Transient Waterlogging Events Impair Shoot and Root Physiology and Reduce Grain Yield of Durum Wheat Cultivars
Abstract
:1. Introduction
2. Results
2.1. Meteorological Conditions
2.2. Plant Phenology
2.3. Waterlogging Immediate Effects on Physiological, Biochemical, and Biometric Parameters
2.4. Waterlogging Effects during Recovery at Physiological Level
2.5. Waterlogging Long-Lasting Effects on Final Grain Yield
3. Discussion
4. Materials and Methods
4.1. Experimental Site Characteristics
4.2. Experimental Design and Crop Management
4.3. Plant Measurements
4.3.1. Leaf Gas-Exchange and Chlorophyll a Fluorescence
4.3.2. Leaf Water Status
4.3.3. Leaf Pigments
4.3.4. Leaf and Root Lipid Peroxidation and Hydrogen Peroxide
4.3.5. Leaf and Root Cations
4.3.6. Crop Growth
4.4. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Semenov, M.A.; Stratonovitch, P.; Alghabari, F.; Gooding, M.J. Adapting wheat in Europe for climate change. J. Cereal Sci. 2014, 59, 245–256. [Google Scholar] [CrossRef] [Green Version]
- Maccaferri, M.; Sanguineti, M.C.; Corneti, S.; Ortega, J.L.A.; Salem, M.B.; Bort, J.; DeAmbrogio, E.; Garcia del Moral, L.F.; Demontis, A.; El-Ahmed, A.; et al. Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics 2008, 178, 489–511. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Plan. Change 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Herzog, M.; Striker, G.G.; Colmer, T.D.; Pedersen, O. Mechanisms of waterlogging tolerance in wheat—A review of root and shoot physiology. Plant Cell Environ. 2016, 39, 1068–1086. [Google Scholar] [CrossRef] [PubMed]
- Pampana, S.; Masoni, A.; Arduini, I. Grain yield of durum wheat as affected by waterlogging at tillering. Cereal Res. Commun. 2016, 44, 706–716. [Google Scholar] [CrossRef] [Green Version]
- Sasidharan, R.; Bailey-Serres, J.; Ashikari, M.; Atwell, B.J.; Colmer, T.D.; Fagerstedt, K.; Fukao, T.; Geigenberger, P.; Hebelstrup, K.H.; Hill, R.D.; et al. Community recommendations on terminology and procedures used in flooding and low oxygen stress research. New Phytol. 2017, 214, 1403–1407. [Google Scholar] [CrossRef] [Green Version]
- Setter, T.L.; Waters, I. Review of prospects for germplasm improvement for waterlogging tolerance in wheat barley and oats. Plant Soil 2003, 253, 1–34. [Google Scholar] [CrossRef]
- Vartapetian, B.B.; Jackson, M.B. Plant adaptations to anaerobic stress. Ann. Bot. 1997, 79, 3–20. [Google Scholar] [CrossRef]
- Jatav, K.S.; Agarwal, R.M.; Tomar, N.S.; Tyagi, S.R. Nitrogen metabolism, growth and yield responses of wheat (Triticum aestivum L.) to restricted water supply and varying potassium treatments. J. Indian Bot. Soc. 2014, 93, 177–189. [Google Scholar]
- Chen, C.; Chen, S.; Jha, R.K.; Cotrozzi, L.; Nali, C.; Lorenzini, G.; Ma, L. Phenol metabolism of two cultivars of durum wheat (Triticum durum Desf.) as affected by ozone and flooding stress. J. Agron. Crop. Sci. 2020, 206, 338–351. [Google Scholar] [CrossRef]
- Malik, A.I.; Colmer, T.D.; Lambers, H.; Setter, T.L.; Schortemeyer, M. Short-term waterlogging has long-term effects on the growth and physiology of wheat. New Phytol. 2002, 153, 225–236. [Google Scholar] [CrossRef]
- Striker, G.G.; Insausti, P.; Grimoldi, A.A.; Ploschuk, E.L.; Vasellati, V. Physiological and anatomical basis of differential tolerance to soil flooding of Lotus corniculatus L. and Lotus glaber Mill. Plant Soil 2005, 276, 301–311. [Google Scholar] [CrossRef]
- Flexas, J.; Medrano, H. Drought-inhibition of photosynthesis in C3 plants: Stomatal and non-stomatal limitations revisited. Ann. Bot. 2002, 89, 183–189. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, M.A. Waterlogging stress in plants: A review. Afr. J. Agric. Res. 2012, 7, 1976–1981. [Google Scholar]
- Araki, H.; Hamada, A.; Hossain, M.A.; Takahashi, T. Waterlogging at jointing and/or after anthesis in wheat induces early leaf senescence and impairs grain filling. Field Crop. Res. 2012, 137, 27–36. [Google Scholar] [CrossRef]
- Arduini, I.; Baldanzi, M.; Pampana, S. Reduced growth and nitrogen uptake during waterlogging at tillering permanently affect yield components in late sown oats. Front. Plant Sci. 2019, 10, 1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ploschuk, R.A.; Miralles, D.J.; Colmer, T.D.; Ploschuk, E.L.; Striker, G.G. Waterlogging of winter crops at early and late stages: Impacts on leaf physiology, growth and yield. Front. Plant Sci. 2018, 9, 1863. [Google Scholar] [CrossRef] [Green Version]
- Malik, A.I.; Islam, A.K.M.R.; Colmer, T.D. Transfer of the barrier to radial oxygen loss in roots of Hordeum marinum to wheat (Triticum aestivum): Evaluation of four H. marinum–wheat amphiploids. New. Phytol. 2011, 190, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Arduini, I.; Orlandi, C.; Pampana, S.; Masoni, A. Waterlogging at tillering affects spike and spikelet formation in wheat. Crop. Pasture Sci. 2016, 67, 703–711. [Google Scholar] [CrossRef]
- Collaku, A.; Harrison, S.A. Losses in wheat due to waterlogging. Crop. Sci. 2002, 42, 444–450. [Google Scholar] [CrossRef]
- Masoni, A.; Pampana, S.; Arduini, I. Barley response to waterlogging duration at tillering. Crop. Sci. 2016, 56, 2722–2730. [Google Scholar] [CrossRef]
- Martinez, M.; Arata, A.F.; Lázaro, L.; Stenglein, S.A.; Dinolfo, M.I. Effects of waterlogging stress on plant-pathogen interaction between Fusarium poae and wheat/barley. Acta Sci. Agron. 2019, 41, e42629. [Google Scholar] [CrossRef] [Green Version]
- Gallé, A.; Csiszar, J.; Benyó, D.; Laskay, G.; Leviczky, T.; Erdei, L.; Tari, I. Isohydric and anisohydric strategies of wheat genotypes under osmotic stress: Biosynthesis and function of ABA in stress responses. J. Plant Physiol. 2013, 170, 1389–1399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pintó-Marijuan, M.; Munné-Bosch, S. Photo-oxidative stress markers as a measure of abiotic stress-induced leaf senescence: Advantages and limitations. J. Exp. Bot. 2014, 65, 3845–3857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, W.; Nay-Htoon, B.; Lindner, S.; Dubbert, M.; Otieno, D.; Ko, J.; Werner, C.; Tenhuren, J. Soil water availability and capacity of nitrogen accumulation influence variations of intrinsic water use efficiency in rice. J. Plant Pathol. 2016, 193, 26–36. [Google Scholar] [CrossRef]
- Farkas, Z.; László, E.; Anda, A.; Veisz, O.; Varga, B. Effects of waterlogging, drought and their combination on yield and water-use efficiency of five hungarian winter wheat varieties. Water 2020, 12, 1318. [Google Scholar] [CrossRef]
- Shabala, S.; Shabala, L.; Barcelo, J.; Poschenrieder, C. Membrane transporters mediating root signalling and adaptive responses to oxygen deprivation and soil flooding. Plant Cell Environ. 2014, 37, 2216–2233. [Google Scholar] [CrossRef] [PubMed]
- Aroca, R.; Porcel, R.; Ruiz-Lozano, J.M. Regulation of root water uptake under abiotic stress conditions. J. Exp. Bot. 2012, 63, 43–57. [Google Scholar] [CrossRef]
- Vandeleur, R.; Niemietz, C.; Tilbrook, J.; Tyerman, S.D. Roles of aquaporins in root responses to irrigation. Plant Soil 2005, 274, 141–161. [Google Scholar] [CrossRef]
- Turner, N.C. Turgor maintenance by osmotic adjustment: 40 years of progress. J. Exp. Bot. 2018, 69, 3223–3233. [Google Scholar] [CrossRef] [Green Version]
- Shu, Z.; Wang, J.; Gong, W.; Tang, H.; Zhao, C.; Zhou, X. Effects of waterlogging on osmotic adjustment substance contents of Zanthoxylum armatum seedlings upon coupling of water and fertilizer management. Chin. J. Appl. Environ. Biol. 2018, 24, 1139–1145. [Google Scholar]
- Fukao, T.; Barrera-Figueroa, B.E.; Juntawong, P.; Peña-Castro, J.M. Submergence and waterlogging stress in plants: A review highlighting research opportunities and understudied aspects. Front. Plant Sci. 2019, 10, 340. [Google Scholar] [CrossRef]
- Barickman, T.C.; Simpson, C.R.; Sams, C.E. Waterlogging causes early modification in the physiological performance, carotenoids, chlorophylls, proline, and soluble sugars of cucumber plants. Plants 2019, 8, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, M.; Hoshika, Y.; Inada, N.; Wang, X.; Mao, Q.; Koike, T. Photosynthetic traits of Siebold’s beech and oak saplings grown under free air ozone exposure. Environ. Pollut. 2013, 174, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Pistelli, L.; Tonelli, M.; Pellegrini, E.; Cotrozzi, L.; Pucciariello, C.; Trivellini, A.; Lorenzini, G.; Nali, C. Accumulation of rosmarinic acid and behaviour of ROS processing systems in Melissa officinalis L. under heat stress. Ind. Crop. Prod. 2019, 138, 111469. [Google Scholar] [CrossRef]
- Esteban, R.; Barrutia, O.; Artetxe, U.; Fernández-Marín, B.; Hernández, A.; García-Plazaola, J.I. Internal and external factors affecting photosynthetic pigment composition in plants: A meta-analytic approach. New Phytol. 2015, 206, 268–280. [Google Scholar] [CrossRef] [PubMed]
- Morales, M.; Munné-Bosch, S. Malondialdehyde: Facts and Artifacts. Plant Physiol. 2019, 180, 1246–1250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Liu, G.; Dong, H.; Li, C. Waterlogging stress in cotton: Damage, adaptability, alleviation strategies, and mechanisms. Crop. J. 2021, 9, 257–270. [Google Scholar] [CrossRef]
- Fukao, T.; Bailey-Serres, J. Plant responses to hypoxia—Is survival a balancing act? Trends Plant Sci. 2004, 9, 449–456. [Google Scholar] [CrossRef]
- Pellegrini, E.; Trivellini, A.; Cotrozzi, L.; Vernieri, P.; Nali, C. Involvement of Phytohormones in Plant Responses to Ozone. In Plant Hormones Under Challenging Environmental Factors; Golam, J.A., Jingquan, Y., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 215–245. [Google Scholar]
- Pellegrini, E.; Campanella, A.; Cotrozzi, L.; Tonelli, M.; Nali, C.; Lorenzini, G. Ozone primes changes in phytochemical parameters in the medicinal herb Hypericum perforatum (St. John’s wort). Ind. Crop. Prod. 2018, 126, 119–128. [Google Scholar] [CrossRef]
- Dumanović, J.; Nepovimova, E.; Natić, M.; Kuča, K.; Jaćević, V. The significance of reactive oxygen species and antioxidant defense system in plants: A concise overview. Front. Plant Sci. 2018, 9, 1863. [Google Scholar]
- Elzenga, J.T.M.; van Veen, H. Waterlogging and Plant Nutrient Uptake. In Waterlogging Signalling and Tolerance in Plants; Mancuso, S., Shabala, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 23–36. [Google Scholar]
- Kreuzwieser, J.; Gessler, A. Global climate change and tree nutrition: Influence of water availability. Tree Physiol. 2010, 30, 1221–1234. [Google Scholar] [CrossRef]
- Mugnai, S.; Marras, A.M.; Mancuso, S. Effect of hypoxic acclimation on anoxia tolerance in Vitis roots: Response of metabolic activity and K+ fluxes. Plant Cell Physiol. 2011, 52, 1107–1116. [Google Scholar] [CrossRef]
- Yemelyanov, V.V.; Shishova, M.F.; Chirkova, T.V.; Lindberg, S.M. Anoxia-induced elevation of cytosolic Ca2+ concentration depends on different Ca2+ sources in rice and wheat protoplasts. Planta 2011, 234, 271–280. [Google Scholar] [CrossRef]
- Miyake, C. Alternative electron flows (Water–Water cycle and cyclic electron flow around PSI) in photosynthesis: Molecular mechanisms and physiological functions. Plant Cell Physiol. 2010, 51, 1951–1963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, J. Shoot competition and root competition. J. Applied Ecol. 1988, 25, 279–296. [Google Scholar] [CrossRef]
- Arduini, I.; Masoni, A.; Mariotti, M.; Pampana, S.; Ercoli, L. Cadmium uptake and translocation in durum wheat varieties differing in grain-Cd accumulation. Plant Soil Environ. 2014, 60, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Ercoli, L.; Masoni, A.; Pampana, S.; Mariotti, M.; Arduini, I. As durum wheat productivity is affected by nitrogen fertilization management in Central Italy. Eur. J. Agron. 2013, 44, 38–45. [Google Scholar] [CrossRef]
- Meier, U. BBCH-Monograph: Growth Stages of Mono-and Dicotyledonous Plants, 2nd ed.; Federal Biological Research Centre for Agriculture and Forestry: Quedlinburg, Germany, 2001; pp. 18–23. [Google Scholar]
- Cotrozzi, L.; Lorenzini, G.; Nali, C.; Pellegrini, E.; Saponaro, V.; Hoshika, Y.; Arab, L.; Rennenberg, H.; Paoletti, E. Hyperspectral reflectance of light-adapted leaves can predict both dark- and light-adapted chl fluorescence parameters, and the effects of chronic ozone exposure on date palm (Phoenix dactylifera). Int. J. Mol. Sci. 2020, 21, 6441. [Google Scholar] [CrossRef] [PubMed]
- Stanton, K.M.; Micklebart, M.V. Maintenance of water uptake and reduced water loss contribute to water stress tolerance of Spiraea alba Du Roi and Spiraea tomentosa L. Hortic. Res. 2014, 1, 14033. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Hoshika, Y.; Carrari, E.; Cotrozzi, L.; Pellegrini, E.; Paoletti, E. Effects of nitrogen and phosphorous imbalance on photosynthetic traits of poplar Oxford clone under ozone pollution. J. Plant Res. 2018, 131, 915–924. [Google Scholar] [CrossRef] [PubMed]
- Marchica, A.; Loré, S.; Cotrozzi, L.; Lorenzini, G.; Nali, C.; Pellegrini, E.; Remorini, D. Early detection of sage (Salvia officinalis L.) responses to ozone using reflectance spectroscopy. Plants 2019, 8, 346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landi, M.; Cotrozzi, L.; Pellegrini, E.; Remorini, D.; Tonelli, M.; Trivellini, A.; Nali, C.; Guidi, L.; Massai, R.; Vernieri, P.; et al. When “thirsty” means “less able to activate the signalling wave trigged by a pulse of ozone”: A case study in two Mediterranean deciduous oak species with different drought sensitivity. Sci. Total Environ. 2019, 657, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Cataldi, T.R.; Margiotta, G.; Del Fiore, A.; Bufo, S.A. Ionic content in plant extracts determined by ion chromatography with conductivity detection. Phytochem. Anal. 2003, 14, 176–183. [Google Scholar] [CrossRef]
Parameter | 0 DOW | 14 DOW | 35 DOW | ||||||
---|---|---|---|---|---|---|---|---|---|
C | WL | C × WL | C | WL | C × WL | C | WL | C × WL | |
A | 0.26 ns | 0.61 ns | 0.04 ns | 7.05 * | 19.74 *** | 5.78 * | 0.15 ns | 45.83 *** | 0.56 ns |
gs | 0.51 ns | 0.01 ns | 0.02 ns | 3.54 ns | 7.52 * | 5.10 * | 0.07 ns | 42.04 *** | 0.99 ns |
Ci | 4.38 ns | 0.07 ns | 0.00 ns | 1.05 ns | 0.46 ns | 0.01 ns | 3.18 ns | 1.56 ns | 0.20 ns |
WUEin | 0.73 ns | 0.11 ns | 0.08 ns | 0.07 ns | 0.01 ns | 4.78 * | 19.86 *** | 11.03 ** | 7.03 * |
Fv/Fm | 21.59 *** | 0.02 ns | 0.07 ns | 0.03 ns | 3.34 ns | 0.04 ns | 0.06 ns | 1.19 ns | 0.14 ns |
ΦPSII | 0.26 ns | 0.75 ns | 0.69 ns | 1.77 ns | 1.07 ns | 3.62 ns | 24.77 *** | 26.91 *** | 7.62 * |
qP | 0.70 ns | 0.07 ns | 0.15 ns | 0.23 ns | 37.78 *** | 1.42 ns | 21.51 *** | 9.10 * | 2.11 ns |
qNP | 0.20 ns | 0.25 ns | 0.17 ns | 3.43 ns | 47.63 *** | 0.26 ns | 39.99 *** | 29.36 *** | 12.16 ** |
Ψw | 2.40 ns | 0.27 ns | 0.27 ns | 0.03 * | 3.98 ns | 0.05 ns | 1.50 ns | 1.50 ns | 1.50 ns |
Ψπ | 0.40 ns | 0.42 ns | 0.00 ns | 0.01 ns | 0.02 ns | 3.05 ns | 2.12 ns | 18.41 ** | 4.18 ns |
RWC | 6.62 * | 0.00 ns | 0.15 ns | 0.03 ns | 5.11 * | 0.11 ns | 1.94 ns | 5.74 * | 3.75 ns |
ChlTOT | 11.90 ** | 0.06 ns | 0.28 ns | 10.52 * | 16.58 ** | 7.06 * | 17.54 ** | 64.52 *** | 8.65 * |
CarTOT | 2.84 ns | 0.05 ns | 0.01 ns | 4.64 ns | 9.26 * | 1.66 ns | 0.00 ns | 32.77 *** | 4.20 ns |
Chl a/b | 149.67 *** | 0.20 ns | 0.03 ns | 24.29 ** | 3.47 ns | 4.27 ns | 2.17 ns | 1.92 ns | 0.61 ns |
β-car | 4.52 ns | 0.02 ns | 0.00 ns | 16.02 ** | 1.87 ns | 0.45 ns | 1.50 ns | 1.98 ns | 0.64 ns |
DEPS | 647.98 *** | 0.01 ns | 0.14 ns | 2.45 ns | 2.90 ns | 3.99 ns | 1.80 ns | 3.24 ns | 0.80 ns |
Leaf MDA | 139.95 *** | 0.00 ns | 0.12 ns | 2.25 ns | 24.71 ** | 1.08 ns | 63.41 *** | 16.66 ** | 4.08 ns |
Leaf H2O2 | 329.04 *** | 0.06 ns | 0.00 ns | 0.76 ns | 2.38 ns | 1.39 ns | 369.70 *** | 14.28 ** | 2.41 ns |
Root MDA | 883.67 *** | 0.77 ns | 0.43 ns | 3.06 ns | 114.77 *** | 1.13 ns | 60.53 *** | 1.32 ns | 0.82 ns |
Root H2O2 | 5.68 * | 0.75 ns | 0.45 ns | 0.86 ns | 91.29 *** | 42.98 *** | 97.88 *** | 569.87 *** | 5.39 * |
Leaf K+ | 8.31 * | 0.54 ns | 1.00 ns | 17.71 ** | 473.36 *** | 3.66 ns | 10.36 * | 127.35 *** | 44.91 *** |
Leaf Ca2+ | 29.00 *** | 1.27 ns | 0.72 ns | 148.98 *** | 26.72 *** | 41.21 *** | 7.09 * | 37.48 *** | 53.49 *** |
Root K+ | 1.50 ns | 0.00 ns | 0.68 ns | 6.12 * | 0.64 ns | 25.33 ** | 34.83 *** | 214.65 *** | 3.13 ns |
Root Ca2+ | 57.15 *** | 0.62 ns | 0.01 ns | 99.30 *** | 1.88 ns | 0.47 ns | 0.81 ns | 108.80 *** | 69.69 *** |
Culms | ND | ND | ND | 0.62 ns | 13.41 ** | 0.01 ns | 10.76 * | 35.98 *** | 32.51 *** |
Shoot biomass | 25.86 *** | 0.00 ns | 0.00 ns | 27.39 *** | 24.53 ** | 0.16 ns | 21.77 ** | 58.30 *** | 10.09 * |
Root biomass | 27.08 *** | 0.00 ns | 0.00 ns | 3.71 ns | 73.85 *** | 0.39 ns | 3.18 ns | 28.57 *** | 0.27 ns |
Shoot-to-root biomass | 18.88 ** | 0.00 ns | 0.00 ns | 0.86 ns | 148.43 *** | 7.43 * | 0.097 ns | 55.97 *** | 10.04 * |
Parameter | Emilio Lepido | Svevo | ANOVA | ||||||
---|---|---|---|---|---|---|---|---|---|
C | WL14 | WL35 | C | WL14 | WL35 | C | WL | C × WL | |
A | 9.3 ± 0.8 a | 14.2 ± 1.4 c | 9.7 ± 0.1 a | 9.9 ± 0.7 ab | 12.5 ± 0.2 bc | 13.2 ± 2.3 c | 2.75 ns | 19.83 *** | 9.58 *** |
gs | 0.13 ± 0.02 | 0.18 ± 0.02 | 0.18 ± 0.04 | 0.16 ± 0.03 | 0.20 ± 0.00 | 0.24 ± 0.03 | 13.50 ** | 14.29 *** | 1.60 ns |
Ci | 262 ± 2 | 251 ± 5 | 285 ± 19 | 275 ± 23 | 278 ± 1 | 289 ± 6 | 7.88 * | 6.88 ** | 1.73 ns |
WUEin | 73 ± 3 | 77 ± 1 | 57 ± 13 | 64 ± 15 | 62 ± 1 | 55 ± 3 | 6.70 ns | 6.10 ** | 1.30 ns |
Fv/Fm | 0.78 ± 0.01 | 0.79 ± 0.01 | 0.80 ± 0.00 | 0.78 ± 0.00 | 0.79 ± 0.02 | 0.78 ± 0.01 | 2.02 ns | 0.77 ns | 1.77 ns |
ΦPSII | 0.56 ± 0.01 a | 0.56 ± 0.03 a | 0.64 ± 0.01 c | 0.59 ± 0.01 ab | 0.60 ± 0.02 bc | 0.62 ± 0.03 bc | 4.23 ns | 21.19 *** | 7.50 ** |
qP | 0.80 ± 0.01 ab | 0.80 ± 0.02 a | 0.89 ± 0.01 c | 0.85 ± 0.00 bc | 0.85 ± 0.01 bc | 0.87 ± 0.05 c | 8.41 ** | 17.95 *** | 6.91 ** |
qNP | 0.46 ± 0.00 b | 0.46 ± 0.06 b | 0.34 ± 0.02 a | 0.46 ± 0.01 b | 0.35 ± 0.04 a | 0.29 ± 0.03 a | 13.39 ** | 34.38 *** | 5.56 * |
Parameter | Emilio Lepido | Svevo | ANOVA | ||||||
---|---|---|---|---|---|---|---|---|---|
C | WL14 | WL35 | C | WL14 | WL35 | C | WL | C × WL | |
Culms | 3.2 ± 0.3 | 3.3 ± 0.3 | 2.4 ± 0.2 | 4.0 ± 1.2 | 3.1 ± 0.3 | 2.6 ± 0.1 | 0.34 ns | 0.02 * | 1.10 ns |
Spikes | 2.6 ± 0.0 | 2.3 ± 0.5 | 1.8 ± 0.2 | 2.3 ± 0.9 | 1.9 ± 0.1 | 2.0 ± 0.4 | 0.48 ns | 2.61 ns | 0.87 ns |
Grain yield | 2.5 ± 0.1 bc | 2.2 ± 0.7 b | 1.7 ± 0.2 ab | 3.3 ± 0.3 c | 1.8 ± 0.2 ab | 1.2 ± 0.2 a | 0.20 ns | 27.45 *** | 6.24 * |
VAP biomass | 5.1 ± 0.3 | 3.9 ± 1.1 | 3.4 ± 0.3 | 5.6 ± 0.6 | 3.4 ± 0.5 | 2.6 ± 0.1 | 0.39 ns | 27.70 *** | 2.26 ns |
Root biomass | 1.17 ± 0.14 | 1.05 ± 0.31 | 0.78 ± 0.01 | 0.93 ± 0.24 | 0.60 ± 0.10 | 0.54 ± 0.25 | 10.59 ** | 5.73 * | 0.55 ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cotrozzi, L.; Lorenzini, G.; Nali, C.; Pisuttu, C.; Pampana, S.; Pellegrini, E. Transient Waterlogging Events Impair Shoot and Root Physiology and Reduce Grain Yield of Durum Wheat Cultivars. Plants 2021, 10, 2357. https://doi.org/10.3390/plants10112357
Cotrozzi L, Lorenzini G, Nali C, Pisuttu C, Pampana S, Pellegrini E. Transient Waterlogging Events Impair Shoot and Root Physiology and Reduce Grain Yield of Durum Wheat Cultivars. Plants. 2021; 10(11):2357. https://doi.org/10.3390/plants10112357
Chicago/Turabian StyleCotrozzi, Lorenzo, Giacomo Lorenzini, Cristina Nali, Claudia Pisuttu, Silvia Pampana, and Elisa Pellegrini. 2021. "Transient Waterlogging Events Impair Shoot and Root Physiology and Reduce Grain Yield of Durum Wheat Cultivars" Plants 10, no. 11: 2357. https://doi.org/10.3390/plants10112357
APA StyleCotrozzi, L., Lorenzini, G., Nali, C., Pisuttu, C., Pampana, S., & Pellegrini, E. (2021). Transient Waterlogging Events Impair Shoot and Root Physiology and Reduce Grain Yield of Durum Wheat Cultivars. Plants, 10(11), 2357. https://doi.org/10.3390/plants10112357