Extremophilic Microalgae Galdieria Gen. for Urban Wastewater Treatment: Current State, the Case of “POWER” System, and Future Prospects
Abstract
:1. Introduction
2. Screening Criteria for Scientific Articles
3. Current State of the Art
3.1. General Framework
3.2. Objectives of the Studies—Focus on Las Cruces POWER System
- feasibility of using raw wastewater as a growth medium for the selected strain;
- efficiency of this system for removal of pathogens;
- hydrothermal liquefaction to maximise energy recovery and biomass production;
- performance of the system in a simulated continuous process.
3.3. Feasibility of Using Raw Wastewater as a Growth Medium for Galdieria Gen
3.4. Efficiency of the System for Removal of Pathogens
3.5. Use of Hydrothermal Liquefaction to Maximise Energy Recovery and Biomass Production
3.6. Performance of the System in a Simulated Continuous Process
4. Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Udugama, I.A.; Petersen, L.A.H.; Falco, F.C.; Junicke, H.; Mitic, A.; Alsina, X.F.; Mansouri, S.S.; Gernaey, K.V. Resource recovery from waste streams in a water-energy-food nexus perspective: Toward more sustainable food processing. Food Bioprod. Process. 2020, 119, 133–147. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Olsson, G. Energy issues in sustainable urban wastewater management: Use, demand reduction and recovery in the urban water cycle. Sustainability 2020, 12, 266. [Google Scholar] [CrossRef] [Green Version]
- di Cicco, M.R.; Spagnuolo, A.; Masiello, A.; Vetromile, C.; Nappa, M.; Corbo, G.; Lubritto, C. Assessing energy performance and critical issues of a large wastewater treatment plant through full-scale data benchmarking. Water Sci. Technol. 2019, 80, 1421–1429. [Google Scholar] [CrossRef]
- Di Cicco, M.R.; Spagnuolo, A.; Masiello, A.; Vetromile, C.; Nappa, M.; Corbo, G.; Lubritto, C. Energy Monitoring of a Wastewater Treatment Plant in Salerno, Campania Region (Southern Italy). In Proceedings of the 2nd WaterEnergyNEXUS Conference, Salerno, Italy, 14–17 November 2018. [Google Scholar] [CrossRef]
- Vetromile, C.; Spagnuolo, A.; Petraglia, A.; Masiello, A.; di Cicco, M.R.; Lubritto, C. Pre- and post-operam comparison of the energy consumption of a radio base station under energy efficiency actions. Energy Build. 2021, 236, 110772. [Google Scholar] [CrossRef]
- Kehrein, P.; van Loosdrecht, M.; Osseweijer, P.; Garfí, M.; Dewulf, J.; Posada, J. A critical review of resource recovery from municipal wastewater treatment plants—Market supply potentials, technologies and bottlenecks. Environ. Sci. Water Res. Technol. 2020, 6, 877–910. [Google Scholar] [CrossRef] [Green Version]
- di Cicco, M.R.; Masiello, A.; Spagnuolo, A.; Vetromile, C.; Borea, L.; Giannella, G.; Iovinella, M.; Lubritto, C. Real-Time Monitoring and Static Data Analysis to Assess Energetic and Environmental Performances in the Wastewater Sector: A Case Study. Energies 2021, 14, 6948. [Google Scholar] [CrossRef]
- Egle, L.; Rechberger, H.; Krampe, J.; Zessner, M. Phosphorus recovery from municipal wastewater: An integrated comparative technological, environmental and economic assessment of P recovery technologies. Sci. Total Environ. 2016, 571, 522–542. [Google Scholar] [CrossRef] [Green Version]
- Perin, G.; Yunus, I.S.; Valton, M.; Alobwede, E.; Jones, P.R. Sunlight-driven recycling to increase nutrient use-efficiency in agriculture. Algal Res. 2019, 41, 101554. [Google Scholar] [CrossRef]
- van Dijk, K.C.; Lesschen, J.P.; Oenema, O. Phosphorus flows and balances of the European Union Member States. Sci. Total Environ. 2016, 542, 1078–1093. [Google Scholar] [CrossRef]
- Smol, M.; Adam, C.; Preisner, M. Circular economy model framework in the European water and wastewater sector. J. Mater. Cycles Waste Manag. 2020, 22, 682–697. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, S.K.; Mehariya, S.; Bhatia, R.K.; Kumar, M.; Pugazhendhi, A.; Awasthi, M.K.; Atabani, A.E.; Kumar, G.; Kim, W.; Seo, S.-O.; et al. Wastewater based microalgal biorefinery for bioenergy production: Progress and challenges. Sci. Total Environ. 2021, 751, 141599. [Google Scholar] [CrossRef]
- Henkanatte-Gedera, S.M.; Selvaratnam, T.; Karbakhshravari, M.; Myint, M.; Nirmalakhandan, N.; Van Voorhies, W.; Lammers, P.J. Removal of dissolved organic carbon and nutrients from urban wastewaters by Galdieria sulphuraria: Laboratory to field scale demonstration. Algal Res. 2017, 24, 450–456. [Google Scholar] [CrossRef]
- Panda, S.; Mishra, S.; Akcil, A.; Kucuker, M.A. Microalgal potential for nutrient-energy-wastewater nexus: Innovations, current trends and future directions. Energy Environ. 2020, 32, 604–634. [Google Scholar] [CrossRef]
- Salbitani, G.; Carfagna, S. Ammonium Utilization in Microalgae: A Sustainable Method for Wastewater Treatment. Sustainability 2021, 13, 956. [Google Scholar] [CrossRef]
- Oswald, W.J.; Gotaas, H.B.; Golueke, C.G.; Kellen, W.R.; Gloyna, E.F.; Hermann, E.R. Algae in waste treatment [with discussion]. Sew. Ind. Wastes 1957, 29, 437–457. [Google Scholar]
- Goswami, R.K.; Mehariya, S.; Verma, P.; Lavecchia, R.; Zuorro, A. Microalgae-based biorefineries for sustainable resource recovery from wastewater. J. Water Process Eng. 2020, 40, 101747. [Google Scholar] [CrossRef]
- Chen, Y.-d.; Li, S.; Ho, S.-H.; Wang, C.; Lin, Y.-C.; Nagarajan, D.; Chang, J.-S.; Ren, N.-q. Integration of sludge digestion and microalgae cultivation for enhancing bioenergy and biorefinery. Renew. Sustain. Energy Rev. 2018, 96, 76–90. [Google Scholar] [CrossRef]
- Barsanti, L.; Gualtieri, P. Is exploitation of microalgae economically and energetically sustainable? Algal Res. 2018, 31, 107–115. [Google Scholar] [CrossRef]
- González, I.; Herrero, N.; Siles, J.Á.; Chica, A.F.; Martín, M.; Izquierdo, C.G.; Gómez, J.M. Wastewater nutrient recovery using twin-layer microalgae technology for biofertilizer production. Water Sci. Technol. 2020, 82, 1044–1061. [Google Scholar] [CrossRef]
- Saini, N.; Pal, K.; Sujata; Deepak, B.; Mona, S. Thermophilic algae: A new prospect towards environmental sustainability. J. Clean. Prod. 2021, 324, 129277. [Google Scholar] [CrossRef]
- Ju, X.; Igarashi, K.; Miyashita, S.; Mitsuhashi, H.; Inagaki, K.; Fujii, S.; Sawada, H.; Kuwabara, T.; Minoda, A. Effective and selective recovery of gold and palladium ions from metal wastewater using a sulfothermophilic red alga, Galdieria sulphuraria. Bioresour. Technol. 2016, 211, 759–764. [Google Scholar] [CrossRef] [Green Version]
- Ruan, J.; Zhu, X.; Qian, Y.; Hu, J. A new strain for recovering precious metals from waste printed circuit boards. Waste Manag. 2014, 34, 901–907. [Google Scholar] [CrossRef]
- Zhuang, W.Q.; Fitts, J.P.; Ajo-Franklin, C.M.; Maes, S.; Alvarez-Cohen, L.; Hennebel, T. Recovery of critical metals using biometallurgy. Curr. Opin. Biotechnol. 2015, 33, 327–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dasan, Y.K.; Lam, M.K.; Yusup, S.; Lim, J.W.; Lee, K.T. Life cycle evaluation of microalgae biofuels production: Effect of cultivation system on energy, carbon emission and cost balance analysis. Sci. Total Environ. 2019, 688, 112–128. [Google Scholar] [CrossRef]
- Varshney, P.; Mikulic, P.; Vonshak, A.; Beardall, J.; Wangikar, P.P. Extremophilic micro-algae and their potential contribution in biotechnology. Bioresour. Technol. 2015, 184, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Wollmann, F.; Dietze, S.; Ackermann, J.-U.; Bley, T.; Walther, T.; Steingroewer, J.; Krujatz, F. Microalgae wastewater treatment: Biological and technological approaches. Eng. Life Sci. 2019, 19, 860–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Cicco, M.R.; Palmieri, M.; Lubritto, C.; Ciniglia, C. Microalgae Based Nutrient Recovery from Urban Wastewater; Chapter, 4; Karthikeyan, O.P., Mehariya, S., Bhatia, S.K., Eds.; CRC Press: Boca Raton, FL, USA, 2022; Accepted. [Google Scholar]
- Eren, A.; Iovinella, M.; Yoon, H.S.; Cennamo, P.; de Stefano, M.; de Castro, O.; Ciniglia, C. Genetic structure of Galdieria populations from Iceland. Polar Biol. 2018, 41, 1681–1691. [Google Scholar] [CrossRef]
- Čížková, M.; Mezricky, P.; Mezricky, D.; Rucki, M.; Zachleder, V.; Vítová, M. Bioaccumulation of Rare Earth Elements from Waste Luminophores in the Red Algae Galdieria phlegrea. Waste Biomass Valorization 2020, 12, 3137–3146. [Google Scholar] [CrossRef]
- Schonknecht, G.; Chen, W.H.; Ternes, C.M.; Barbier, G.G.; Shrestha, R.P.; Stanke, M.; Brautigam, A.; Baker, B.J.; Banfield, J.F.; Garavito, R.M.; et al. Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science 2013, 339, 1207–1210. [Google Scholar] [CrossRef]
- Sakurai, T.; Aoki, M.; Ju, X.; Ueda, T.; Nakamura, Y.; Fujiwara, S.; Umemura, T.; Tsuzuki, M.; Minoda, A. Profiling of lipid and glycogen accumulations under different growth conditions in the sulfothermophilic red alga Galdieria sulphuraria. Bioresour. Technol. 2016, 200, 861–866. [Google Scholar] [CrossRef] [Green Version]
- Moon, M.; Mishra, S.K.; Kim, C.W.; Suh, W.I.; Park, M.S.; Yang, J.-W. Isolation and characterization of thermostable phycocyanin from Galdieria sulphuraria. Korean J. Chem. Eng. 2014, 31, 490–495. [Google Scholar] [CrossRef]
- Čížková, M.; Vítová, M.; Zachleder, V. The Red Microalga Galdieria as a Promising Organism for Applications in Biotechnology. In Microalgae—From Physiology to Application; IntechOpen: London, UK, 2019. [Google Scholar]
- Delanka-Pedige, H.M.K.; Munasinghe-Arachchige, S.P.; Cornelius, J.; Henkanatte-Gedera, S.M.; Tchinda, D.; Zhang, Y.; Nirmalakhandan, N. Pathogen reduction in an algal-based wastewater treatment system employing Galdieria sulphuraria. Algal Res. 2019, 39, 101423. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The, P.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abeysiriwardana-Arachchige, I.S.A.; Nirmalakhandan, N. Predicting removal kinetics of biochemical oxygen demand (BOD) and nutrients in a pilot scale fed-batch algal wastewater treatment system. Algal Res. 2019, 43, 101643. [Google Scholar] [CrossRef]
- Carbone, D.A.; Olivieri, G.; Pollio, A.; Melkonian, M. Comparison of Galdieria growth and photosynthetic activity in different culture systems. AMB Express 2020, 10, 170. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Cui, Z.; Chen, L.; Jarvis, J.; Paz, N.; Schaub, T.; Nirmalakhandan, N.; Brewer, C.E. Hydrothermal liquefaction of high- and low-lipid algae: Bio-crude oil chemistry. Appl. Energy 2017, 206, 278–292. [Google Scholar] [CrossRef]
- Cheng, F.; Jarvis, J.M.; Yu, J.; Jena, U.; Nirmalakhandan, N.; Schaub, T.M.; Brewer, C.E. Bio-crude oil from hydrothermal liquefaction of wastewater microalgae in a pilot-scale continuous flow reactor. Bioresour. Technol. 2019, 294, 122184. [Google Scholar] [CrossRef]
- Cheng, F.; Mallick, K.; Henkanatte Gedara, S.M.; Jarvis, J.M.; Schaub, T.; Jena, U.; Nirmalakhandan, N.; Brewer, C.E. Hydrothermal liquefaction of Galdieria sulphuraria grown on municipal wastewater. Bioresour. Technology 2019, 292, 121884. [Google Scholar] [CrossRef]
- Cheng, X.; Delanka-Pedige, H.M.K.; Munasinghe-Arachchige, S.P.; Abeysiriwardana-Arachchige, I.S.A.; Smith, G.B.; Nirmalakhandan, N.; Zhang, Y. Removal of antibiotic resistance genes in an algal-based wastewater treatment system employing Galdieria sulphuraria: A comparative study. Sci. Total Environ. 2020, 711, 134435. [Google Scholar] [CrossRef]
- Cui, Z.; Cheng, F.; Jarvis, J.M.; Brewer, C.E.; Jena, U. Roles of Co-solvents in hydrothermal liquefaction of low-lipid, high-protein algae. Bioresour. Technol. 2020, 310, 123454. [Google Scholar] [CrossRef]
- Cui, Z.; Greene, J.M.; Cheng, F.; Quinn, J.C.; Jena, U.; Brewer, C.E. Co-hydrothermal liquefaction of wastewater-grown algae and crude glycerol: A novel strategy of bio-crude oil-aqueous separation and techno-economic analysis for bio-crude oil recovery and upgrading. Algal Res. 2020, 51, 102077. [Google Scholar] [CrossRef]
- Delanka-Pedige, H.M.K.; Cheng, X.; Munasinghe-Arachchige, S.P.; Abeysiriwardana-Arachchige, I.S.A.; Xu, J.; Nirmalakhandan, N.; Zhang, Y. Metagenomic insights into virus removal performance of an algal-based wastewater treatment system utilizing Galdieria sulphuraria. Algal Res. 2020, 47, 101865. [Google Scholar] [CrossRef]
- di Cicco, M.R.; Palmieri, M.; Altieri, S.; Ciniglia, C.; Lubritto, C. Cultivation of the Acidophilic Microalgae Galdieria phlegrea with Wastewater: Process Yields. Int. J. Environ. Res. Public Health 2021, 18, 2291. [Google Scholar] [CrossRef]
- Henkanatte-Gedera, S.M.; Selvaratnam, T.; Caskan, N.; Nirmalakhandan, N.; Van Voorhies, W.; Lammers, P.J. Algal-based, single-step treatment of urban wastewaters. Bioresour. Technol. 2015, 189, 273–278. [Google Scholar] [CrossRef] [Green Version]
- Hirooka, S.; Miyagishima, S.-y. Cultivation of acidophilic algae Galdieria sulphuraria and Pseudochlorella sp. YKT1 in media derived from acidic hot springs. Front. Microbiol. 2016, 7, 2022. [Google Scholar] [CrossRef] [Green Version]
- Jalali, F.; Fakhar, J.; Zolfaghari, A. Investigation on biosorption of V (III), Ti(IV), and U(VI) ions from a contaminated effluent by a newly isolated strain of Galdieria sulphuraria. Sep. Sci. Technol. 2019, 54, 2222–2239. [Google Scholar] [CrossRef]
- Jiang, W.; Lin, L.; Gedara, S.M.H.; Schaub, T.M.; Jarvis, J.M.; Wang, X.; Xu, X.; Nirmalakhandan, N.; Xu, P. Potable-quality water recovery from primary effluent through a coupled algal-osmosis membrane system. Chemosphere 2020, 240, 124883. [Google Scholar] [CrossRef]
- Munasinghe-Arachchige, S.P.; Delanka-Pedige, H.M.K.; Abeysiriwardana-Arachchige, I.S.A.; Zhang, Y.; Nirmalakhandan, N. Predicting fecal coliform inactivation in a mixotrophic algal wastewater treatment system. Algal Res. 2019, 44, 101698. [Google Scholar] [CrossRef]
- Munasinghe-Arachchige, S.P.; Delanka-Pedige, H.M.K.; Henkanatte-Gedera, S.M.; Tchinda, D.; Zhang, Y.; Nirmalakhandan, N. Factors contributing to bacteria inactivation in the Galdieria sulphuraria-based wastewater treatment system. Algal Res. 2019, 38, 101392. [Google Scholar] [CrossRef]
- Nirmalakhandan, N.; Selvaratnam, T.; Henkanatte-Gedera, S.M.; Tchinda, D.; Abeysiriwardana-Arachchige, I.S.A.; Delanka-Pedige, H.M.K.; Munasinghe-Arachchige, S.P.; Zhang, Y.; Holguin, F.O.; Lammers, P.J. Algal wastewater treatment: Photoautotrophic vs. mixotrophic processes. Algal Res. 2019, 41, 101569. [Google Scholar] [CrossRef]
- Rahman, A.; Pan, S.; Houston, C.; Selvaratnam, T. Evaluation of Galdieria sulphuraria and Chlorella vulgaris for the Bioremediation of Produced Water. Water 2021, 13, 1183. [Google Scholar] [CrossRef]
- Russo, G.L.; Langellotti, A.L.; Oliviero, M.; Baselice, M.; Sacchi, R.; Masi, P. Valorization of second cheese whey through cultivation of extremophile microalga Galdieria sulphuraria. AIMS Environ. Sci. 2021, 8, 435–448. [Google Scholar] [CrossRef]
- Scherhag, P.; Ackermann, J.-U. Removal of sugars in wastewater from food production through heterotrophic growth of Galdieria sulphuraria. Eng. Life Sci. 2021, 21, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Selvaratnam, T.; Pegallapati, A.K.; Montelya, F.; Rodriguez, G.; Nirmalakhandan, N.; Van Voorhies, W.; Lammers, P.J. Evaluation of a thermo-tolerant acidophilic alga, Galdieria sulphuraria, for nutrient removal from urban wastewaters. Bioresour. Technol. 2014, 156, 395–399. [Google Scholar] [CrossRef]
- Selvaratnam, T.; Pegallapati, A.; Montelya, F.; Rodriguez, G.; Nirmalakhandan, N.; Lammers, P.J.; van Voorhies, W. Feasibility of algal systems for sustainable wastewater treatment. Renew. Energy 2015, 82, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Selvaratnam, T.; Pegallapati, A.K.; Reddy, H.; Kanapathipillai, N.; Nirmalakhandan, N.; Deng, S.; Lammers, P.J. Algal biofuels from urban wastewaters: Maximizing biomass yield using nutrients recycled from hydrothermal processing of biomass. Bioresour. Technol. 2015, 182, 232–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selvaratnam, T.; Reddy, H.; Muppaneni, T.; Holguin, F.O.; Nirmalakhandan, N.; Lammers, P.J.; Deng, S. Optimizing energy yields from nutrient recycling using sequential hydrothermal liquefaction with Galdieria sulphuraria. Algal Res. 2015, 12, 74–79. [Google Scholar] [CrossRef] [Green Version]
- Selvaratnam, T.; Henkanatte-Gedera, S.M.; Muppaneni, T.; Nirmalakhandan, N.; Deng, S.; Lammers, P.J. Maximizing recovery of energy and nutrients from urban wastewaters. Energy 2016, 104, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Shi, M.; Lu, T.; Ding, D.; Sun, Y.; Yuan, Y. Bio-removal of PtCl62− complex by Galdieria sulphuraria. Sci. Total Environ. 2021, 796, 149021. [Google Scholar] [CrossRef]
- Tchinda, D.; Henkanatte-Gedera, S.M.; Abeysiriwardana-Arachchige, I.S.A.; Delanka-Pedige, H.M.K.; Munasinghe-Arachchige, S.P.; Zhang, Y.; Nirmalakhandan, N. Single-step treatment of primary effluent by Galdieria sulphuraria: Removal of biochemical oxygen demand, nutrients, and pathogens. Algal Res. 2019, 42, 101578. [Google Scholar] [CrossRef]
- Thielemann, A.K.; Smetana, S.; Pleissner, D. Life cycle assessment of hetero- and phototrophic as well as combined cultivations of Galdieria sulphuraria. Bioresour. Technol. 2021, 335, 125227. [Google Scholar] [CrossRef]
- Barcyté, D.; Elster, J.; Nedbalová, L. Plastid-encoded rbcL phylogeny suggests widespread distribution of Galdieria phlegrea (Cyanidiophyceae, Rhodophyta). Nord. J. Bot. 2018, 36, e01794. [Google Scholar] [CrossRef]
- Malavasi, V.; Soru, S.; Cao, G. Extremophile Microalgae: The potential for biotechnological application. J. Phycol. 2020, 56, 559–573. [Google Scholar] [CrossRef]
- Minoda, A.; Sawada, H.; Suzuki, S.; Miyashita, S.; Inagaki, K.; Yamamoto, T.; Tsuzuki, M. Recovery of rare earth elements from the sulfothermophilic red alga Galdieria sulphuraria using aqueous acid. Appl. Microbiol. Biotechnol. 2015, 99, 1513–1519. [Google Scholar] [CrossRef]
- Redfield, A.C.; Ketchum, B.H.; Richards, F.A. The influence of organisms on the composition of sea-water. Sea 1963, 2, 26–77. [Google Scholar]
- Park, J.B.K.; Craggs, R.J.; Shilton, A.N. Wastewater treatment high rate algal ponds for biofuel production. Bioresour. Technol. 2011, 102, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Iovinella, M.; Carbone, D.A.; Diana, C.; Seth, J.D.; Michele, I.; Esposito, S.; Ciniglia, C. Prevalent pH Controls the Capacity of Galdieria maxima to Use Ammonia and Nitrate as a Nitrogen Source. Plants 2020, 9, 232. [Google Scholar] [CrossRef] [Green Version]
- di Cicco, M.R.; Spagnuolo, A.; Masiello, A.; Vetromile, C.; Nappa, M.; Lubritto, C. Energetic and environmental analysis of a wastewater treatment plant through static and dynamic monitoring activities. Int. J. Environ. Sci. Technol. 2020, 17, 4299–4312. [Google Scholar] [CrossRef]
- Fuggi, A.; Rigano, V.D.M.; Vona, V.; Rigano, C. Pattern of inhibition of nitrate utilization by ammonium in the acidophilic thermophilic unicellular alga Cyanidium caldarium. Arch. Microbiol. 1981, 130, 349–352. [Google Scholar] [CrossRef]
- Rigano, C.; Di Martino Rigano, V.; Vona, V.; Fuggi, A. Nitrate reductase and glutamine synthetase activities, nitrate and ammonia assimilation, in the unicellular alga Cyanidium caldarium. Arch. Microbiol. 1981, 129, 110–114. [Google Scholar] [CrossRef]
- Ansa, E.D.O.; Awuah, E.; Andoh, A.; Banu, R.; Dorgbetor, W.H.K.; Lubberding, H.J.; Gijzen, H.J. A Review of the Mechanisms of Faecal Coliform Removal from Algal and Duckweed Waste Stabilization Pond Systems. Am. J. Environ. Sci. 2015, 11, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Almasi, A.; Pescod, M.B. Pathogen removal mechanisms in anoxic wastewater stabilization ponds. Water Sci. Technol. 1996, 33, 133–140. [Google Scholar] [CrossRef]
- Marchello, A.E.; Lombardi, A.T.; Dellamano-Oliveira, M.J.; Souza, C.W.O.d. Microalgae population dynamics in photobioreactors with secondary sewage effluent as culture medium. Braz. J. Microbiol. 2015, 46, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, F.; Iftikhar, A.; Ali, A.S.; Shabbir, S.A.; Wahid, A.; Mohy-u-Din, N.; Rauf, A. Removal of Coliform Bacteria from Municipal Wastewater by Algae. Proc. Pak. Acad. Sci. 2014, 51, 129–138. [Google Scholar]
- Audia, J.P.; Webb, C.C.; Foster, J.W. Breaking through the acid barrier: An orchestrated response to proton stress by enteric bacteria. Int. J. Med. Microbiol. 2001, 291, 97–106. [Google Scholar] [CrossRef]
- Gale, E.F.; Epps, H.M.R. The effect of the pH of the medium during growth on the enzymic activities of bacteria (Escherichia coli and Micrococcus lysodeikticus) and the biological significance of the changes produced. Biochem. J. 1942, 36, 600–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foster, J.W. Microbial responses to acid stress. Bact. Stress Responses 2000, 99–115. [Google Scholar]
- Paster, E.; Ryu, W.S. The thermal impulse response of Escherichia coli. Proc. Natl. Acad. Sci. USA 2008, 105, 5373–5377. [Google Scholar] [CrossRef] [Green Version]
- Curtis, T.P.; Mara, D.D.; Silva, S.A. Influence of pH, Oxygen, and Humic Substances on Ability of Sunlight To Damage Fecal Coliforms in Waste Stabilization Pond Water. Appl. Environ. Microbiol. 1992, 58, 1335–1343. [Google Scholar] [CrossRef] [Green Version]
- Roberts, G.W.; Fortier, M.O.P.; Sturm, B.S.M.; Stagg-Williams, S.M. Promising Pathway for Algal Biofuels through Wastewater Cultivation and Hydrothermal Conversion. Energy Fuels 2013, 27, 857–867. [Google Scholar] [CrossRef]
- Peterson, A.A.; Vogel, F.; Lachance, R.P.; Fröling, M.; Antal, J.M.J.; Tester, J.W. Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energy Environ. Sci. 2008, 1, 32–65. [Google Scholar] [CrossRef]
- Jarvis, J.M.; Albrecht, K.O.; Billing, J.M.; Schmidt, A.J.; Hallen, R.T.; Schaub, T.M. Assessment of Hydrotreatment for Hydrothermal Liquefaction Biocrudes from Sewage Sludge, Microalgae, and Pine Feedstocks. Energy Fuels 2018, 32, 8483–8493. [Google Scholar] [CrossRef]
- Brewer, C.E.; Mallick, K.; Cheng, F.; Cui, Z.; Gedara, S.M.H.; Karbakhshravari, M.; Schaub, T.M.; Jena, U.; Nirmalakhandan, N. Hydrothermal liquefaction of Galdieria sulphuraria grown on municipal wastewater. In Proceedings of the ASABE Annual International Meeting, Spokane, DC, USA, 16–19 July 2017; p. 1. [Google Scholar]
- Jones, S.; Davis, R.; Zhu, Y.; Kinchin, C.; Anderson, D.; Hallen, R.; Elliott, D.; Schmidt, A.; Albrecht, K.; Hart, T.; et al. Process Design and Economics for the Conversion of Algal Biomasss to Hydrocarbons: Whole Algae Hydrothermal Liquefaction and Upgrading; U.S. Department of Energy: Washington, DC, USA, 2014. [Google Scholar]
- Biller, P.; Ross, A.B.; Skill, S.C.; Lea-Langton, A.; Balasundaram, B.; Hall, C.; Riley, R.; Llewellyn, C.A. Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process. Algal Res. 2012, 1, 70–76. [Google Scholar] [CrossRef]
- Du, Z.; Hu, B.; Shi, A.; Ma, X.; Cheng, Y.; Chen, P.; Liu, X.; Lin, X.; Ruan, R. Cultivation of a microalga Chlorella vulgaris using recycled aqueous phase nutrients from hydrothermal carbonization process. Bioresour. Technol. 2012, 126, 354–357. [Google Scholar] [CrossRef] [PubMed]
Reference | Effluent Tipology | Strain | Highlights | Eligible |
---|---|---|---|---|
[37] | Municipal wastewater | G. sulphuraria CCMEE 5587.1 | Prediction of the operational cycle time that is needed to comply with the discharge levels imposed by current legislation for ammonium, phosphate and BOD5 removal, in a fed-batch cultivation system. | yes |
[38] | Galdieria medium | G. sulphuraria ACUF 064 | Comparing the growth of G. sulphuraria in 5 different cultivation systems, four being in liquid phase and one on the innovatine Twin Layers photobioreactor. | no |
[39] | f/2 growth medium with 2% ocean salts | G. sulphuraria CCMEE 5587.1 | Characterization of the lipid profile of pyrolysis oil derived from the hydrothermal liquefaction of G. sulphuraria, compared with the bio-crude extracted from N. salina. | no |
N. salina CCMP1776 | ||||
[40] | Municipal wastewater | G. sulphuraria CCMEE 5587.1 | Comparing overall performances of hydrothermal liquefaction processes performed continuously (4 h) and in batch systems. | yes |
G. sulphuraria polyculture | ||||
[41] | Municipal wastewater | G. sulphuraria CCMEE 5587.1 | Comparing overall performances of hydrothermal liquefaction processes performed continuously and usign two different strains of G. sulphuraria, to simulate seasonality and different response to the surrounding environment. | yes |
G. sulphuraria SOOS | ||||
[42] | Municipal wastewater | G. sulphuraria CCMEE 5587.1 | Comparing removal of antibiotic resistant bacteria and antibiotic resistant genes in two different systems: algal-based system employing G. sulphuraria and conventional activated sludge process. | yes |
[43] | Municipal wastewater | G. sulphuraria CCMEE 5587.1 | Evaluate the addition of different alcohols to the biomass, in order to improve the performances of hydrothermal liquefaction processes. | yes |
[44] | Municipal wastewater | G. sulphuraria CCMEE 5587.1 | Exploring performance and changes in bio-crude oil chemistry of a hydrothermal liquefaction process in which crude glycerol was added to algal biomass, and a following step of catalytic upgrading using Pt/C was performed. | yes |
[35] | Municipal wastewater | G. sulphuraria CCMEE 5587.1 | Monitoring and comparing the total content of pathogens in the wastewater (from a genetic sequencing point of view) treated with: G. sulphuraria algal-system, conventional activated sludge process. | yes |
[45] | Municipal wastewater | G. sulphuraria CCMEE 5587.1 | Monitoring the reduction of somatic and F-specific coliphages in the wastewater as indicators of enteric viruses. | yes |
[46] | Municipal wastewater | G. phlegrea ACUF 784.3 | Testing for the first time the growth of G. phlegrea in urban wastewater under laboratory conditions and in batch mode. Metabolic pathways of Carbon and Nitrogen from the growth medium to the biomass were evaluated using isotopic analysis. | yes |
[47] | Municipal wastewater | G. sulphuraria CCMEE 5587.1 | Comparing performances of G. sulphuraria in terms of biomass growth and contaminant removal in various growth media, prepared according to different criteria. | yes |
[13] | Municipal wastewater | G. sulphuraria CCMEE 5587.1 | Comparing the results obtained in terms of biomass growth, N, P and BOD5 removal, when scaling-up from laboratory to field conditions. | yes |
[48] | Sulfuric acidic hot springs | G. sulphuraria 074G | Monitoring the growth of microalgae in an acidic extremophilic environment (hot springs). | no |
Pseudochlorella sp. YKT1 | ||||
[49] | Solutions of uranium, vanadium, and titanium | G. sulphuraria SBU-SH1 | Evaluating biosorption capacity of heavy metal ions by a novel strain of G. sulphuraria identified and presented for the first time. | no |
[50] | Municipal wastewater | G. sulphuraria CCMEE 5587.1 | Investigating the technical feasibility of recovering potable-quality water from a system for wastewater treatment mediated by G. sulphuraria. | yes |
[22] | Modified Allen’s Medium | G. sulphuraria 074W | Evaluating the biosorption capacity of precious metals such as gold, platinum, and palladium by G. sulphuraria, and the subsequent elution capacity of such heavy metals. | no |
Metal wastewater solutions (Au3+, Pd2+, Pt4+) | ||||
[51] | Municipal wastewater | G. sulphuraria CCMEE 5587.1 | Mathematical modelling of the correlation between coliform content in wastewater and the following parameters: temperature, pH, light, combination of parameters. | yes |
[52] | Municipal vastewater | G. sulphuraria CCMEE 5587.1 | Practical testing of the correlation between coliform content in wastewater and the following parameters: algal metabolites, pH, temperature, algal biomass attachment, sunlight and algal biomass, sunlight and dissolved oxygen, synergistic effect. | yes |
[53] | Municipal wastewater | G. sulphuraria CCMEE 5587.1 | Testing the performances of the single-step system for cultivation of G. sulphuraria and wastewater treatment using a fed-batch process with 3-day cycles. The results concern the ability to remove N, P, BOD and pathogen load. | yes |
[54] | Produced water | G. sulphuraria CCMEE 5587.1 C. vulgaris UTEX 395 | Comparing the growth performance of two algal strains with a culture medium composed of Produced Water deriving from oil extraction activities. | no |
[55] | Second cheese whey | G. sulphuraria SAG 107.79 | Evaluating the possibility to cultivate G. sulphuraria with Second Cheese Whey and the performances of the process. | no |
[56] | Wastewater from fruit-salad production | G. sulphuraria SAG 21.92 | Monitoring algal growth and sugar consumption in wastewater from fruit-salad production. | no |
[57] | Municipal wastewater | G. sulphuraria CCMEE 5587.1 | Studying the feasibility to use urban wastewater as a growth medium for G. sulphuraria and the simultaneous reduction of the main effluent contaminants. | yes |
[58] | Municipal wastewater | G. sulphuraria CCMEE 5587.1 and CCMEE 5572 | Comparing the performances of two dirreferent G. sulphuraria strains in terms of growth and removal of contaminants. The metabolic response of the two strains was evaluated also in relation to temperature and growth media. | yes |
[59] | Municipal wastewater | G. sulphuraria CCMEE 5587.1 | Testing the effects on biomass growth and contaminants removal of diluting into the wastewater the aqueous products of hydrothermal liquefaction process. | yes |
Acqueous phase from HTL process | ||||
[60] | Municipal wastewater | G. sulphuraria CCMEE 5587.1 | Characterizing NH3, total N, P and carbohydrates content in the aqueous phase of hydrothermal liquefaction process as a function of the operating temperature. A characterization of the overall energy yield of the process was also made, compared to the performance of other strains reported in the literature. | yes |
Acqueous phase from HTL process | ||||
[61] | Municipal wastewater | G. sulphuraria CCMEE 5587.1 | First presentation of the system denominated “POWER” for single step wastewater treatment mediated by G. sulphuraria, and coupled with hydrothermal liquefaction for the production of high-value energy compounds. | yes |
[62] | Allen’s standard cyanidium medium with H2PtCl6 | G. sulphuraria UTEX 2919 | Testing the ability of G. sulphuraria to bio-remove negative charged metal complex PtCl62− from synthetic wastewater. | no |
[63] | Municipal wastewater | G. sulphuraria CCMEE 5587.1 | Testing growth and contaminants removal performances of G. sulphuraria in a cultivation system where it was simulated a fed-batch process, by replenishing a fraction of the wastewater with fresh effluent every 3 days. | yes |
[64] | Artificial growth media. Paper based on data from literature, not real experiments. | G. sulphuraria (strain not specified) | Theoretical modelling and evaluation of a combined cultivation process with gas exchange between phototrophic and heterotrophic growth conditions. | no |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
di Cicco, M.R.; Iovinella, M.; Palmieri, M.; Lubritto, C.; Ciniglia, C. Extremophilic Microalgae Galdieria Gen. for Urban Wastewater Treatment: Current State, the Case of “POWER” System, and Future Prospects. Plants 2021, 10, 2343. https://doi.org/10.3390/plants10112343
di Cicco MR, Iovinella M, Palmieri M, Lubritto C, Ciniglia C. Extremophilic Microalgae Galdieria Gen. for Urban Wastewater Treatment: Current State, the Case of “POWER” System, and Future Prospects. Plants. 2021; 10(11):2343. https://doi.org/10.3390/plants10112343
Chicago/Turabian Styledi Cicco, Maria Rosa, Manuela Iovinella, Maria Palmieri, Carmine Lubritto, and Claudia Ciniglia. 2021. "Extremophilic Microalgae Galdieria Gen. for Urban Wastewater Treatment: Current State, the Case of “POWER” System, and Future Prospects" Plants 10, no. 11: 2343. https://doi.org/10.3390/plants10112343
APA Styledi Cicco, M. R., Iovinella, M., Palmieri, M., Lubritto, C., & Ciniglia, C. (2021). Extremophilic Microalgae Galdieria Gen. for Urban Wastewater Treatment: Current State, the Case of “POWER” System, and Future Prospects. Plants, 10(11), 2343. https://doi.org/10.3390/plants10112343