Seed Paternity Analysis Using SSR Markers to Assess Successful Pollen Donors in Mixed Olive Orchards
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material for Paternity Analysis
2.2. Extraction of High-Quality DNA Using Modified Protocols
2.3. Genotyping Procedure
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Martin, G.C. Olive flower and fruit population dynamics. Acta Hortic. 1990, 286, 141–153. [Google Scholar] [CrossRef]
- Lavee, S. Biennal bearing in olive (Olea europaea L.). Olea 2007, 17, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Besnard, G.; Khadari, B.; Villlemur, P.; Berville, A. Cytoplasmic male sterility in the olive (Olea europaea L.). Theor. Appl. Gen. 2000, 100, 1018–1024. [Google Scholar] [CrossRef]
- Reale, L.; Sgromo, C.; Bonofiglio, T.; Orlandi, F.; Fornaciari, M.; Ferranti, F.; Romano, B. Reproductive biology of olive (Olea europaea L.) DOP Umbria cultivars. Sex. Plant Rep. 2006, 19, 151–161. [Google Scholar] [CrossRef]
- Rosati, A.; Caporali, S.; Paoletti, A.; Famiani, F. Pistil abortion is related to ovary mass in olive (Olea europaea L.). Sci. Hortic. 2011, 127, 515–519. [Google Scholar] [CrossRef]
- Cuevas, J.; Polito, V.S. The role of staminate flowers in the breeding system of Olea europaea (Oleaceae): An andromonoecious, wind-pollinated taxon. Ann. Bot. 2004, 93, 547–553. [Google Scholar] [CrossRef] [Green Version]
- Alagna, F.; Caceres, M.E.; Pandolfi, S.; Collani, S.; Mousavi, S.; Mariotti, R.; Cultrera, N.G.M.; Baldoni, L.; Barcaccia, G. The paradox of self-fertile varieties in the context of self-incompatible genotypes in olive. Front. Plant Sci. 2019, 10, 1–7. [Google Scholar] [CrossRef]
- Franklin-Tong, V.E.; Franklin, F.C.H. Gametophytic self-incompatibility inhibits pollen tube growth using different mechanisms. Trends Plant Sci. 2003, 8, 598–605. [Google Scholar] [CrossRef]
- Hiscock, S.; McInnis, S. The diversity of self-incompatibility systems in flowering plants. Plant Biol. 2003, 5, 23–32. [Google Scholar] [CrossRef]
- Lavee, S.; Datt, A.C. The necessity of cross-pollination for fruit set of Manzanillo olives. J. Hortic. Sci. 1978, 53, 261–266. [Google Scholar] [CrossRef]
- Cuevas, J.; Diaz Hermoso, A.; Galian, D.; Hueso, J.; Pinillos, V.; Prieto, M.; Sola, D.; Polito, V.S. Response to cross pollination and choice of pollinisers for the olive cultivars (Olea europaea L.) “Manzanilla de Sevilla”, “Hojiblanca” and “Picual.”. Olivae 2001, 85, 26–32. [Google Scholar]
- Lavee, S.; Taryan, J.; Levin, J.; Haskal, A. The significance of cross-pollination for various olive cultivars under irrigated intensive growing conditions. Olivae 2002, 91, 25–36. [Google Scholar]
- Moutier, N. Self-fertility and inter-compatibilities of sixteen olive varieties. Acta Hortic. 2002, 586, 209–212. [Google Scholar] [CrossRef]
- Farinelli, D.; Breton, C.; Koubouris, G.; Famiani, F.; Villemur, P.; Bervillé, A. Reply to Saumitou-Laprade et al. (2017). Controlling for genetic identity of varieties, pollen contamination and stigma receptivity is essential to characterize the self-incompatibility system of Olea europaea L. Evol. Appl. 2018, 11, 1465–1470. [Google Scholar] [CrossRef] [PubMed]
- Breton, C.M.; Farinelli, D.; Koubouris, G.; Famiani, F.; Raymond, M.; Bervillé, A. A Dual-Successive-Screen Model at Pollen/Stigma and Pollen Tube/Ovary Explaining Paradoxical Self-Incompatibility Diagnosis in the Olive Tree—An Interpretative Update of the Literature. Plants 2021, 10, 1938. [Google Scholar] [CrossRef] [PubMed]
- Serrano, I.; Suárez, C.; Olmedilla, A.; Rapoport, H.F.; Rodríguez-García, M.I. Structural organization and cytochemical features of the pistil in olive (Olea europaea L.) cv. Picual at anthesis. Sex. Plant Reprod. 2008, 21, 99–111. [Google Scholar] [CrossRef]
- Breton, C.M.; Bervillé, A. New hypothesis elucidates self-incompatibility in the olive tree regarding S-alleles dominance relationships as in the sporophytic model. Comptes Rendus Biol. 2012, 335, 563–572. [Google Scholar] [CrossRef]
- Breton, C.M.; Farinelli, D.; Shafiq, S.; Heslop-Harrison, J.S.; Sedgley, M.; Bervillé, A.J. The self-incompatibility mating system of the olive (Olea europaea L.) functions with dominance between S-alleles. Tree Genet. Genomes 2014, 10, 1055–1067. [Google Scholar] [CrossRef]
- Breton, C.M.; Farinelli, D.; Koubouris, G.; Bervillé, A. A model based on S-allele dominance relationships to explain pseudo self-fertility of varieties in the olive tree. Euphytica 2016, 210, 105–117. [Google Scholar] [CrossRef]
- Farinelli, D.; Breton, M.C.; Famiani, F.; Bervillé, A. Specific features in the olive self-incompatibility system: A method to decipher S-allele pairs based on fruit settings. Sci. Hortic. 2015, 181, 62–75. [Google Scholar] [CrossRef]
- Saumitou-Laprade, P.; Vernet, P.; Vekemans, X.; Billiard, S.; Gallina, S.; Essalouh, L.; Mhaïs, A.; Moukhli, A.; El Bakkali, A.; Barcaccia, G.; et al. Elucidation of the genetic architecture of self-incompatibility in olive: Evolutionary consequences and perspectives for orchard management. Evol. Appl. 2017, 10, 867–880. [Google Scholar] [CrossRef] [PubMed]
- Mariotti, R.; Pandolfi, S.; De Cauwer, I.; Saumitou-Laprade, P.; Vernet, P.; Rossi, M.; Baglivo, F.; Baldoni, L.; Mousavi, S. Diallelic self-incompatibility is the main determinant of fertilization patterns in olive orchards. Evol. Appl. 2020, 4, 983–995. [Google Scholar] [CrossRef]
- Cuevas, J.; Polito, V.S. Compatibility relationships in ‘Manzanillo’ olive. HortScience 1997, 32, 1056–1058. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.-B.; Collins, G.; Sedgley, M. Sexual compatibility within and between olive cultivars. J. Hortic. Sci. Biotechnol. 2002, 77, 665–673. [Google Scholar] [CrossRef]
- Vuletin Selak, G.; Cuevas, J.; Goreta Ban, S.; Perica, S. Pollen tube performance in assessment of compatibility in olive (Olea europaea L.) cultivars. Sci. Hortic. 2014, 165, 36–43. [Google Scholar] [CrossRef]
- Norman, P.E.; Asfaw, A.; Tongoona, P.B.; Danquah, A.; Danquah, E.Y.; Koeyer, D.D.; Asiedu, R. Can parentage analysis facilitate breeding activities in root and tuber crops? Agriculture 2018, 8, 95. [Google Scholar] [CrossRef] [Green Version]
- De La Rosa, R.; James, C.M.; Tobutt, K.R. Using microsatellites for paternity testing in olive progenies. HortScience 2004, 39, 351–354. [Google Scholar] [CrossRef] [Green Version]
- Mookerjee, S.; Guerin, J.; Collins, G.; Ford, C.; Sedgley, M. Paternity analysis using microsatellite markers to identify pollen donors in an olive grove. Theor. Appl. Genet. 2005, 111, 1174–1182. [Google Scholar] [CrossRef] [PubMed]
- Díaz, A.; Martín, A.; Rallo, P.; Barranco, D.; De la Rosa, R. Self-incompatibility of ‘Arbequina’ and ‘Picual’ olive assessed by SSR markers. J. Am. Soc. Hortic. Sci. 2006, 131, 250–255. [Google Scholar] [CrossRef] [Green Version]
- Arbeiter Baruca, A.; Jakše, J.; Bandelj, D. Paternity Analysis of the Olive Variety “Istrska Belica” and Identification of Pollen Donors by Microsatellite Markers. Sci. World J. 2014, 2014, 208590. [Google Scholar] [CrossRef] [PubMed]
- Montemurro, C.; Dambruoso, G.; Bottalico, G.; Sabetta, W. Self-incompatibility assessment of some Italian olive genotypes (Olea europaea L.) and cross-derived seedling selection by SSR markers on seed endosperms. Front. Plant Sci. 2019, 10, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Sanz, P.; Lombardo, L.; Lorenzi, S.; Michelotti, F.; Grando, M.S. Genetic resources of Olea europaea L. in the Garda Trentino olive groves revealed by ancient trees genotyping and parentage analysis of drupe embryos. Genes 2020, 11, 1171. [Google Scholar] [CrossRef] [PubMed]
- Gerber, S.; Chabrier, P.; Kremer, A. FaMoz: A software for parentage analysis using dominant, codominant and uniparentally inherited markers. Mol. Ecol. Notes 2003, 3, 479–481. [Google Scholar] [CrossRef] [Green Version]
- Rekik, I.; Salimonti, A.; Kamoun, N.G.; Muzzalupo, I.; Lepais, O.; Gerber, S.; Perri, E.; Rebai, A. Characterization and identification of tunisian olive tree varieties by microsatellite markers. HortScience 2008, 43, 1371–1376. [Google Scholar] [CrossRef]
- Muzzalupo, I.; Stefanizzi, F.; Perri, E. Evaluation of Olives Cultivated in Southern Italy by Simple Sequence Repeat Markers. HortScience 2009, 44, 582–588. [Google Scholar] [CrossRef] [Green Version]
- Beghè, D.; Piotti, A.; Šatović, Z.; de la Rosa, R.; Belaj, A. Pollen-mediated gene flow and fine-scale spatial genetic structure in Olea europaea subsp. europaea var. sylvestris. Ann. Bot. 2017, 119, 671. [Google Scholar] [CrossRef] [Green Version]
- Staraz, M.V.; Boselli, M.; Gerber, S.; Laucou, V.; Lacombe, T.; This, P.; Varès, D. Famoz: A Software for Large Scale Parentage Analysis in Vitis vinifera L. Species. Acta Hortic. 2007, 754, 79–83. [Google Scholar] [CrossRef]
- Imazio, S.; Maghradze, D.; Lorenzis, G.; Bacilieri, R.; Laucou, V.; This, P.; Scienza, A.; Failla, O. From the cradle of grapevine domestication: Molecular overview and description of Georgian grapevine (Vitis vinifera L.) germplasm. Tree Genet. Genomes 2013, 9, 641–658. [Google Scholar] [CrossRef]
- Riaz, S.; Boursiquot, J.M.; Dangl, G.S.; Lacombe, T.; Laucou, V.; Tenscher, A.C.; Walker, M.A. Identification of mildew resistance in wild and cultivated Central Asian grape germplasm. BMC Plant Biol. 2013, 13, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marconi, G.; Ferradini, N.; Russi, L.; Concezzi, L.; Veronesi, F.; Albertini, E. Genetic characterization of the apple germplasm collection in central Italy: The value of local varieties. Front. Plant Sci. 2018, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowland, L.J.; Ogden, E.L.; Bell, D.J.; Drummond, F.A. Pollen-mediated gene flow in managed fields of lowbush blueberry. Can. J. Plant Sci. 2019, 100, 95–102. [Google Scholar] [CrossRef]
- Sefc, K.M.; Lopes, M.S.; Mendonça, D.; Santos, M.R.D.; Machado, L.M.; Machado, A.D.C. Identification of microsatellite loci in olive (Olea europaea) and their characterization in Italian and Iberian olive trees. Mol. Ecol. 2000, 9, 1171–1173. [Google Scholar] [CrossRef]
- De La Rosa, R.; James, C.M.; Tobutt, K.R. Isolation and characterization of polymorphic microsatellites in olive (Olea europaea L.) and their transferability to other genera in the Oleaceae. Mol. Ecol. Notes 2002, 2, 265–267. [Google Scholar] [CrossRef]
- Seifi, E.; Guerin, J.; Kaiser, B.; Sedgley, M. Sexual compatibility of the olive cultivar ‘Kalamata’ assessed by paternity analysis. Span. J. Agric. Res. 2012, 10, 731–740. [Google Scholar] [CrossRef] [Green Version]
- Dìaz, A.; Martìn, A.; Rallo, P.; De la Rosa, R. Cross-compatibility of the genitors as the main factor for successful olive breeding crosses. J. Am. Soc. Hortic. Sci. 2007, 132, 830–835. [Google Scholar] [CrossRef] [Green Version]
- Vuletin Selak, G.; Perica, S.; Ban Goreta, S.; Radunic, M.; Poljak, M. Reproductive success after self-pollination and cross-pollination of olive cultivars in Croatia. HortScience 2011, 46, 186–191. [Google Scholar] [CrossRef] [Green Version]
- Barranco, D.; Milona, G.; Rallo, L. Épocas de floración de cultivares de olivo en Córdoba. Invest. Agr. Prod. Prot. Veg. 1994, 9, 213–220. [Google Scholar]
- Japelaghi, R.H.; Haddad, R.; Garoosi, G.A. Rapid and efficient isolation of high quality nucleic acids from plant tissues rich in polyphenols and polysaccharides. Mol. Biotechnol. 2011, 49, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Miklavčič Višnjevec, A.; Ota, A.; Skrt, M.; Butinar, B.; Smole Možina, S.; Gunde Cimerman, N.; Nečemer, M.; Baruca Arbeiter, A.; Hladnik, M.; Krapac, M.; et al. Genetic, biochemical, nutritional and antimicrobial characteristics of pomegranate (Punica granatum L.) grown in Istria. Food Technol. Biotechnol. 2017, 55, 151–163. [Google Scholar] [CrossRef]
- Guerin, J.; Sedgley, M. Cross-Pollination in Olive Cultivars; Rural Industries Research and Development Corporation Barton: Canberra, Australia, 2007. [Google Scholar]
- Carriero, F.; Fontanazza, G.; Cellini, F.; Glorio, G. Identification of simple sequence repeats (SSRs) in olive (Olea europaea L.). Theor. Appl. Genet. 2002, 104, 301–307. [Google Scholar] [CrossRef]
- Cipriani, G.; Marrazzo, M.T.; Marconi, R.; Cimato, A.; Testolin, R. Microsatellite markers isolated in olive (Olea europaea L.) are suitable for individual fingerprinting and reveal polymorphism within ancient cultivars. Theor. Appl. Genet. 2002, 104, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Schuelke, M. An economic method for the fluorescent labelling of PCR fragments. Nat. Biotechnol. 2000, 18, 233–234. [Google Scholar] [CrossRef] [PubMed]
- Kalinowski, S.T.; Taper, M.L.; Marshall, T.C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol. 2007, 16, 1099–1106. [Google Scholar] [CrossRef]
- Jamieson, A.; Taylor, S.C.S. Comparisons of three probability formulae for parentage exclusion. Anim. Genet. 1997, 28, 397–400. [Google Scholar] [CrossRef] [PubMed]
- Paetkau, D.; Calvert, W.; Stirling, I.; Strobeck, C. Microsatellite analysis of population structure in Canadian polars bears. Mol. Ecol. 1995, 4, 347–354. [Google Scholar] [CrossRef]
- Zienkiewicz, A.; Zienkiewicz, K.; Rejón, J.D.; de Dios Alché, J.; Castro, A.J.; Rodríguez-García, M.I. Olive seed protein bodies store degrading enzymes involved in mobilization of oil bodies. J. Exp. Bot. 2014, 65, 103–115. [Google Scholar] [CrossRef] [Green Version]
- Zafra, A.; M’rani-Alaoui, M.; Lima, E.; Jiménez-López, J.C.; de Alché, J.D. Histological features of the olive seed and presence of 7S-type seed storage proteins as hallmarks of the olive fruit development. Front. Plant Sci. 2018, 9, 1481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiong, K.T.; Damaj, M.B.; Padilla, C.S.; Avila, C.A.; Pant, S.R.; Mandadi, K.K.; Ramos, N.R.; Carvalho., D.V.; Mirkov, T.E. Reproducible genomic DNA preparation from diverse crop species for molecular genetic applications. Plant Methods 2017, 13, 106. [Google Scholar] [CrossRef] [Green Version]
- Baldoni, L.; Cultrera, N.G.; Mariotti, R.; Ricciolini, C.; Arcioni, S.; Vendramin, G.G.; Buonamici, A.; Porceddu, A.; Sarri, V.; Ojeda, M.A.; et al. A consensus list of microsatellite markers for olive genotyping. Mol. Breed. 2009, 24, 213–231. [Google Scholar] [CrossRef]
- Gerber, S.; Mariette, S.; Streiff, R.; Bodenes, C.; Kremer, A. Comparison of microsatellites and amplified fragment length polymorphism markers for parentage analysis. Mol. Ecol. 2000, 9, 1037–1048. [Google Scholar] [CrossRef] [PubMed]
- Chaix, G.; Gerber, S.; Razafimaharo, V.; Vigneron, P.; Verhaegen, D.; Hamon, S. Gene flow estimation with microsatellites in a Malagasy seed orchard of Eucalyptus grandis. Theor. Appl. Genet. 2003, 107, 705–712. [Google Scholar] [CrossRef]
- Griggs, W.; Hartmann, H.; Bradley, M.; Iwakiri, B.; Whisler, J. Olive pollination in California. Calif. Agric. Exp. Station. Bull. 1975, 869, 1–50. [Google Scholar]
- Nishio, S.; Takada, N.; Terakami, S.; Kato, H.; Inoue, H.; Takeuchi, Y.; Saito, T. Estimation of effective pollen dispersal distance for cross-pollination in chestnut orchards by microsatellite-based paternity analyses. Sci. Hortic. 2019, 250, 89–93. [Google Scholar] [CrossRef]
- Burgos, L.; Berenguer, T.; Egea, J. Self- and cross-compatibility among apricot cultivars. Hortscience 1993, 28, 148–150. [Google Scholar] [CrossRef] [Green Version]
- Egea, J.; Burgos, L. Detecting cross-incompatibility of three North American apricot cultivars and establishing the first incompatibility group in apricot. J. Am. Soc. Hortic. Sci. 1996, 121, 1002–1005. [Google Scholar] [CrossRef] [Green Version]
- Dicenta, F.; Ortega, E.; Cánovas, J.A.; Egea, J. Self-pollination vs. cross-pollination in almond: Pollen tube growth, fruit set and fruit characteristics. Plant Breed. 2002, 121, 163–167. [Google Scholar] [CrossRef]
- Nikolić, D.; Milatović, D. Examining self-compatibility in plum (Prunus domestica L.) by fluorescence microscopy. Genetika 2010, 42, 387–396. [Google Scholar] [CrossRef]
- Shaheen, M.A.; Essa, M.A.; Sayed, R.A.; Abd El-Aziz, Y.S.G. Sexual compatibility of LeConte pear cultivar. J. Hortic. Sci. Ornament. Plant 2011, 3, 99–105. [Google Scholar]
- Distefano, G.; Hedhly, A.; Las Casas, G.; La Malfa, S.; Herrero, M.; Gentile, A. Male–female interaction and temperature variation affect pollen performance in Citrus. Sci. Hortic. 2012, 140, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Koubouris, G.C.; Breton, C.M.; Metzidakis, I.T.; Vasilakakis, M.D. Self-incompatibility and pollination relationships for four Greek olive cultivars. Sci. Hortic. 2014, 176, 91–96. [Google Scholar] [CrossRef]
Microsatellite Locus | n | PIC | PI | EP | Offspring Specific Alleles | |
---|---|---|---|---|---|---|
2017 | 2018 | |||||
ssrOeUA-DCA–3 | 8 | 0.726 | 0.0509 | 0.7438 | 2 | / |
ssrOeUA-DCA–9 | 6 | 0.690 | 0.0638 | 0.7040 | 3 | 3 |
ssrOeUA-DCA–11 | 8 | 0.733 | 0.0424 | 0.7579 | 3 | 3 |
ssrOeUA-DCA–16 | 8 | 0.707 | 0.0577 | 0.7252 | 1 | 2 |
GAPU101 | 7 | 0.766 | 0.0376 | 0.7830 | 1 | / |
EMO3 | 4 | 0.510 | 0.2142 | 0.4577 | 4 | 3 |
UDO99–019 | 4 | 0.652 | 0.0973 | 0.6285 | / | / |
Total | 45 | 0.683 * | 6 × 10−9 ** | 0.9998 *** | 14 | 11 |
Pollen Donor and Alleles Size | Mother Tree ‘Oblica’ | Embryo Identity | Embryo Genotype | |
---|---|---|---|---|
‘Drobnica’ | 194 | 192 | E1 | 192 |
207 | 207 | |||
‘Leccino’ | 199 | E2 | 192 | |
201 | 201 | |||
‘Lastovka’ | 192 | 218 | E3 | 218 |
194 | 194 | |||
‘Istarska bjelica’ | 199 | E4 | 218 | |
201 | 201 |
Embryo Assignment | Number of Embryos | |
---|---|---|
2017 | 2018 | |
Total | 310 | 312 |
No likely pollen donor | 19 | 9 |
Assigned with only one possible pollen donor | 291 | 303 |
Assigned at LOD score above threshold | 106 | 252 |
Pollen Donor | Mother Tree | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | ||||||||||||
O1 | O2/1 | O3 | O4 | O5 | O6 | Total | O1 | O2/2 | O3 | O5 | O6 | Total | |
‘Buharica’ | 3 | 0 | 1 | 2 | 4 | 0 | 10 | 0 | 0 | 1 | 2 | 0 | 3 |
‘Cipressino’ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 4 |
‘Coratina’ | 0 | 0 | 0 | 1 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
‘Drobnica’ | 7 | 3 | 9 | 4 | 6 | 4 | 33 | 7 | 5 | 49 | 28 | 2 | 91 |
‘Dužica’ | 0 | 1 | 1 | 0 | 0 | 1 | 3 | 5 | 7 | 5 | 4 | 1 | 22 |
‘Istarska bjelica’ | 1 | 2 | 4 | 8 | 3 | 5 | 23 | 2 | 0 | 1 | 0 | 0 | 3 |
‘Itrana’ | 1 | 1 | 1 | 1 | 1 | 0 | 5 | 0 | 0 | 0 | 1 | 0 | 1 |
‘Lastovka’ | 2 | 1 | 1 | 4 | 5 | 4 | 17 | 28 | 23 | 14 | 15 | 39 | 119 |
‘Leccino’ | 0 | 0 | 1 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
‘Levantinka’ | 1 | 1 | 0 | 2 | 1 | 0 | 5 | 0 | 1 | 0 | 0 | 0 | 1 |
‘Mastrinka’ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
‘Nocellara del Belice’ | 1 | 0 | 1 | 0 | 1 | 0 | 3 | 3 | 0 | 3 | 0 | 0 | 6 |
‘Oblica’ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
‘Pendolino’ | 1 | 0 | 1 | 0 | 1 | 0 | 3 | 0 | 0 | 2 | 0 | 0 | 2 |
Total | 17 | 9 | 20 | 22 | 24 | 14 | 106 | 47 | 38 | 75 | 50 | 42 | 252 |
Pollen Donor Cultivar | Percentage of Trees (%) | Closest Distance to ‘Oblica’ Mother Tree (m) | Percentage of Embryos (%) |
---|---|---|---|
‘Buharica’ | 0.8 | 43 | 3.6 |
‘Cipressino’ | 15.5 | 10 | 1.1 |
‘Coratina’ | 1.6 | 9 | 0.6 |
‘Drobnica’ | 5.4 | 18 | 34.6 |
‘Dužica’ | 1.6 | 20 | 7.0 |
‘Istarska bjelica’ | 23.2 | 21 | 7.3 |
‘Itrana’ | 2.3 | 6 | 1.7 |
‘Lastovka’ | 7.7 | 25 | 38.0 |
‘Leccino’ | 8.5 | 6 | 0.6 |
‘Levantinka’ | 2.3 | 23 | 1.7 |
‘Mastrinka’ | 0.8 | 9 | 0 |
‘Nocellara del Belice’ | 0.8 | 32 | 2.5 |
‘Oblica’ | 27.1 | - | 0 |
‘Pendolino’ | 2.3 | 10 | 1.4 |
Pollen Donor Cultivar | Pollen Germination 1 | Pollen Tube Growth 1 | Fertilization Success 1 | Final Fruit Set 2 | Seed Paternity |
---|---|---|---|---|---|
‘Lastovka’ | Germination fairly supported | PTG fairly supported | Low | Cross-compatible | Highly cross-compatible |
‘Leccino’ | Germination supported | PTG supported | Medium | Cross-compatible | Cross-compatible |
‘Levantinka’ | Germination abundantly supported | PTG abundantly supported | High | Cross-compatible | Cross-compatible |
‘Oblica’ | Germination fairly supported | PTG fairly supported | Low | Partially SI | Self-incompatible |
‘Pendolino’ | Germination abundantly supported | PTG abundantly supported | High | Cross-compatible | Cross-compatible |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vuletin Selak, G.; Baruca Arbeiter, A.; Cuevas, J.; Perica, S.; Pujic, P.; Raboteg Božiković, M.; Bandelj, D. Seed Paternity Analysis Using SSR Markers to Assess Successful Pollen Donors in Mixed Olive Orchards. Plants 2021, 10, 2356. https://doi.org/10.3390/plants10112356
Vuletin Selak G, Baruca Arbeiter A, Cuevas J, Perica S, Pujic P, Raboteg Božiković M, Bandelj D. Seed Paternity Analysis Using SSR Markers to Assess Successful Pollen Donors in Mixed Olive Orchards. Plants. 2021; 10(11):2356. https://doi.org/10.3390/plants10112356
Chicago/Turabian StyleVuletin Selak, Gabriela, Alenka Baruca Arbeiter, Julián Cuevas, Slavko Perica, Petar Pujic, Marina Raboteg Božiković, and Dunja Bandelj. 2021. "Seed Paternity Analysis Using SSR Markers to Assess Successful Pollen Donors in Mixed Olive Orchards" Plants 10, no. 11: 2356. https://doi.org/10.3390/plants10112356
APA StyleVuletin Selak, G., Baruca Arbeiter, A., Cuevas, J., Perica, S., Pujic, P., Raboteg Božiković, M., & Bandelj, D. (2021). Seed Paternity Analysis Using SSR Markers to Assess Successful Pollen Donors in Mixed Olive Orchards. Plants, 10(11), 2356. https://doi.org/10.3390/plants10112356