrated pest management of cucurbit powdery mildew in Sweden. Eur. J. Plant Pathol. 2018, 150, 127–138. [Google Scholar] [CrossRef]
- Tsegaye, Z.; Assefa, F.; Tefera, G.; Alemu, T.; Gizaw, B.; Abatenh, E. Concept, principle and application of biological control and their role in sustainable plant diseases management strategies. Int. J. Res. Stud. Biosci. (IJRSB) 2018, 6, 18–34. [Google Scholar] [CrossRef]
- Ganeshan, G.; Kumar, A.M. Pseudomonas fluorescens, a potential bacterial antagonist to control plant diseases. J. Plant Interact. 2005, 1, 123–134. [Google Scholar] [CrossRef]
- Mmbaga, M.T.; Mrema, F.A.; Mackasmiel, L.; Rotich, E. Effect of bacteria isolates in powdery mildew control in flowering dogwoods (Cornus florida L.). Crop. Prot. 2016, 89, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Navarro-González, S.S.; Ramírez-Trujillo, J.A.; Peña-Chora, G.; Gaytán, P.; Roldán-Salgado, A.; Corzo, G.; Lina-García, L.P.; Hernández-Velázquez, V.M.; Suárez-Rodríguez, R. Enhanced tolerance against a fungal pathogen and insect resistance in transgenic tobacco plants overexpressing an endochitinase gene from Serratia marcescens. Int. J. Mol. Sci. 2019, 20, 3482. [Google Scholar] [CrossRef] [Green Version]
- Hewedy, O.A.; Abdel Lateif, K.S.; Seleiman, M.F.; Shami, A.; Albarakaty, F.M.; M El-Meihy, R. Phylogenetic Diversity of Trichoderma Strains and Their Antagonistic Potential against Soil-Borne Pathogens under Stress Conditions. Biology 2020, 9, 189. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.K.; Kumar, A.S.; Kranthi, S.; Mukherjee, P.K. Biocontrol potential of three novel Trichoderma strains: Isolation, evaluation and formulation. 3 Biotech. 2014, 4, 275–281. [Google Scholar] [CrossRef] [Green Version]
- Omomowo, I.O.; Fadiji, A.E.; Omomowo, O.I. Assessment of bio-efficacy of Glomus versiforme and Trichoderma harzianum in inhibiting powdery mildew disease and enhancing the growth of cowpea. Ann. Agric. Sci. 2018, 63, 9–17. [Google Scholar] [CrossRef]
- Shoresh, M.; Harman, G.E.; Mastouri, F. Induced systemic resistance and plant responses to fungal biocontrol agents. Ann. Rev. Phytopathol. 2010, 48, 21–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Chen, G.Y.; Li, X.Z.; Hu, M.; Wang, B.Y.; Ruan, B.H.; Zhou, H.; Zhao, L.X.; Zhou, J.; Ding, Z.T. Phytotoxic, antibacterial, and antioxidant activities of mycotoxins and other metabolites from Trichoderma sp. Nat. Prod. Res. 2017, 31, 2745–2752. [Google Scholar] [CrossRef] [PubMed]
- Sood, M.; Kapoor, D.; Kumar, V.; Sheteiwy, M.S.; Ramakrishnan, M.; Landi, M.; Araniti, F.; Sharma, A. Trichoderma: The “secrets” of a multitalented biocontrol agent. Plants 2020, 9, 762. [Google Scholar] [CrossRef] [PubMed]
- Negi, S.; Bharat, N.K.; Kaushal, R.; Rohiwala, P. Screening of bioagents for seed biopriming in French bean (Phaseolus vulgaris L.) under laboratory conditions. IJCS 2020, 8, 790–793. [Google Scholar] [CrossRef]
- Sawant, I.S.; Wadkar, P.N.; Ghule, S.B.; Rajguru, Y.R.; Salunkhe, V.P.; Sawant, S.D. Enhanced biological control of powdery mildew in vineyards by integrating a strain of Trichoderma afroharzianum with sulphur. Biol. Control 2017, 114, 133–143. [Google Scholar] [CrossRef]
- Franco-Sierra, N.D.; Posada, L.F.; Santa-Maria, G.; Romero-Tabarez, M.; Villegas-Escobar, V.; Alvarez, J.C. Bacillus subtilis EACB0575 genome reveals clues for plant growth promotion and potential for sustainable agriculture. Funct. Integr. Genom. 2020, 20, 575–589. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, E.Y.; Hussien, Z.N.; Ibrahim, M.M.; Yousef, H. Using of certain biotic and abiotic inducers on controlling peanut Cercospora leaf spot. Curr. Sci. Int. 2021, 10, 18–28. [Google Scholar]
- Osman, E.; Hassan, M.; Metwaly, H.; Yousef, H. Effect of humic acid on the efficacy of some biocontrol agents in controlling damping-off of cotton seedlings caused by Fusarium oxysporum. Egypt. J. Phytopathol. 2017, 45, 53–66. [Google Scholar] [CrossRef]
- Shih, I.L.; Lin, C.Y.; Wu, J.Y.; Hsieh, D.C. Production of antifungal lipopeptide from Bacillus subtilis in submerged fermentation using shake and fermenter. Korea J. Chem. Eng. 2009, 26, 1652–1661. [Google Scholar] [CrossRef]
- Kim, P.I.; Ryu, J.; Kim, Y.H.; Chi, Y.T. Production of biosurfactant lipopeptides iturin A, fengycin, and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J. Microbiol. Biotechnol. 2010, 20, 138–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashem, A.; Tabassum, B.; Abd_Allah, F. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J. Biol. Sci. 2019, 26, 1291–1297. [Google Scholar] [CrossRef]
- Prasannath, K. Plant defense-related enzymes against pathogens: A review. AGRIEAST J. Agric. Sci. 2017, 11, 38–48. [Google Scholar] [CrossRef]
- Singh, A.K.; Kumar, A.; Singh, P.K. PGPR amelioration in sustainable agriculture. In Food Security and Environmental Management, 1st ed.; Woodhead Publishing: John Solston, UK, 2018; Volume 284. [Google Scholar]
- Safdarpour, F.; Khodakaramain, G. Endophytic bacteria suppress bacterial wilt of tomato caused by Ralstonia solanacearum and Activate defense–related metabolites. Biol. J. Microorg. 2018, 6, 39–52. [Google Scholar]
- Abo-Elyousr, K.A.M.; Almasoudi, N.M.; Abdelmagid, A.W.N.; Roberto, S.R.; Youssef, K. Plant extract treatments induce resistance to bacterial spot by tomato plants for a sustainable system. Horticulture 2020, 6, 36. [Google Scholar] [CrossRef]
- Rais, A.; Jabeen, Z.; Shair, F.; Hafeez, F.Y.; Hassan, M.N. Bacillus spp., a biocontrol agent enhances the activity of antioxidant defense enzymes in rice against Pyricularia oryzae. PLoS ONE 2017, 12, e0187412. [Google Scholar] [CrossRef] [Green Version]
- Tronsmo, A.; Hjeljord, L. Biological control with Trichoderma spp. In Plant Microbe Interactions and Biological Control Marcel Dekker; Boland, G.J., Kuykendall, L.D., Eds.; CRC Press: New York, NY, USA, 1997. [Google Scholar]
- Shoda, M. Bacterial control of plant diseases. J. Biosci. Bioeng. 2000, 89, 515–521. [Google Scholar] [CrossRef]
- Nene, Y.L.; Thapliyal, P.N. Fungicides in Plant Disease Control, 3rd ed.; Oxford and IBH Publishing: New Delhi, India, 1993; pp. 311–348. [Google Scholar]
- Ahimou, F.; Jacques, P.; Deleu, M. Surfactin and iturin-a effects on Bacillus subtilis surface hydrophobicity. Enzym. Microb. Technol. 2000, 27, 749–754. [Google Scholar] [CrossRef]
- Moyne, A.L.; Shelby, R.; Cleveland, T.E.; Tuzun, S. Bacillomycin D: An iturin with antifungal activity against A. flavus. J. Appl. Microbiol. 2001, 90, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, L.R.; Gregery, G.F.; Krause, C.R.; Jachida, J.M. Production, partial purification and antimicrobial activity of a novel antibiotic produced by Bacillus subtilis isolated from Ulmus Americana. Can. J. Bot. 1988, 66, 2338–2346. [Google Scholar] [CrossRef]
- Ben Maachia, S.; Rafik, E.; Cherif, M.; Nandal, P.; Mohapatia, T.; Bernard, P. Biological control of grapevine diseases grey mold and powdery mildew by Bacillus B27 and B29 strains. Indian J. Exp. Biol. 2013, 53, 09–115. [Google Scholar]
- Vey, A.; Hoagland, R.E.; Butt, T.M. Toxic metabolites of fungal bio control agents. In Fungi as Biocontrol Agents: Progress Problems and Potential; Butt, T.M., Jacson, C., Magan, N., Eds.; CAB Int.: Bristol, UK, 2001; pp. 311–346. [Google Scholar]
- Brunner, K.; Zeilinger, S.; Ciliento, R.; Woo, S.L.; Lorito, M.; Kubicek, C.P.; Mach, R.L. Improvement of the fungal biocontrol agent Trichoderma atroviride to enhance both antagonism and induction of plant systemic disease resistance. Appl. Environ. Microbiol. 2005, 71, 3959–3965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimand, G.; Eland, Y.; Chet, I. Effect of Trichoderma harzianum on Botrytis cinerea pathogenicity. Phytopathology 1996, 86, 1255–1260. [Google Scholar] [CrossRef]
- Rahman, M.A.; Begum, M.F.; Alam, M.F. Screening of Trichoderma spp. as a biological control agent against Ceratocystis paradoxa causing pineapple disease of sugarcane. Phytopathology 2009, 37, 277–285. [Google Scholar]
- Dhar Purkayastha, G.; Mangar, P.; Saha, A.; Saha, D. Evaluation of the biocontrol efficacy of a Serratia marcescens strain indigenous to tea rhizosphere for the management of root rot disease in tea. PLoS ONE 2018, 13, e0191761. [Google Scholar] [CrossRef]
- Mahlen, S.D. Serratia infections: From military experiments to current practice. Clin. Microbiol. Rev. 2011, 24, 755–791. [Google Scholar] [CrossRef] [Green Version]
- Gaafar, D.E.M.; Baka, Z.A.M.; Abou-Dobara, M.I.; Shehata, H.S.; El-Tapey, H.M.A. Effect of some microorganisms on controlling Fusarium wilt of roselle (Hibiscus sabdariffa L.). Egypt. J. Phytopathol. 2021, 49, 98–113. [Google Scholar] [CrossRef]
- O’Sullivan, D.B.; O’Gara, F. Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol. Rev. 1992, 56, 662–676. [Google Scholar] [CrossRef]
- Hurek, T.; Reinhold-Hurek, B. Azoarcus spp. strain BH72 as a model for nitrogen fixing grass endophytes. J. Biotechnol. 2003, 106, 169–178. [Google Scholar] [CrossRef]
- Trdan, S.; Vučajnk, F.; Bohinc, T.; Vidrih, M. The effect of a mixture of two plant growth promoting bacteria from Argentina on the yield of potato, and occurrence of primary potato diseases and pest–short communication. Acta Agric. Scand. Sect. B Soil Plant Sci. 2019, 69, 89–94. [Google Scholar] [CrossRef]
- Saharan, B.; Nehra, V. Plant growth promoting rhizobacteria: A critical review. Life Sci. Med. Res. 2011, 21, 30. [Google Scholar]
- Bensidhoum, L.; Nabti, E.; Tabli, N.; Kupferschmied, P.; Weiss, A.; Rothballer, M.; Schmid, M.; Keel, C.; Hartmann, A. Heavy metal tolerant Pseudomonas protegens isolates from agricultural well water in northeastern Algeria with plant growth promoting, insecticidal and antifungal activities. Eur. J. Soil Biol. 2016, 75, 38–46. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, P.A. Biological control of plant diseases. Aust. Plant Pathol. 2017, 46, 293–304. [Google Scholar] [CrossRef] [Green Version]
- Ravishankar, N.; Vaishali, P.; Deepika, S. In vitro biofilm formation of Pseudomonas fluorescens, a promising technique for waste water treatment. Int. J. Sci. Res. 2013, 4, 2319–7064. [Google Scholar]
- Gamalero, E.; Glick, B.R. Bacterial modulation of plant ethylene levels. Plant Physiol. 2015, 169, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, T.L.; Balsemão-Pires, E.; Saraiva, R.M.; Ferreira, P.C.; Hemerly, A.S. Nitrogen signaling in plant interactions with associative and endophytic diazotrophic bacteria. J. Exp. Bot. 2014, 65, 5631–5642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalil, A.A.; Hassan, F.A.S.; Ali, E.F. Influence of bio-fertilizers on growth, yield and anthocyanin content of Hibiscus sabdariffa L. plant under Taif region conditions. Ann. Res. Rev. Biol. 2017, 17, 1–15. [Google Scholar]
- Gupta, S.; Pandey, S. ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in french bean (Phaseolus vulgaris) plants. Front. Microbiol. 2019, 10, 1506. [Google Scholar] [CrossRef]
- Wang, M.; Li, E.; Liu, C.; Jousset, A.; Salles, J.F. Functionality of root-associated Bacteria along a salt marsh primary succession. Front. Microbiol. 2017, 8, 2102. [Google Scholar] [CrossRef]
- El Naim, A.M.; Ahmed, A.I.; Ibrahim, K.A.; Suliman, A.M.; Babikir, E.S.N. Effects of nitrogen and bio-fertilizers on growth and yield of roselle (Hibiscus sabdariffa var sabdariffa L.). Int. J. Agric. For. 2017, 7, 145–150. [Google Scholar]
- Al-Sayed, H.M.; Hegab, S.A.; Youssef, M.A.; Khalafalla, M.Y.; Almaroai, Y.A.; Ding, Z.; Eissa, M.A. Evaluation of quality and growth of roselle (Hibiscus sabdariffa L.) as affected by bio-fertilizers. J. Plant Nutr. 2020, 43, 1025–1035. [Google Scholar] [CrossRef]
- Zhao, S.; Zhou, N.; Zhao, Z.Y.; Zhang, K.; Wu, G.H.; Tian, C.Y. Isolation of endophytic plant growth-promoting bacteria associated with the halophyte Salicornia europaea and evaluation of their promoting activity under salt stress. Curr. Microbiol. 2016, 73, 574–581. [Google Scholar] [CrossRef]
- Khan, N.; Bano, A.; Ali, S.; Babar, M.A. Crosstalk amongst phytohormones from plants and PGPR under biotic and abiotic stresses. Plant Growth Regul. 2020, 90, 189–203. [Google Scholar] [CrossRef]
- Batool, T.; Ali, S.; Seleiman, M.F.; Naveed, N.H.; Ali, A.; Ahmend, K.; Abid, M.; Rizwan, M.; Shahid, M.R.; Alotaibi, M.; et al. Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Sci. Rep. 2020, 10, 16975. [Google Scholar] [CrossRef] [PubMed]
- Bochow, H.; El-Sayed, S.F.; Junge, H.; Stauropoulou, A.; Schmieeknecht, G. Use of Bacillus substilis as biocontrol agent. IV. Salt-stress tolerance induction by Bacillus substilis FZB24 seed application in tropical vegetable field crops, and its mode action. J. Plant Dis. Prot. 2001, 108, 21–30. [Google Scholar]
- Saleh, S.A.; Heuberger, H.; Schnitzler, W.H. Alleviation of salinity effect on artichoke productivity by Bacillus subtilis FZB24, supplemental Ca and micronutrients. Appl. Bot. Food Qual. 2005, 79, 24–32. [Google Scholar]
- Kumar, S. Trichoderma: A biological weapon for managing plant diseases and promoting sustainability. Int. J. Agric. Sci. Med. Vet. 2013, 1, 106–121. [Google Scholar]
- Hoyos-Carvajal, L.; Orduz, S.; Bissett, J. Growth stimulation in bean (Phaseolus vulgaris L.) by Trichoderma. Biol. Control 2009, 51, 409–416. [Google Scholar] [CrossRef]
- Al-Askar, A.; Ezzat, A.; Ghoneem, K.; Saber, W.J.E. Trichoderma harzianum WKY5 and its gibberellic acid control of Rhizoctonia solani, improve sprouting, growth and productivity of potato. Egypt. J. Biol. 2016, 26, 787–796. [Google Scholar]
- ALKahtani, M.; Hafez, Y.; Attia, K.; Al-Ateeq, T.; Ali, M.A.M.; Hasanuzzaman, M.; Abdelaal, K. Bacillus thuringiensis and silicon modulate antioxidant metabolism and improve the physiological traits to confer salt tolerance in lettuce. Plants 2021, 10, 1025. [Google Scholar] [CrossRef]
- Ghoniem, A.A.; Abd El-Hai, K.M.; El-khateeb, A.Y.; Eldadamony, N.M.; Mahmoud, S.F.; Elsayed, A. Enhancing the potentiality of Trichoderma harzianum against Pythium pathogen of beans using chamomile (Matricaria chamomilla, L.) flower extract. Molecules 2021, 26, 1178. [Google Scholar] [CrossRef] [PubMed]
- Salama, M.I.; Elaidy, A.A.; El-Sammak, A.; Abou-Khashab, A.M. Leaf pigment and nutrient element content of roumi red grape nurslings as affected by salinity and some growth regulators. Tanta J. Agric. Res. 1992, 18, 382–391. [Google Scholar]
- Adil, W.; Ahlam, M.; Muneeb, R.; Seema, A.; Hussain, M. Bee Propolis (Bee’s Glue): A phytochemistry review. J. Crit. Rev. 2017, 4, 9–13. [Google Scholar]
- Wang, L.; Wang, M.; Zhang, Y. Effects of powdery mildew infection on chloroplast and mitochondrial functions in rubber tree. Trop. Plant Pathol. 2014, 39, 242–250. [Google Scholar] [CrossRef] [Green Version]
- Ashtaputre, S.A. Studies on Loss Assessment, Epidemiology and Management of Powdery Mildew of Chili Caused by Leveillula taurica (Lev.) Arn. Ph.D. Thesis, University of Agricultural Sciences GKVK, Karnataka, India, 2006; pp. 79–81. [Google Scholar]
- Lindenthal, M.; Steiner, U.; Dehne, H.W.; Oerke, E.C. Effect of downy mildew development on transpiration of cucumber leaves visualized by digital infrared thermography. Phytopathology 2005, 95, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Abdu-Allaha, G.A.M.; Abo-Elyousrb, K.A.M. Effect of certain plant extracts and fungicides against powdery mildew disease of grapevines in Upper Egypt. Arch. Phytopathol. Plant Prot. 2017, 50, 957–969. [Google Scholar] [CrossRef]
- Morishita, M.; Sugiyama, K.; Saito, T.; Sakata, Y. Review: Powdery mildew resistance in cucumber. Jpn. Agric. Res. Q. 2003, 37, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Vidhyasekaran, P. Fungal Pathogenesis in Plants and Crops-Molecular Biology and Host Defense Mechanisms; Marcel Dekker Inc.: New York, NY, USA, 1997; p. 553. [Google Scholar]
- Pandey, V.P.; Awasthi, M.; Singh, S.; Tiwari, S.; Dwivedi, U.N. A comprehensive review on function and application of plant peroxidases. Biochem. Anal. Biochem. 2017, 6, 308. [Google Scholar] [CrossRef]
- Zhang, J.; Bilal, M.; Liu, S.; Zhang, J.; Lu, H.; Luo, H.; Luo, C.; Shi, H.; Iqbal, H.M.N.; Zhao, Y. Isolation, identification and antimicrobial evaluation of bactericides secreting Bacillus subtilis Natto as a biocontrol agent. Processes 2020, 8, 259. [Google Scholar] [CrossRef] [Green Version]
- Tabacchioni, S.; Passato, S.; Ambrosino, P.; Huang, L.; Caldara, M.; Cantale, C.; Hett, J.; Fiore, A.D.; Fiore, A.; Schlüter, A. Identification of beneficial microbial consortia and bioactive compounds with potential as plant biostimulants for a sustainable agriculture. Microorganisms 2021, 9, 426. [Google Scholar] [CrossRef]
- Caligiore-Gei, P.F.; Valdez, J.G. Adjustment of a rapid method for quantification of Fusarium spp. spore suspensions in plant pathology. Rev. Argent. Microbiol. 2015, 47, 152–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch, E.; Zink, P.; Pfeiffer, T.; Galen, A.V.; Linkies, A.; Drechsel, J.; Birr, T. Artificial inoculation methods for testing microorganisms as control agents of seed and soil-borne Fusarium-seedling blight of maize. J. Plant Dis. Prot. 2020, 127, 883–893. [Google Scholar] [CrossRef]
- Kitao, Y.; Doazan, J.P. Grapevine breeding for resistance to powdery mildew: Bioassay system for evaluation of plant resistance and for characterization of different Uncinula necator stains. J. Grapevine Res. 1989, 29, 239–244. [Google Scholar]
- Varalakshmi, S.; Raguchander, T.; Kuttalam, S.; Samiyappan, P. Bioefficacy and persistence of hexaconazole against mildew of grapes. Pestology 1999, 23, 22–26. [Google Scholar]
- Rathore, B.T.; Rathore, R.S. Studies on varietal resistance and chemical control of powdery mildew of fenugreek (Trigonella foenum graceum). Indian J. Mycol. Plant Pathol. 1995, 13, 21–23. [Google Scholar]
- Pandey, H.N.; Menon, T.C.M.; Rao, M.V. A simple formula for calculating area under disease progress curve. Barley Wheat Newsl. 1989, 8, 38–39. [Google Scholar]
- Phu, N.D.; Thy, L.H.P.; Lam, T.D.; Yen, V.H.; Lan, N.T.N. Extraction of jasmine essential oil by hydro-distillation method and applications on formulation of natural facial cleansers. IOP Conf. Ser. Mater. Sci. Eng. 2019, 542, 012057. [Google Scholar]
- Wellburn, A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Thimmaiah, S.R. Standard Methods of Biochemical Analysis; Kalyani Publishers: New Delhi, India, 1999; p. 534. [Google Scholar]
- Mayer, A.M.; Harel, E.; Shaul, R.B. Assay of catechol oxidase, a critical comparison of methods. Phytochemistry 1965, 5, 783–789. [Google Scholar] [CrossRef]
- Fu, L.; Xu, B.T.; Xu, X.R.; Qin, X.S.; Gan, R.Y.; Li, H.B. Antioxidant capacities and total phenolic contents of 56 wild fruits from South China. Molecules 2010, 15, 8602–8617. [Google Scholar] [CrossRef] [Green Version]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research, 2nd ed.; John Wiley & Sons: Singapore, 1984; p. 680. [Google Scholar]
Treatments | Concentration | Conidia Germination (CG) | Germ Tube Length (GTL) | ||
---|---|---|---|---|---|
CG% | * Reduction% | GTL (µ) | * Reduction% | ||
T. album | 107 spore mL−1 | 25.14 ± 2.52 b | 59.57 | 15.32 ± 2.15 b | 62.84 |
T. harzianum | 107 spore mL−1 | 16.29 ± 2.1 c | 73.80 | 9.36 ± 1.5 c | 77.29 |
T. viride | 107 spore mL−1 | 12.95 ± 0.88 cde | 79.17 | 7.59 ± 0.56 c | 81.59 |
B. subtilis | 109 cfu mL−1 | 7.31 ± 0.61 f | 88.24 | 8.55 ± 0.79 c | 79.26 |
B. pumilus | 109 cfu mL−1 | 9.88 ± 1.22 ef | 84.11 | 9.16 ± 1.63 c | 77.78 |
B. megaterium | 109 cfu mL−1 | 12.48 ± 0.65 cde | 79.92 | 7.41 ± 0.36 c | 82.02 |
P. fluorescens | 109 cfu mL−1 | 14.53 ± 1.77 cd | 76.63 | 10.44 ± 2.68 c | 74.67 |
S. marcescens | 109 cfu mL−1 | 11.77 ± 1.12 de | 81.07 | 8.97 ± 0.46 c | 78.24 |
Difenoconazole | 0.5 mL L−1 | 1.78 ± 0.26 g | 97.13 | 3.11 ± 0.19 d | 92.45 |
Control | – | 62.18 ± 5.71 a | – | 41.23 ± 2.89 a | – |
Treatments | Disease Severity% | * Efficiency% | AUDPC | |||
---|---|---|---|---|---|---|
Days after Starting the Application | ||||||
7 Days | 14 Days | 21 Days | 28 Days | |||
T. album | 18.22 ± 1.54 b | 25 ± 0.96 b | 33.15 ± 1.87 a | 50.38 ± 2.68 a | 55.47 | 647.15 ± 28.73 b |
T. harzianum | 15.76 ± 2.09 bc | 22.9 ± 2.4 bc | 31 ± 1.4 b | 45.89 ± 1.47 c | 60.42 | 593.07 ± 25.21 c |
T. viride | 14.32 ± 0.97 c | 19.64 ± 0.92 de | 25.35 ± 1.73 cd | 42.54 ± 1.92 c | 65.11 | 513.94 ± 27.11 d |
B. subtilis | 7.37 ± 0.68 ef | 10.83 ± 1.57 g | 15.22 ± 1.75 f | 22.05 ± 1.89 g | 80.13 | 285.32 ± 11.36 g |
B. pumilus | 7.52 ± 0.71 ef | 13.4 ± 1.48 fg | 20.58 ± 1.78 e | 33.35 ± 2.06 e | 74.36 | 380.91 ± 15.15 f |
B. megaterium | 11.47 ± 1.2 d | 18.03 ± 1.74 e | 23.19 ± 1.1 de | 29.46 ± 1.57 f | 70.49 | 431.79 ± 23.16 e |
P. fluorescens | 15.31 ± 2.03 c | 20.98 ± 1.67 cd | 27.44 ± 1.27 c | 38.63 ± 2.6 d | 63.85 | 527.73 ± 33.2 d |
S. marcescens | 9.55 ± 1.32 de | 13.75 ± 0.7 f | 21.38 ± 0.91 e | 33.52 ± 3.56 e | 73.21 | 396.65 ± 24.92 f |
Difenoconazole | 5.58 ± 1.33 f | 7.87 ± 0.51 h | 12.5 ± 1.39 f | 16.33 ± 1.15 h | 84.67 | 219.27 ± 19.37 h |
Control | 37.49 ± 3.23 a | 64.32 ± 2.65 a | 88.13 ± 2.96 b | 97.35 ± 1.19 b | – | 1539.10 ± 95.75 a |
Treatments | Disease Severity% | * Efficiency% | ||
---|---|---|---|---|
Growing Season | Mean | |||
2018/2019 | 2019/2020 | |||
T. album | 29.42 ± 1.84 b | 32.2 ± 1.13 b | 30.81 | 52.13 |
T. harzianum | 28.91 ± 1.32 b | 25.09 ± 1.94 cd | 27.00 | 58.05 |
T. viride | 21.58 ± 1.12 cd | 25.44 ± 1.66 cd | 23.51 | 63.47 |
B. subtilis | 16.4 ± 0.97 f | 12.04 ± 0.96 f | 14.22 | 77.90 |
B. pumilus | 18.33 ± 1.21 ef | 16.23 ± 1.85 e | 17.28 | 73.15 |
B. megaterium | 19.56 ± 1.1 de | 22.2 ± 1.39 d | 20.88 | 67.56 |
P. fluorescens | 22.64 ± 2.83 c | 27.32 ± 0.76 c | 24.98 | 61.19 |
S. marcescens | 19.5 ± 1.09 de | 17.38 ± 4.27 e | 18.44 | 71.35 |
Difenoconazole | 11.48 ± 0.92 g | 12.62 ± 0.99 f | 12.05 | 81.28 |
Control | 61.34 ± 2.36 a | 67.4 ± 3.14 a | 64.37 | – |
Treatments | PO Activity (min−1 mg−1 Protein) | PPO Activity (min−1 mg−1 Protein) | TPC (mg g−1 FW) |
---|---|---|---|
T. album | 0.48 ± 0.03 g | 0.14 ± 0.02 g | 29.47 ± 2.29 d |
T. harzianum | 0.56 ± 0.02 f | 0.21 ± 0.01 ef | 35.22 ± 1.6 c |
T. viride | 0.72 ± 0.02 d | 0.24 ± 0.01 e | 38.16 ± 2.68 bc |
B. subtilis | 0.98 ± 0.06 a | 0.42 ± 0.02 ab | 50.12 ± 1.89 a |
B. pumilus | 0.91 ± 0.03 b | 0.45 ± 0.02 a | 48.65 ± 1.3 a |
B. megaterium | 0.76 ± 0.02 d | 0.29 ± 0.02 d | 40.69 ± 2.87 b |
P. fluorescens | 0.64 ± 0.05 e | 0.20 ± 0.02 f | 34.53 ± 1.74 c |
S. marcescens | 0.89 ± 0.02 bc | 0.38 ± 0.02 c | 41.90 ± 1.15 b |
Difenoconazole | 0.85 ± 0.03 c | 0.40 ± 0.02 bc | 47.58 ± 2.91 a |
Control | 0.42 ± 0.02 h | 0.11 ± 0.02 h | 26.13 ± 1.28 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, H.F.A.; Seleiman, M.F.; Al-Saif, A.M.; Alshiekheid, M.A.; Battaglia, M.L.; Taha, R.S. Biological Control of Celery Powdery Mildew Disease Caused by Erysiphe heraclei DC In Vitro and In Vivo Conditions. Plants 2021, 10, 2342. https://doi.org/10.3390/plants10112342
Ahmed HFA, Seleiman MF, Al-Saif AM, Alshiekheid MA, Battaglia ML, Taha RS. Biological Control of Celery Powdery Mildew Disease Caused by Erysiphe heraclei DC In Vitro and In Vivo Conditions. Plants. 2021; 10(11):2342. https://doi.org/10.3390/plants10112342
Chicago/Turabian StyleAhmed, Hamada F. A., Mahmoud F. Seleiman, Adel M. Al-Saif, Maha A. Alshiekheid, Martin L. Battaglia, and Ragab S. Taha. 2021. "Biological Control of Celery Powdery Mildew Disease Caused by Erysiphe heraclei DC In Vitro and In Vivo Conditions" Plants 10, no. 11: 2342. https://doi.org/10.3390/plants10112342
APA StyleAhmed, H. F. A., Seleiman, M. F., Al-Saif, A. M., Alshiekheid, M. A., Battaglia, M. L., & Taha, R. S. (2021). Biological Control of Celery Powdery Mildew Disease Caused by Erysiphe heraclei DC In Vitro and In Vivo Conditions. Plants, 10(11), 2342. https://doi.org/10.3390/plants10112342