Influence of Drought and Salt Stress on Durum Wheat Grain Quality and Composition: A Review
Abstract
:1. Introduction
Crop Relevance, Geographic Distribution and Main Quality Traits
2. The Influence of Environmental Conditions on Durum Wheat
2.1. Climate Change and Environmental Variability
2.2. Effects of Hyperosmotic Stress on Agronomic and Crop Physiological Parameters
3. Effect of Water Deficit and Salinity Stress on Durum Wheat Grain Quality Traits
3.1. Storage Proteins
3.2. Starch and Non-Starch Polysaccharides
3.3. Bioactive Compounds and Antioxidant Capacity
3.4. Micronutrients
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Li, Y.-F.; Wu, Y.; Hernandez-Espinosa, N.; Peña, R.J. Heat and Drought Stress on Durum Wheat: Responses of Genotypes, Yield, and Quality Parameters. J. Cereal Sci. 2013, 57, 398–404. [Google Scholar] [CrossRef]
- Tosi, P.; He, J.; Lovegrove, A.; Gonzáles-Thuillier, I.; Penson, S.; Shewry, P.R. Gradients in Compositions in the Starchy Endosperm of Wheat Have Implications for Milling and Processing. Trends Food Sci. Technol. 2018, 82, 1–7. [Google Scholar] [CrossRef]
- Shewry, P. What Is Gluten—Why Is It Special? Front. Nutr. 2019, 6, 101. [Google Scholar] [CrossRef]
- Edwards, N.M.; Preston, K.R.; Paulley, F.G.; Gianibelli, M.C.; McCaig, T.N.; Clarke, J.M.; Ames, N.P.; Dexter, J.E. Hearth Bread Baking Quality of Durum Wheat Varying in Protein Composition and Physical Dough Properties. J. Sci. Food Agric. 2007, 87, 2000–2011. [Google Scholar] [CrossRef]
- Lafiandra, D.; Riccardi, G.; Shewry, P.R. Improving Cereal Grain Carbohydrates for Diet and Health. J. Cereal Sci. 2014, 59, 312–326. [Google Scholar] [CrossRef] [Green Version]
- Sestili, F.; Palombieri, S.; Botticella, E.; Mantovani, P.; Bovina, R.; Lafiandra, D. TILLING Mutants of Durum Wheat Result in a High Amylose Phenotype and Provide Information on Alternative Splicing Mechanisms. Plant Sci. 2015, 233, 127–133. [Google Scholar] [CrossRef] [PubMed]
- De Santis, M.A.; Kosik, O.; Passmore, D.; Flagella, Z.; Shewry, P.R.; Lovegrove, A. Comparison of the Dietary Fibre Composition of Old and Modern Durum Wheat (Triticum Turgidum Spp. Durum) Genotypes. Food Chem. 2018, 244, 304–310. [Google Scholar] [CrossRef]
- Casieri, V.; Matteucci, M.; Cavallini, C.; Torti, M.; Torelli, M.; Lionetti, V. Long-Term Intake of Pasta Containing Barley (1–3)Beta-D-Glucan Increases Neovascularization-Mediated Cardioprotection through Endothelial Upregulation of Vascular Endothelial Growth Factor and Parkin. Sci. Rep. 2017, 7, 13424. [Google Scholar] [CrossRef] [Green Version]
- González-Thuillier, I.; Salt, L.; Chope, G.; Penson, S.; Skeggs, P.; Tosi, P.; Powers, S.J.; Ward, J.L.; Wilde, P.; Shewry, P.R.; et al. Distribution of Lipids in the Grain of Wheat (Cv. Hereward) Determined by Lipidomic Analysis of Milling and Pearling Fractions. J. Agric. Food Chem. 2015, 63, 10705–10716. [Google Scholar] [CrossRef] [Green Version]
- Dinelli, G.; Carretero, A.S.; Di Silvestro, R.; Marotti, I.; Fu, S.; Benedettelli, S.; Ghiselli, L.; Gutierrez, A.F. Determination of Phenolic Compounds in Modern and Old Varieties of Durum Wheat Using Liquid Chromatography Coupled with Time-of-Flight Mass Spectrometry. J. Chromatogr. A 2009, 1216, 7229–7240. [Google Scholar] [CrossRef] [PubMed]
- Laus, M.N.; Di Benedetto, N.A.; Caporizzi, R.; Tozzi, D.; Soccio, M.; Giuzio, L.; De Vita, P.; Flagella, Z.; Pastore, D. Evaluation of Phenolic Antioxidant Capacity in Grains of Modern and Old Durum Wheat Genotypes by the Novel QUENCHERABTS Approach. Plant Foods Hum. Nutr. 2015, 70, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Laddomada, B.; Caretto, S.; Mita, G. Wheat Bran Phenolic Acids: Bioavailability and Stability in Whole Wheat-Based Foods. Molecules 2015, 20, 15666–15685. [Google Scholar] [CrossRef] [PubMed]
- Fardet, A.; Rock, E.; Rémésy, C. Is the in Vitro Antioxidant Potential of Whole-Grain Cereals and Cereal Products Well Reflected in Vivo? J. Cereal Sci. 2008, 48, 258–276. [Google Scholar] [CrossRef]
- Digesù, A.M.; Platani, C.; Cattivelli, L.; Mangini, G.; Blanco, A. Genetic Variability in Yellow Pigment Components in Cultivated and Wild Tetraploid Wheats. J. Cereal Sci. 2009, 50, 210–218. [Google Scholar] [CrossRef]
- Durazzo, A.; Lucarini, M.; Camilli, E.; Marconi, S.; Gabrielli, P.; Lisciani, S.; Gambelli, L.; Aguzzi, A.; Novellino, E.; Santini, A.; et al. Dietary Lignans: Definition, Description and Research Trends in Databases Development. Molecules 2018, 23, 3251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ficco, D.M.B.; Riefolo, C.; Nicastro, G.; De Simone, V.; Digesù, A.M.; Beleggia, R.; Platani, C.; Cattivelli, L.; De Vita, P. Phytate and Mineral Elements Concentration in a Collection of Italian Durum Wheat Cultivars. Field Crop. Res. 2009, 111, 235–242. [Google Scholar] [CrossRef]
- Thompson, B.; Amoroso, L. Combating Micronutrient Deficiencies: Food-Based Approaches; CABI: Wallingford, CT, USA, 2011; ISBN 978-1-84593-714-0. [Google Scholar]
- Hajiboland, R. Effect of Micronutrient Deficiencies on Plants Stress Responses; Abiotic Stress Responses in Plants; Springer International Publishing: Rome, Italy, 2012; ISBN 978-1-4614-0634-1. [Google Scholar]
- Velu, G.; Singh, R.P.; Huerta, J.; Guzmán, C. Genetic Impact of Rht Dwarfing Genes on Grain Micronutrients Concentration in Wheat. Field Crop. Res. 2017, 214, 373–377. [Google Scholar] [CrossRef]
- Galieni, A.; Stagnari, F.; Visioli, G.; Marmiroli, N.; Speca, S.; Angelozzi, G.; D’Egidio, S.; Pisante, M. Nitrogen Fertilisation of Durum Wheat: A Case Study in Mediterranean Area during Transition to Conservation Agriculture. Ital. J. Agron. 2016, 10, 12. [Google Scholar] [CrossRef] [Green Version]
- Ciccolini, V.; Pellegrino, E.; Coccina, A.; Fiaschi, A.I.; Cerretani, D.; Sgherri, C.; Quartacci, M.F.; Ercoli, L. Biofortification with Iron and Zinc Improves Nutritional and Nutraceutical Properties of Common Wheat Flour and Bread. J. Agric. Food Chem. 2017, 65, 5443–5452. [Google Scholar] [CrossRef]
- Poblaciones, M.J.; Rodrigo, S.; Santamaría, O.; Chen, Y.; McGrath, S.P. Agronomic Selenium Biofortification in Triticum Durum under Mediterranean Conditions: From Grain to Cooked Pasta. Food Chem. 2014, 146, 378–384. [Google Scholar] [CrossRef]
- De Vita, P.; Platani, C.; Fragasso, M.; Ficco, D.B.M.; Colecchia, S.A.; Del Nobile, M.A.; Padalino, L.; Di Gennaro, S.; Petrozza, A. Selenium-Enriched Durum Wheat Improves the Nutritional Profile of Pasta without Altering Its Organoleptic Properties. Food Chem. 2017, 214, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Royo, C.; Nazco, R.; Villegas, D. The Climate of the Zone of Origin of Mediterranean Durum Wheat (Triticum Durum Desf.) Landraces Affects Their Agronomic Performance. Genet Resour Crop Evol 2014, 61, 1345–1358. [Google Scholar] [CrossRef] [Green Version]
- homas, S.; Gian-Kasper, P.; Tignor, M.; Allen, S.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P. IPCC. In Summary for Policymakers; Cambridge University Press: Cambridge, UK, 2013; pp. 3–29. ISBN 978-1-107-05799-1. [Google Scholar]
- Semenov, M.A.; Stratonovitch, P.; Alghabari, F.; Gooding, M.J. Adapting Wheat in Europe for Climate Change. J. Cereal Sci. 2014, 59, 245–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cammarano, D.; Ceccarelli, S.; Grando, S.; Romagosa, I.; Benbelkacem, A.; Akar, T.; Al-Yassin, A.; Pecchioni, N.; Francia, E.; Ronga, D. The Impact of Climate Change on Barley Yield in the Mediterranean Basin. Eur. J. Agron. 2019, 106, 1–11. [Google Scholar] [CrossRef]
- Panozzo, J.F.; Walker, C.K.; Partington, D.L.; Neumann, N.C.; Tausz, M.; Seneweera, S.; Fitzgerald, G.J. Elevated Carbon Dioxide Changes Grain Protein Concentration and Composition and Compromises Baking Quality. A FACE Study. J. Cereal Sci. 2014, 60, 461–470. [Google Scholar] [CrossRef]
- Fares, C.; Menga, V.; Badeck, F.; Rizza, F.; Miglietta, F.; Zaldei, A.; Codianni, P.; Iannucci, A.; Cattivelli, L. Increasing Atmospheric CO2 Modifies Durum Wheat Grain Quality and Pasta Cooking Quality. J. Cereal Sci. 2016, 69, 245–251. [Google Scholar] [CrossRef]
- Blandino, M.; Badeck, F.-W.; Giordano, D.; Marti, A.; Rizza, F.; Scarpino, V.; Vaccino, P. Elevated CO2 Impact on Common Wheat (Triticum aestivum L.) Yield, Wholemeal Quality, and Sanitary Risk. J. Agric. Food Chem. 2020, 68, 10574–10585. [Google Scholar] [CrossRef]
- Nuttall, J.G.; O’Leary, G.J.; Panozzo, J.F.; Walker, C.K.; Barlow, K.M.; Fitzgerald, G.J. Models of Grain Quality in Wheat—A Review. Field Crop. Res. 2017, 202, 136–145. [Google Scholar] [CrossRef] [Green Version]
- Snowdon, R.J.; Wittkop, B.; Chen, T.-W.; Stahl, A. Crop Adaptation to Climate Change as a Consequence of Long-Term Breeding. Appl. Genet. 2021, 134, 1613–1623. [Google Scholar] [CrossRef]
- Araus, J.L.; Slafer, G.A.; Royo, C.; Serret, M.D. Breeding for Yield Potential and Stress Adaptation in Cereals. Crit. Rev. Plant Sci. 2008, 27, 377–412. [Google Scholar] [CrossRef]
- Flagella, Z.; Giuliani, M.M.; Giuzio, L.; Volpi, C.; Masci, S. Influence of Water Deficit on Durum Wheat Storage Protein Composition and Technological Quality. Eur. J. Agron. 2010, 33, 197–207. [Google Scholar] [CrossRef]
- Borrelli, G.; Ficco, D.; Giuzio, L.; Pompa, M.; Cattivelli, L.; Flagella, Z. Durum Wheat Salt Tolerance in Relation to Physiological, Yield and Quality Characters. Cereal Res. Commun. 2011, 39, 525–534. [Google Scholar] [CrossRef]
- Beres, B.L.; Hatfield, J.L.; Kirkegaard, J.A.; Eigenbrode, S.D.; Pan, W.L.; Lollato, R.P.; Hunt, J.R.; Strydhorst, S.; Porker, K.; Lyon, D.; et al. Toward a Better Understanding of Genotype × Environment × Management Interactions—A Global Wheat Initiative Agronomic Research Strategy. Front. Plant Sci. 2020, 11, 828. [Google Scholar] [CrossRef]
- Giunta, F.; Pruneddu, G.; Zuddas, M.; Motzo, R. Bread and Durum Wheat: Intra- and Inter-Specific Variation in Grain Yield and Protein Concentration of Modern Italian Cultivars. Eur. J. Agron. 2019, 105, 119–128. [Google Scholar] [CrossRef]
- Passioura, J. The Drought Environment: Physical, Biological and Agricultural Perspectives. J. Exp. Bot. 2006, 58, 113–117. [Google Scholar] [CrossRef] [Green Version]
- Sehgal, A.; Sita, K.; Siddique, K.H.M.; Kumar, R.; Bhogireddy, S.; Varshney, R.K.; HanumanthaRao, B.; Nair, R.M.; Prasad, P.V.V.; Nayyar, H. Drought or/and Heat-Stress Effects on Seed Filling in Food Crops: Impacts on Functional Biochemistry, Seed Yields, and Nutritional Quality. Front. Plant Sci. 2018, 9, 1705. [Google Scholar] [CrossRef] [Green Version]
- Cammarano, D.; Rötter, R.P.; Asseng, S.; Ewert, F.; Wallach, D.; Martre, P.; Hatfield, J.L.; Jones, J.W.; Rosenzweig, C.; Ruane, A.C.; et al. Uncertainty of Wheat Water Use: Simulated Patterns and Sensitivity to Temperature and CO2. Field Crop. Res. 2016, 198, 80–92. [Google Scholar] [CrossRef]
- Masoni, A.; Ercoli, L.; Mariotti, M.; Arduini, I. Post-Anthesis Accumulation and Remobilization of Dry Matter, Nitrogen and Phosphorus in Durum Wheat as Affected by Soil Type. Eur. J. Agron. 2007, 26, 179–186. [Google Scholar] [CrossRef]
- Galieni, A.; D’Ascenzo, N.; Stagnari, F.; Pagnani, G.; Xie, Q.; Pisante, M. Past and Future of Plant Stress Detection: An Overview From Remote Sensing to Positron Emission Tomography. Front. Plant Sci. 2021, 11, 609155. [Google Scholar] [CrossRef]
- Aparicio, N.; Villegas, D.; Casadesus, J.; Araus, J.L.; Royo, C. Spectral Vegetation Indices as Nondestructive Tools for Determining Durum Wheat Yield. Agron.J. 2000, 92, 83–91. [Google Scholar] [CrossRef]
- Basso, B.; Cammarano, D.; Chen, D.; Cafiero, G.; Amato, M.; Bitella, G.; Rossi, R.; Basso, F. Landscape Position and Precipitation Effects on Spatial Variability of Wheat Yield and Grain Protein in Southern Italy. J. Agron. Crop Sci. 2009, 195, 301–312. [Google Scholar] [CrossRef]
- Mulla, D.J. Twenty Five Years of Remote Sensing in Precision Agriculture: Key Advances and Remaining Knowledge Gaps. Biosyst. Eng. 2013, 114, 358–371. [Google Scholar] [CrossRef]
- Dupont, F.M.; Altenbach, S.B. Molecular and Biochemical Impacts of Environmental Factors on Wheat Grain Development and Protein Synthesis. J. Cereal Sci. 2003, 38, 133–146. [Google Scholar] [CrossRef]
- Soriano, J.M.; Colasuonno, P.; Marcotuli, I.; Gadaleta, A. Meta-QTL Analysis and Identification of Candidate Genes for Quality, Abiotic and Biotic Stress in Durum Wheat. Sci. Rep. 2021, 11, 11877. [Google Scholar] [CrossRef]
- Rezzouk, F.Z.; Gracia-Romero, A.; Kefauver, S.C.; Nieto-Taladriz, M.T.; Serret, M.D.; Araus, J.L. Durum Wheat Ideotypes in Mediterranean Environments Differing in Water and Temperature Conditions. Agric. Water Manag. 2021, 259, 107257. [Google Scholar] [CrossRef]
- Zahra, N.; Wahid, A.; Hafeez, M.B.; Ullah, A.; Siddique, K.H.M.; Farooq, M. Grain Development in Wheat under Combined Heat and Drought Stress: Plant Responses and Management. Environ. Exp. Bot. 2021, 188, 104517. [Google Scholar] [CrossRef]
- Altenbach, S.B. New Insights into the Effects of High Temperature, Drought and Post-Anthesis Fertilizer on Wheat Grain Development. J. Cereal Sci. 2012, 56, 39–50. [Google Scholar] [CrossRef]
- Rharrabti, Y.; Villegas, D.; Royo, C.; Martos-Nunez, V. Durum Wheat Quality in Mediterranean Environments II. Influence of Climatic Variables and Relationships between Quality Parameters. Field Crop. Res. 2003, 80, 133–140. [Google Scholar] [CrossRef]
- Martre, P.; Jamieson, P.D.; Semenov, M.A.; Zyskowski, R.F.; Porter, J.R.; Triboi, E. Modelling Protein Content and Composition in Relation to Crop Nitrogen Dynamics for Wheat. Eur. J. Agron. 2006, 25, 138–154. [Google Scholar] [CrossRef]
- Johansson, E.; Branlard, G.; Cuniberti, M.; Flagella, Z.; Hüsken, A.; Nurit, E.; Peña, R.J.; Sissons, M.; Vazquez, D. Genotypic and Environmental Effects on Wheat Technological and Nutritional Quality. In Wheat Quality For Improving Processing And Human Health; Igrejas, G., Ikeda, T.M., Guzmán, C., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 171–204. ISBN 978-3-030-34163-3. [Google Scholar]
- EL Sabagh, A.; Islam, M.S.; Skalicky, M.; Ali Raza, M.; Singh, K.; Anwar Hossain, M.; Hossain, A.; Mahboob, W.; Iqbal, M.A.; Ratnasekera, D.; et al. Salinity Stress in Wheat (Triticum aestivum L.) in the Changing Climate: Adaptation and Management Strategies. Front. Agron. 2021, 3, 661932. [Google Scholar] [CrossRef]
- Phakela, K.; van Biljon, A.; Wentzel, B.; Guzman, C.; Labuschagne, M.T. Gluten Protein Response to Heat and Drought Stress in Durum Wheat as Measured by Reverse Phase - High Performance Liquid Chromatography. J. Cereal Sci. 2021, 100, 103267. [Google Scholar] [CrossRef]
- Giuliani, M.M.; Palermo, C.; De Santis, M.A.; Mentana, A.; Pompa, M.; Giuzio, L.; Masci, S.; Centonze, D.; Flagella, Z. Differential Expression of Durum Wheat Gluten Proteome under Water Stress during Grain Filling. J. Agric. Food Chem. 2015, 63, 6501–6512. [Google Scholar] [CrossRef] [PubMed]
- De Santis, M.A.; Giuliani, M.M.; Giuzio, L.; De Vita, P.; Lovegrove, A.; Shewry, P.R.; Flagella, Z. Differences in Gluten Protein Composition between Old and Modern Durum Wheat Genotypes in Relation to 20th Century Breeding in Italy. Eur. J. Agron. 2017, 87, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Graziano, S.; Marando, S.; Prandi, B.; Boukid, F.; Marmiroli, N.; Francia, E.; Pecchioni, N.; Sforza, S.; Visioli, G.; Gullì, M. Technological Quality and Nutritional Value of Two Durum Wheat Varieties Depend on Both Genetic and Environmental Factors. J. Agric. Food Chem. 2019, 67, 2384–2395. [Google Scholar] [CrossRef] [PubMed]
- Rakszegi, M.; Lovegrove, A.; Balla, K.; Láng, L.; Bedő, Z.; Veisz, O.; Shewry, P.R. Effect of Heat and Drought Stress on the Structure and Composition of Arabinoxylan and β-Glucan in Wheat Grain. Carbohydr. Polym. 2014, 102, 557–565. [Google Scholar] [CrossRef]
- Magallanes-López, A.M.; Hernandez-Espinosa, N.; Velu, G.; Posadas-Romano, G.; Ordoñez-Villegas, V.M.G.; Crossa, J.; Ammar, K.; Guzmán, C. Variability in Iron, Zinc and Phytic Acid Content in a Worldwide Collection of Commercial Durum Wheat Cultivars and the Effect of Reduced Irrigation on These Traits. Food Chem. 2017, 237, 499–505. [Google Scholar] [CrossRef]
- Laddomada, B.; Blanco, A.; Mita, G.; D’Amico, L.; Singh, R.P.; Ammar, K.; Crossa, J.; Guzmán, C. Drought and Heat Stress Impacts on Phenolic Acids Accumulation in Durum Wheat Cultivars. Foods 2021, 10, 2142. [Google Scholar] [CrossRef] [PubMed]
- Fratianni, A.; Giuzio, L.; Di Criscio, T.; Zina, F.; Panfili, G. Response of Carotenoids and Tocols of Durum Wheat in Relation to Water Stress and Sulfur Fertilization. J. Agric. Food Chem. 2013, 61, 2583–2590. [Google Scholar] [CrossRef]
- Liu, H.; Bruce, D.R.; Sissons, M.; Able, A.J.; Able, J.A. Genotype-dependent Changes in the Phenolic Content of Durum under Water-deficit Stress. Cereal Chem. 2018, 95, 59–78. [Google Scholar] [CrossRef]
- García del Moral, L.F.; Rharrabti, Y.; Martos, V.; Royo, C. Environmentally Induced Changes in Amino Acid Composition in the Grain of Durum Wheat Grown under Different Water and Temperature Regimes in a Mediterranean Environment. J. Agric. Food Chem. 2007, 55, 8144–8151. [Google Scholar] [CrossRef]
- Guzmán, C.; Autrique, J.E.; Mondal, S.; Singh, R.P.; Govindan, V.; Morales-Dorantes, A.; Posadas-Romano, G.; Crossa, J.; Ammar, K.; Peña, R.J. Response to Drought and Heat Stress on Wheat Quality, with Special Emphasis on Bread-Making Quality, in Durum Wheat. Field Crop. Res. 2016, 186, 157–165. [Google Scholar] [CrossRef]
- Giuliani, M.M.; De Santis, M.A.; Pompa, M.; Giuzio, L.; Flagella, Z. Analysis of Gluten Proteins Composition during Grain Filling in Two Durum Wheat Cultivars Submitted to Two Water Regimes. Ital. J. Agron. 2014, 9, 15. [Google Scholar] [CrossRef]
- Visioli, G.; Galieni, A.; Stagnari, F.; Bonas, U.; Speca, S.; Faccini, A.; Pisante, M.; Marmiroli, N. Proteomics of Durum Wheat Grain during Transition to Conservation Agriculture. PLoS ONE 2016, 11, e0156007. [Google Scholar] [CrossRef] [PubMed]
- Pagnani, G.; Galieni, A.; D’Egidio, S.; Visioli, G.; Stagnari, F.; Pisante, M. Effect of Soil Tillage and Crop Sequence on Grain Yield and Quality of Durum Wheat in Mediterranean Areas. Agronomy 2019, 9, 488. [Google Scholar] [CrossRef] [Green Version]
- De Santis, M.A.; Giuliani, M.M.; Giuzio, L.; De Vita, P.; Flagella, Z. Assessment of Grain Protein Composition in Old and Modern Italian Durum Wheat Genotypes. Ital. J. Agron. 2018, 40–43. [Google Scholar] [CrossRef] [Green Version]
- De Santis, M.A.; Cunsolo, V.; Giuliani, M.M.; Di Francesco, A.; Saletti, R.; Foti, S.; Flagella, Z. Gluten Proteome Comparison among Durum Wheat Genotypes with Different Release Date. J. Cereal Sci. 2020, 96, 103092. [Google Scholar] [CrossRef]
- Ronga, D.; Laviano, L.; Catellani, M.; Milc, J.; Prandi, B.; Boukid, F.; Sforza, S.; Dossena, A.; Graziano, S.; Gullì, M.; et al. Influence of Environmental and Genetic Factors on Content of Toxic and Immunogenic Wheat Gluten Peptides. Eur. J. Agron. 2020, 118, 126091. [Google Scholar] [CrossRef]
- Taranto, F.; D’Agostino, N.; Catellani, M.; Laviano, L.; Ronga, D.; Milc, J.; Prandi, B.; Boukid, F.; Sforza, S.; Graziano, S.; et al. Characterization of Celiac Disease-Related Epitopes and Gluten Fractions, and Identification of Associated Loci in Durum Wheat. Agronomy 2020, 10, 1231. [Google Scholar] [CrossRef]
- Fois, S.; Schlichting, L.; Marchylo, B.; Dexter, J.; Motzo, R.; Giunta, F. Environmental Conditions Affect Semolina Quality in Durum Wheat ( Triticum Turgidum Ssp. Durum L.) Cultivars with Different Gluten Strength and Gluten Protein Composition: Environmental Effects on Semolina Quality in Durum Wheat. J. Sci. Food Agric. 2011, 91, 2664–2673. [Google Scholar] [CrossRef]
- Mefleh, M.; Motzo, R.; Samson, M.-F.; Morel, M.-H.; Giunta, F. N Partitioning between Gluten Fractions in a Set of Italian Durum Wheat Cultivars: Role of the Grain N Content. Foods 2020, 9, 1684. [Google Scholar] [CrossRef]
- Ferrise, R.; Triossi, A.; Stratonovitch, P.; Bindi, M.; Martre, P. Sowing Date and Nitrogen Fertilisation Effects on Dry Matter and Nitrogen Dynamics for Durum Wheat: An Experimental and Simulation Study. Field Crop. Res. 2010, 117, 245–257. [Google Scholar] [CrossRef]
- Ferrise, R.; Bindi, M.; Martre, P. Grain Filling Duration and Glutenin Polymerization under Variable Nitrogen Supply and Environmental Conditions for Durum Wheat. Field Crop. Res. 2015, 171, 23–31. [Google Scholar] [CrossRef]
- Katerji, N.; van Hoorn, J.W.; Fares, C.; Hamdy, A.; Mastrorilli, M.; Oweis, T. Salinity Effect on Grain Quality of Two Durum Wheat Varieties Differing in Salt Tolerance. Agric. Water Manag. 2005, 75, 85–91. [Google Scholar] [CrossRef]
- Gerosa, G.; Marzuoli, R.; Finco, A.; Monga, R.; Fusaro, I.; Faoro, F. Contrasting Effects of Water Salinity and Ozone Concentration on Two Cultivars of Durum Wheat (Triticum Durum Desf.) in Mediterranean Conditions. Environ. Pollut. 2014, 193, 13–21. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, Z.; Tian, Y.; Zhou, Q.; Cai, J.; Dai, T.; Cao, W.; Pu, H.; Jiang, D. Salt Stress Increases Content and Size of Glutenin Macropolymers in Wheat Grain. Food Chem. 2016, 197, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Lempereur, I.; Rouau, X.; Abecassis, J. Genetic and Agronomic Variation in Arabinoxylan and Ferulic Acid Contents of Durum Wheat (Triticum durum L.) Grain and Its Milling Fractions. J. Cereal Sci. 1997, 25, 103–110. [Google Scholar] [CrossRef]
- Ciccoritti, R.; Scalfati, G.; Cammerata, A.; Sgrulletta, D. Variations in Content and Extractability of Durum Wheat (Triticum turgidum L. var durum) Arabinoxylans Associated with Genetic and Environmental Factors. Int. J. Mol. Sci. 2011, 12, 4536–4549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Santis, M.A.; Kosik, O.; Passmore, D.; Flagella, Z.; Shewry, P.R.; Lovegrove, A. Data Set of Enzyme Fingerprinting of Dietary Fibre Components (Arabinoxylan and β-Glucan) in Old and Modern Italian Durum Wheat Genotypes. Data Brief 2018, 16, 1062–1068. [Google Scholar] [CrossRef]
- Nocente, F.; De Stefanis, E.; Ciccoritti, R.; Pucciarmati, S.; Taddei, F.; Campiglia, E.; Radicetti, E.; Mancinelli, R. How Do Conventional and Organic Management Affect the Healthy Potential of Durum Wheat Grain and Semolina Pasta Traits? Food Chem. 2019, 297, 124884. [Google Scholar] [CrossRef]
- Gebruers, K.; Dornez, E.; Bedõ, Z.; Rakszegi, M.; Frás, A.; Boros, D.; Courtin, C.M.; Delcour, J.A. Environment and Genotype Effects on the Content of Dietary Fiber and Its Components in Wheat in the HEALTHGRAIN Diversity Screen. J. Agric. Food Chem. 2010, 58, 9353–9361. [Google Scholar] [CrossRef]
- Shewry, P.R.; Piironen, V.; Lampi, A.-M.; Edelmann, M.; Kariluoto, S.; Nurmi, T.; Fernandez-Orozco, R.; Ravel, C.; Charmet, G.; Andersson, A.A.M.; et al. The HEALTHGRAIN Wheat Diversity Screen: Effects of Genotype and Environment on Phytochemicals and Dietary Fiber Components. J. Agric. Food Chem. 2010, 58, 9291–9298. [Google Scholar] [CrossRef] [PubMed]
- Rakszegi, M.; Darkó, É.; Lovegrove, A.; Molnár, I.; Láng, L.; Bedő, Z.; Molnár-Láng, M.; Shewry, P. Drought Stress Affects the Protein and Dietary Fiber Content of Wholemeal Wheat Flour in Wheat/Aegilops Addition Lines. PLoS ONE 2019, 14, e0211892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Able, A.J.; Able, J.A. Genotypic Performance of Australian Durum under Single and Combined Water-Deficit and Heat Stress during Reproduction. Sci. Rep. 2019, 9, 14986. [Google Scholar] [CrossRef] [Green Version]
- Graziano, S.; Marmiroli, N.; Visioli, G.; Gullì, M. Proteins and Metabolites as Indicators of Flours Quality and Nutritional Properties of Two Durum Wheat Varieties Grown in Different Italian Locations. Foods 2020, 9, 315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martini, D.; Taddei, F.; Ciccoritti, R.; Pasquini, M.; Nicoletti, I.; Corradini, D.; D’Egidio, M.G. Variation of Total Antioxidant Activity and of Phenolic Acid, Total Phenolics and Yellow Coloured Pigments in Durum Wheat (Triticum Turgidum L. Var. Durum) as a Function of Genotype, Crop Year and Growing Area. J. Cereal Sci. 2015, 65, 175–185. [Google Scholar] [CrossRef]
- Bellato, S.; Ciccoritti, R.; Del Frate, V.; Sgrulletta, D.; Carbone, K. Influence of Genotype and Environment on the Content of 5-n Alkylresorcinols, Total Phenols and on the Antiradical Activity of Whole Durum Wheat Grains. J. Cereal Sci. 2013, 57, 162–169. [Google Scholar] [CrossRef]
- Heimler, D.; Vignolini, P.; Isolani, L.; Arfaioli, P.; Ghiselli, L.; Romani, A. Polyphenol Content of Modern and Old Varieties of Triticum Aestivum L. and T. Durum Desf. Grains in Two Years of Production. J. Agric. Food Chem. 2010, 58, 7329–7334. [Google Scholar] [CrossRef]
- Brandolini, A.; Castoldi, P.; Plizzari, L.; Hidalgo, A. Phenolic Acids Composition, Total Polyphenols Content and Antioxidant Activity of Triticum Monococcum, Triticum Turgidum and Triticum Aestivum: A Two-Years Evaluation. J. Cereal Sci. 2013, 58, 123–131. [Google Scholar] [CrossRef]
- Menga, V.; Fares, C.; Troccoli, A.; Cattivelli, L.; Baiano, A. Effects of Genotype, Location and Baking on the Phenolic Content and Some Antioxidant Properties of Cereal Species: Antioxidant Properties in Cereals. Int. J. Food Sci. Technol. 2009, 45, 7–16. [Google Scholar] [CrossRef]
- Plessis, A.; Ravel, C.; Bordes, J.; Balfourier, F.; Martre, P. Association Study of Wheat Grain Protein Composition Reveals That Gliadin and Glutenin Composition Are Trans-Regulated by Different Chromosome Regions. J. Exp. Bot. 2013, 64, 3627–3644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daniel, C.; Triboı, E. Changes in Wheat Protein Aggregation during Grain Development: Effects of Temperatures and Water Stress. Eur. J. Agron. 2002, 16, 1–12. [Google Scholar] [CrossRef]
- Magallanes-López, A.M.; Ammar, K.; Morales-Dorantes, A.; González-Santoyo, H.; Crossa, J.; Guzmán, C. Grain Quality Traits of Commercial Durum Wheat Varieties and Their Relationships with Drought Stress and Glutenins Composition. J. Cereal Sci. 2017, 75, 1–9. [Google Scholar] [CrossRef]
- Houshmand, S.; Arzani, A.; Mirmohammadi-Maibody, S.A.M. Effects of Salinity and Drought Stress on Grain Quality of Durum Wheat. Commun. Soil Sci. Plant Anal. 2014, 45, 297–308. [Google Scholar] [CrossRef]
- Méndez-Espinoza, A.M.; Garriga, M.; Ben Mariem, S.; Soba, D.; Aranjuelo, I.; del Pozo, A. Carbohydrate and Amino Acid Dynamics during Grain Growth in Four Temperate Cereals under Well-Watered and Water-Limited Regimes. Agronomy 2021, 11, 1516. [Google Scholar] [CrossRef]
- Singh, S.; Singh, G.; Singh, P.; Singh, N. Effect of Water Stress at Different Stages of Grain Development on the Characteristics of Starch and Protein of Different Wheat Varieties. Food Chem. 2008, 108, 130–139. [Google Scholar] [CrossRef]
- Thitisaksakul, M.; Jiménez, R.C.; Arias, M.C.; Beckles, D.M. Effects of Environmental Factors on Cereal Starch Biosynthesis and Composition. J. Cereal Sci. 2012, 56, 67–80. [Google Scholar] [CrossRef]
- Coles, G.D.; Hartunian-Sowa, S.M.; Jamieson, P.D.; Hay, A.J.; Atwell, W.A.; Fulcher, R.G. Environmentally-Induced Variation in Starch and Non-Starch Polysaccharide Content in Wheat. J. Cereal Sci. 1997, 26, 47–54. [Google Scholar] [CrossRef]
- Toole, G.A.; Wilson, R.H.; Parker, M.L.; Wellner, N.K.; Wheeler, T.R.; Shewry, P.R.; Mills, E.N.C. The Effect of Environment on Endosperm Cell-Wall Development in Triticum Aestivum during Grain Filling: An Infrared Spectroscopic Imaging Study. Planta 2007, 225, 1393–1403. [Google Scholar] [CrossRef]
- Fernandez-Orozco, R.; Li, L.; Harflett, C.; Shewry, P.R.; Ward, J.L. Effects of Environment and Genotype on Phenolic Acids in Wheat in the HEALTHGRAIN Diversity Screen. J. Agric. Food Chem. 2010, 58, 9341–9352. [Google Scholar] [CrossRef]
- Andersson, A.A.M.; Kamal-Eldin, A.; Åman, P. Effects of Environment and Variety on Alkylresorcinols in Wheat in the HEALTHGRAIN Diversity Screen. J. Agric. Food Chem. 2010, 58, 9299–9305. [Google Scholar] [CrossRef]
- Lampi, A.-M.; Nurmi, T.; Piironen, V. Effects of the Environment and Genotype on Tocopherols and Tocotrienols in Wheat in the HEALTHGRAIN Diversity Screen. J. Agric. Food Chem. 2010, 58, 9306–9313. [Google Scholar] [CrossRef] [PubMed]
- Nurmi, T.; Lampi, A.-M.; Nyström, L.; Piironen, V. Effects of Environment and Genotype on Phytosterols in Wheat in the HEALTHGRAIN Diversity Screen. J. Agric. Food Chem. 2010, 58, 9314–9323. [Google Scholar] [CrossRef] [PubMed]
- Kariluoto, S.; Edelmann, M.; Piironen, V. Effects of Environment and Genotype on Folate Contents in Wheat in the HEALTHGRAIN Diversity Screen. J. Agric. Food Chem. 2010, 58, 9324–9331. [Google Scholar] [CrossRef] [PubMed]
- Narducci, V.; Finotti, E.; Galli, V.; Carcea, M. Carcea Lipids and Fatty Acids in Italian Durum Wheat (Triticum Durum Desf.) Cultivars. Foods 2019, 8, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cutignano, A.; Mamone, G.; Boscaino, F.; Ceriotti, A.; Maccaferri, M.; Picariello, G. Monitoring Changes of Lipid Composition in Durum Wheat during Grain Development. J. Cereal Sci. 2021, 97, 103131. [Google Scholar] [CrossRef]
- Bouis, H.E.; Hotz, C.; McClafferty, B.; Meenakshi, J.V.; Pfeiffer, W.H. Biofortification: A New Tool to Reduce Micronutrient Malnutrition. Food Nutr. Bull. 2014, 32, 202–215. [Google Scholar] [CrossRef]
Plant Genotype | Growth Conditions | Water Deficit/Salinity Conditions (mm Rainfall + Irrigation/Salt Stress Level) | Traits Investigated | References |
---|---|---|---|---|
10 durum wheat genotypes | Field, irrigation | Irrigated optimal control (311 mm + 150 mm) vs. one mild drought stress rainfed (330 mm + 0 mm) and one severe drought stress rainfed (188 mm + 0 mm) | GPC, AA composition | [64] |
2 durum wheat genotypes (Ofanto, Simeto) | Field, irrigation | Irrigated (I, ~ +45 mm) vs. not irrigated (NI) in three crop seasons, (~230 mm mean rainfall) | GPC, gliadin, glutenin, HMW-GS, HMW-GS/LMW-GS, UPP | [34] |
6 durum wheat genotypes | Field, irrigation | One full irrigation (500 mm) vs. one moderate drought stress (300 mm) and one severe drought stress (180 mm) | GPC, HMW-GS, LMW-GS, ω-gliadin, γ-gliadin, α-gliadin | [55,65] |
2 durum wheat genotypes (Ciccio, Svevo) | Growth chamber, irrigation | Well-watered (WW, 9522 mL) vs. water stress (WS, 7920 mL) | Gluten proteome, HMW-GS, LMW-GS, ω-gliadin, γ-gliadin, α-gliadin | [56,66] |
1 durum wheat genotype (Iride) | Field, rainfed | Two crop seasons (507.2 mm in 2010/11, 314.6 mm in 2011/12) | GPC, gliadin, HMW-GS, LMW-GS, minerals | [20,67] |
1 durum wheat genotype (Saragolla) | Field, rainfed | Two crop seasons (290.2 mm in 2015/16, 153.8 mm in 2016/17) | GPC, gliadin, HMW-GS, LMW-GS, total GS/glia, HMW-GS/LMW-GS | [68] |
15 durum wheat genotypes (7 old, 8 modern) | Field, rainfed | Two crop seasons (293 mm in 2012/13, 310 mm in 2013/14—reproductive stages 54 mm in 2012/13, 153 mm in 2013/14) | GPC, glia/glut, HMW-GS, LMW-GS, ω-gliadin, γ-gliadin, α-gliadin, HMW-GS/LMW-GS, gluten index, UPP, AA composition, Tri a 19, TECP, IECP, G12 | [57,69,70] |
2 durum wheat genotypes (Cappelli, Saragolla) | Field, rainfed | Two crop seasons (in reproductive stages 181 mm in 2015/16, 55 mm in 2016/17) | GPC, gliadin fractions, HMW-GS, LMW-GS, HMW-GS/LMW-GS, glia/glut, AA composition, IP, TP, free, conjugated, bound and total phenolic acids | [58] |
6 durum wheat genotypes | Field, rainfed | Four locations and two crop seasons in Italy (differences in rainfall in 8 environments) | GPC, HMW-GS, LMW-GS, gliadin, IP, TP | [71] |
79 durum wheat genotypes | Field, rainfed | Two crop seasons (289 mm in 2015/2016 to 209 mm in 2016/2017) | GPC, HMW-GS, LMW-GS, gliadin, IP, TP | [72] |
6 durum wheat genotypes | Field, rainfed | Two crop seasons (754 mm in 2003/04, 542 mm in 2004/05—in spring 210mm in 2003/04, 79 mm 2004/05) | GPC, gliadin/glutenin | [73] |
16 durum wheat (12 old, 2 intermediate, 2 modern) | Field, rainfed | Two crop seasons (363 mm in 2015/16, 286 mm in 2016/17) | GPC, ω-gliadin, γ-gliadin, α-gliadin, glia/glut, HMW/LMW, S-rich/S-poor, UPP | [74] |
1 durum wheat genotype (Creso) | Field, rainfed | Two sowing dates, four N levels (N0, N6, N12, N18), two crop seasons (250/159 mm in 2003, 530/304 mm in 2005—in spring 25/8 mm in 2003, 69/30 mm in 2005) | GPC, gliadins, glutenins, SPP, LPP, UPP | [75,76] |
2 durum wheat genotypes | Greenhouse | Three salinity levels (0.9, 4.0, 8.0 dS/m) | GPC, gluten, SDS-sedimentation test,β-carotene | [77] |
10 durum wheat genotypes | Greenhouse | Three salinity levels (0.9, 6.0, 12.0 dS/m) | GPC, SDS-sedimentation test, carotenoid | [35] |
2 durum wheat genotypes (Neodur, Virgilio) | Open-top chamber | Saline water (+S, 8.3 dS/m) vs. tap water (-S) | GPC, gluten | [78] |
1 bread wheat genotype | Pot | Six NaCl% levels (0%, 0.15%, 0.30%, 0.45%, 0.6%, 0.75%) | HMW-GS | [79] |
5 genotypes | Field | Two sites in France, Auzeville (rainfed) and Melgueil (rainfed and irrigated, +102 mm by sprinkler) | Tot-AX, WE-AX, WE-AX/WU-AX, ferulic acid | [80] |
19 durum wheat genotypes | Field | Two sites and two crop seasons (616 mm Jesi 2008/09, 702 mm Jesi 2009/10; 749 mm Foggia 2008/09, 440 mm Foggia 2009/10) | Tot-AX, WE-AX, A/X | [81] |
15 durum wheat genotypes (7 old, 8 modern) | Field | Two crop seasons (293 mm in 2012/13, 310 mm in 2013/14—reproductive stages 54 mm in 2012/13, 153 mm in 2013/14) | In semolina and whole meal, Tot-AX, WE-AX, β-glucan, AXOS composition, GOS composition | [7,82] |
1 durum wheat genotypes (Colosseo) | Field | Two crop seasons (2010 > 2011) | Tot-AX, alkylresorcinols, total phenols, AC | [83] |
26 bread wheat genotypes | Field | 6 environments with different rainfall amounts
| In flour and bran. Total DF, total NSP, WENSP, Tot-AX, WE-AX, lignin, β-glucan | [84,85] |
3 bread wheat genotypes14 bread wheat/Aegilops. spp. lines | Growth chamber | Control (SWC 30-35% vs. drought stress (SWC 10–15%) | GPC, glutenin/gliadin, UPP, Tot-AX, WE-AX, β-glucan, AXOS composition, GOS composition | [59,86] |
46 durum wheat genotypes | Field | One full irrigation (500 mm) vs. one moderate drought stress (300 mm), mDS vs. opt, −40% water | Fe, Zn, phytic acid | [60] |
84 durum wheat genotypes | Field | Two crop seasons (455 mm in 2004/05, 548mm in 2005/06) | Minerals (P, Ca, Cu, Fe, K, Mg, Mn, Na, Zn), phytic acid | [16] |
6 durum wheat genotypes | Field | One full irrigation (500 mm) vs. one moderate drought stress (300 mm) | Total phenolic acids, p-Hydroxybenzoic, Syringic, Vanillic, p-Coumaric, Ferulic, Sinapic | [61] |
4 durum wheat genotypes | Field, irrigation | Two crop seasons (grain filling 67 mm first year, 24 mm second year), irrigated vs. rainfed | Carotenoids, tocopherols, and tocotrienols in whole meal and semolina | [62] |
8 durum wheat genotypes | Glasshouse | Control conditions (12% SWC, from germination to maturity) vs. water-deficit stress (6% SWC from booting to maturity) | Free, conjugated, bound, and total phenolic acids | [63,87] |
2 durum wheat genotypes (Iride, Svevo) | Field | Four locations and two crop seasons in Italy (differences in rainfall amount and distribution) | Free, conjugated, bound, and total phenolic acids, AC | [88] |
30 Italian durum wheat genotypes | Field | Three locations and two crop seasons in Italy (differences in rainfall amount and distribution) | Free, conjugated, bound, and total phenolic acids, AC | [89] |
30 Italian durum wheat genotypes | Field | Two sites and two crop seasons (616 mm Jesi 2008/09, 702 mm Jesi 2009/10; 749 mm Foggia 2008/09, 440 mm Foggia 2009/10) | Total soluble phenols, alkylresorcinol | [90] |
2 old and 6 modern durum wheat genotypes | Field | Two crop seasons (30 days before harvest 80 mm in 2007, 29.6 mm in 2008). | Soluble phenols, AC | [91] |
13 accessions of tetraploid wheats (including durum wheat and emmer) | Field | Two crop seasons | Conjugated and bound phenols, AC | [92] |
30 durum wheat genotypes | Field | One crop season and three sites in Italy, north (Fiorenzuola d’Arda) central (Larino and Matrice), south (Foggia) | Total phenols | [93] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Santis, M.A.; Soccio, M.; Laus, M.N.; Flagella, Z. Influence of Drought and Salt Stress on Durum Wheat Grain Quality and Composition: A Review. Plants 2021, 10, 2599. https://doi.org/10.3390/plants10122599
De Santis MA, Soccio M, Laus MN, Flagella Z. Influence of Drought and Salt Stress on Durum Wheat Grain Quality and Composition: A Review. Plants. 2021; 10(12):2599. https://doi.org/10.3390/plants10122599
Chicago/Turabian StyleDe Santis, Michele Andrea, Mario Soccio, Maura Nicoletta Laus, and Zina Flagella. 2021. "Influence of Drought and Salt Stress on Durum Wheat Grain Quality and Composition: A Review" Plants 10, no. 12: 2599. https://doi.org/10.3390/plants10122599
APA StyleDe Santis, M. A., Soccio, M., Laus, M. N., & Flagella, Z. (2021). Influence of Drought and Salt Stress on Durum Wheat Grain Quality and Composition: A Review. Plants, 10(12), 2599. https://doi.org/10.3390/plants10122599