Aldehyde Dehydrogenase 3 Is an Expanded Gene Family with Potential Adaptive Roles in Chickpea
Abstract
:1. Introduction
2. Results and Discussion
2.1. ALDH Gene Family in the Chickpea Genome
2.2. Evolutionary Relationships of ALDH Gene Families between Chickpea and Medicago
2.3. Phylogenetic Analysis of Chickpea ALDH Genes
2.4. ALDH Expansion: Gene Duplications
2.5. Expression Profiles of CaALDH Genes
3. Materials and Methods
3.1. Database Searches and Annotation of ALDH Genes
3.2. Syntenic Blocks and Gene Duplication Analysis
3.3. Phylogenetic Analysis of ALDH Gene Families
3.4. In Silico Expression Analysis
3.5. Plant Material and Pathogen Inoculation
3.6. RNA Isolation, cDNA Synthesis and Quality Controls
3.7. Real-Time qPCR Assays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jakoby, W.B.; Ziegler, D.M. The Enzymes of Detoxication. J. Biol. Chem. 1990, 265, 20715–20718. [Google Scholar] [CrossRef]
- Bartels, D. Targeting Detoxification Pathways: An Efficient Approach to Obtain Plants with Multiple Stress Tolerance? Trends Plant Sci. 2001, 6, 284–286. [Google Scholar] [CrossRef]
- Lindahl, R. Aldehyde Dehydrogenases and Their Role in Carcinogenesis. Crit. Rev. Biochem. Mol. Biol. 1992, 27, 283–335. [Google Scholar] [CrossRef]
- Yoshiba, Y.; Kiyosue, T.; Nakashima, K.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Regulation of Levels of Proline as an Osmolyte in Plants under Water Stress. Plant Cell Physiol. 1997, 38, 1095–1102. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, A.; Rzhetsky, A.; Hsu, L.C.; Chang, C. Human Aldehyde Dehydrogenase Gene Family. Eur. J. Biochem. 1998, 251, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, S.M.; Andrade, M.O.; Gomes, A.P.S.; Damatta, F.M.; Baracat-Pereira, M.C.; Fontes, E.P.B. Arabidopsis and Tobacco Plants Ectopically Expressing the Soybean Antiquitin-like ALDH7 Gene Display Enhanced Tolerance to Drought, Salinity, and Oxidative Stress. J. Exp. Bot. 2006, 57, 1909–1918. [Google Scholar] [CrossRef] [Green Version]
- Missihoun, T.D.; Kotchoni, S.O. Aldehyde Dehydrogenases and the Hypothesis of a Glycolaldehyde Shunt Pathway of Photorespiration. Plant Signal. Behav. 2018, 13, e1449544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brocker, C.; Vasiliou, M.; Carpenter, S.; Carpenter, C.; Zhang, Y.; Wang, X.; Kotchoni, S.O.; Wood, A.J.; Kirch, H.-H.; Kopečný, D.; et al. Aldehyde Dehydrogenase (ALDH) Superfamily in Plants: Gene Nomenclature and Comparative Genomics. Planta 2013, 237, 189–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Black, W.; Vasiliou, V. The Aldehyde Dehydrogenase Gene Superfamily Resource Center. Hum Genom. 2009, 4, 136–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jimenez-Lopez, J.C.; Lopez-Valverde, F.J.; Robles-Bolivar, P.; Lima-Cabello, E.; Gachomo, E.W.; Kotchoni, S.O. Genome-Wide Identification and Functional Classification of Tomato (Solanum lycopersicum) Aldehyde Dehydrogenase (ALDH) Gene Superfamily. PLoS ONE 2016, 11, e0164798. [Google Scholar] [CrossRef] [Green Version]
- Jimenez-Lopez, J.C. Narrow-Leafed Lupin (Lupinus angustifolius L.) Functional Identification and Characterization of the Aldehyde Dehydrogenase (ALDH) Gene Superfamily. Plant Gene 2016, 6, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Skibbe, D.S.; Liu, F.; Wen, T.-J.; Yandeau, M.D.; Cui, X.; Cao, J.; Simmons, C.R.; Schnable, P.S. Characterization of the Aldehyde Dehydrogenase Gene Families of Zea Mays and Arabidopsis. Plant Mol. Biol. 2002, 48, 751–764. [Google Scholar] [CrossRef]
- Kotchoni, S.O.; Jimenez-Lopez, J.C.; Gao, D.; Edwards, V.; Gachomo, E.W.; Margam, V.M.; Seufferheld, M.J. Modeling-Dependent Protein Characterization of the Rice Aldehyde Dehydrogenase (ALDH) Superfamily Reveals Distinct Functional and Structural Features. PLoS ONE 2010, 5, e11516. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Wang, Y.; Lu, H.; Cai, X.; Wang, X.; Zhou, Z.; Wang, C.; Wang, Y.; Zhang, Z.; Wang, K.; et al. Genome-Wide Characterization and Expression Analysis of the Aldehyde Dehydrogenase (ALDH) Gene Superfamily under Abiotic Stresses in Cotton. Gene 2017, 628, 230–245. [Google Scholar] [CrossRef]
- Shin, J.-H.; Kim, S.-R.; An, G. Rice Aldehyde Dehydrogenase7 Is Needed for Seed Maturation and Viability. Plant Physiol. 2009, 149, 905–915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotchoni, S.O.; Jimenez-Lopez, J.C.; Kayodé, A.P.P.; Gachomo, E.W.; Baba-Moussa, L. The Soybean Aldehyde Dehydrogenase (ALDH) Protein Superfamily. Gene 2012, 495, 128–133. [Google Scholar] [CrossRef]
- Xu, X.; Guo, R.; Cheng, C.; Zhang, H.; Zhang, Y.; Wang, X. Overexpression of ALDH2B8, an Aldehyde Dehydrogenase Gene from Grapevine, Sustains Arabidopsis Growth upon Salt Stress and Protects Plants against Oxidative Stress. Plant Cell Tiss. Organ Cult. 2013, 114, 187–196. [Google Scholar] [CrossRef]
- Gao, C.; Han, B. Evolutionary and Expression Study of the Aldehyde Dehydrogenase (ALDH) Gene Superfamily in Rice (Oryza sativa). Gene 2009, 431, 86–94. [Google Scholar] [CrossRef]
- Kirch, H.-H.; Schlingensiepen, S.; Kotchoni, S.; Sunkar, R.; Bartels, D. Detailed Expression Analysis of Selected Genes of the Aldehyde Dehydrogenase (ALDH) Gene Superfamily in Arabidopsis thaliana. Plant Mol. Biol. 2005, 57, 315–332. [Google Scholar] [CrossRef]
- García-Ríos, M.; Fujita, T.; LaRosa, P.C.; Locy, R.D.; Clithero, J.M.; Bressan, R.A.; Csonka, L.N. Cloning of a Polycistronic CDNA from Tomato Encoding Gamma-Glutamyl Kinase and Gamma-Glutamyl Phosphate Reductase. Proc. Natl. Acad. Sci. USA 1997, 94, 8249–8254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAOSTAT. Crop Statistics. Available online: http://faostat.fao.org (accessed on 20 November 2019).
- Millán, T.; Madrid, E.; Cubero, J.I.; Amri, M.; Castro, P.; Rubio, J. Chickpea. In Grain Legumes; De Ron, A.M., Ed.; Handbook of Plant Breeding; Springer: New York, NY, USA, 2015; Volume 10, pp. 85–109. ISBN 978-1-4939-2796-8. [Google Scholar]
- Li, H.; Rodda, M.; Gnanasambandam, A.; Aftab, M.; Redden, R.; Hobson, K.; Rosewarne, G.; Materne, M.; Kaur, S.; Slater, A.T. Breeding for Biotic Stress Resistance in Chickpea: Progress and Prospects. Euphytica 2015, 204, 257–288. [Google Scholar] [CrossRef]
- Jain, M.; Misra, G.; Patel, R.K.; Priya, P.; Jhanwar, S.; Khan, A.W.; Shah, N.; Singh, V.K.; Garg, R.; Jeena, G.; et al. A Draft Genome Sequence of the Pulse Crop Chickpea (Cicer arietinum L.). Plant J. 2013, 74, 715–729. [Google Scholar] [CrossRef] [PubMed]
- Varshney, R.K.; Song, C.; Saxena, R.K.; Azam, S.; Yu, S.; Sharpe, A.G.; Cannon, S.; Baek, J.; Rosen, B.D.; Tar’an, B.; et al. Draft Genome Sequence of Chickpea (Cicer Arietinum) Provides a Resource for Trait Improvement. Nat. Biotechnol. 2013, 31, 240–246. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Jiang, W.; Liu, J.; Li, Y.; Gai, J.; Li, Y. Genome-Wide Characterization of the Aldehyde Dehydrogenase Gene Superfamily in Soybean and Its Potential Role in Drought Stress Response. BMC Genom. 2017, 18, 518. [Google Scholar] [CrossRef]
- Rejeb, I.B.; Pastor, V.; Mauch-Mani, B. Plant Responses to Simultaneous Biotic and Abiotic Stress: Molecular Mechanisms. Plants 2014, 3, 458–475. [Google Scholar] [CrossRef]
- Tian, F.-X.; Zang, J.-L.; Wang, T.; Xie, Y.-L.; Zhang, J.; Hu, J.-J. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs. PLoS ONE 2015, 10, e0124669. [Google Scholar] [CrossRef] [Green Version]
- Kirch, H.-H.; Bartels, D.; Wei, Y.; Schnable, P.S.; Wood, A.J. The ALDH Gene Superfamily of Arabidopsis. Trends Plant Sci. 2004, 9, 371–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, Q.; Bartels, D. Comparative Study of the Aldehyde Dehydrogenase (ALDH) Gene Superfamily in the Glycophyte Arabidopsis thaliana and Eutrema halophytes. Ann. Bot. 2015, 115, 465–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Guo, R.; Li, J.; Singer, S.D.; Zhang, Y.; Yin, X.; Zheng, Y.; Fan, C.; Wang, X. Genome-Wide Identification and Analysis of the Aldehyde Dehydrogenase (ALDH) Gene Superfamily in Apple (Malus × domestica Borkh.). Plant Physiol. Biochem. 2013, 71, 268–282. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, M.; Xu, Z.; Li, L.; Chen, X.; Ma, Y. Characteristics and Expression Patterns of the Aldehyde Dehydrogenase (ALDH) Gene Superfamily of Foxtail Millet (Setaria italica L.). PLoS ONE 2014, 9, e101136. [Google Scholar] [CrossRef]
- Zhou, M.-L.; Zhang, Q.; Zhou, M.; Qi, L.-P.; Yang, X.-B.; Zhang, K.-X.; Pang, J.-F.; Zhu, X.-M.; Shao, J.-R.; Tang, Y.-X.; et al. Aldehyde Dehydrogenase Protein Superfamily in Maize. Funct. Integr. Genom. 2012, 12, 683–691. [Google Scholar] [CrossRef]
- He, D.; Lei, Z.; Xing, H.; Tang, B. Genome-Wide Identification and Analysis of the Aldehyde Dehydrogenase (ALDH) Gene Superfamily of Gossypium raimondii. Gene 2014, 549, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Mao, L.; Wang, H.; Brocker, C.; Yin, X.; Vasiliou, V.; Fei, Z.; Wang, X. Genome-Wide Identification and Analysis of Grape Aldehyde Dehydrogenase (ALDH) Gene Superfamily. PLoS ONE 2012, 7, e32153. [Google Scholar] [CrossRef] [Green Version]
- Parween, S.; Nawaz, K.; Roy, R.; Pole, A.K.; Venkata Suresh, B.; Misra, G.; Jain, M.; Yadav, G.; Parida, S.K.; Tyagi, A.K.; et al. An Advanced Draft Genome Assembly of a Desi Type Chickpea (Cicer arietinum L.). Sci. Rep. 2015, 5, 12806. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Nawaz, K.; Parween, S.; Roy, R.; Sahu, K.; Kumar Pole, A.; Khandal, H.; Srivastava, R.; Kumar Parida, S.; Chattopadhyay, D. Draft Genome Sequence of Cicer reticulatum L.; the Wild Progenitor of Chickpea Provides a Resource for Agronomic Trait Improvement. DNA Res. 2017, 24, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, X.; Ren, J.; Ye, X.; Liu, M.; Li, Q.; Wang, L.; Liu, Z. Genome-Wide Identification and Analysis of the Aldehyde Dehydrogenase Gene Superfamily in Chinese Cabbage (Brassica rapa L. ssp. pekinensis). Can. J. Plant Sci. 2019, 99, 420–436. [Google Scholar] [CrossRef]
- Stiti, N.; Missihoun, T.D.; Kotchoni, S.O.; Kirch, H.-H.; Bartels, D. Aldehyde Dehydrogenases in Arabidopsis Thaliana: Biochemical Requirements, Metabolic Pathways, and Functional Analysis. Front. Plant Sci. 2011, 2, 65. [Google Scholar] [CrossRef] [Green Version]
- Kotchoni, S.O.; Kuhns, C.; Ditzer, A.; Kirch, H.-H.; Bartels, D. Over-Expression of Different Aldehyde Dehydrogenase Genes in Arabidopsis Thaliana Confers Tolerance to Abiotic Stress and Protects Plants against Lipid Peroxidation and Oxidative Stress. Plant Cell Environ. 2006, 29, 1033–1048. [Google Scholar] [CrossRef] [PubMed]
- Missihoun, T.D.; Schmitz, J.; Klug, R.; Kirch, H.-H.; Bartels, D. Betaine Aldehyde Dehydrogenase Genes from Arabidopsis with Different Sub-Cellular Localization Affect Stress Responses. Planta 2011, 233, 369–382. [Google Scholar] [CrossRef] [PubMed]
- Cannon, S.B.; Mitra, A.; Baumgarten, A.; Young, N.D.; May, G. The Roles of Segmental and Tandem Gene Duplication in the Evolution of Large Gene Families in Arabidopsis thaliana. BMC Plant Biol. 2004, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- EST, National Library of Medicine (US), National Center for Biotechnology Information. 2019. Available online: https://www.ncbi.nlm.nih.gov/est/ (accessed on 10 April 2019).
- Zhang, C.-R.; Huang, X.-L.; Wu, J.-Y.; Feng, B.-H.; Chen, Y.-F. Identification of Thidiazuron-Induced ESTs Expressed Differentially during Callus Differentiation of Alfalfa (Medicago sativa). Physiol. Plant. 2006, 128, 732–739. [Google Scholar] [CrossRef]
- Dewir, Y.H.; Naidoo, Y.; da Silva, J.A. Thidiazuron-Induced Abnormalities in Plant Tissue Cultures. Plant Cell Rep. 2018, 37, 1451–1470. [Google Scholar] [CrossRef] [PubMed]
- Badhan, S.; Kole, P.; Ball, A.; Mantri, N. RNA sequencing of leaf tissues from two contrasting chickpea genotypes reveals mechanisms for drought tolerance. Plant Physiol. Biochem. 2018, 129, 295–304. [Google Scholar] [CrossRef]
- Castro, P.; Pistón, F.; Madrid, E.; Millán, T.; Gil, J.; Rubio, J. Development of Chickpea Near-Isogenic Lines for Fusarium Wilt. Theor. Appl. Genet. 2010, 121, 1519–1526. [Google Scholar] [CrossRef]
- Sharma, K.D.; Muehlbauer, F.J. Fusarium Wilt of Chickpea: Physiological Specialization, Genetics of Resistance and Resistance Gene Tagging. Euphytica 2007, 157, 1–14. [Google Scholar] [CrossRef]
- Caballo, C.; Castro, P.; Gil, J.; Millan, T.; Rubio, J.; Die, J.V. Candidate Genes Expression Profiling during Wilting in Chickpea Caused by Fusarium oxysporum f. sp. ciceris Race 5. PLoS ONE 2019, 14, e0224212. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Die, J.V. RefseqR: Common Computational Operations Working with GenBank. Zenodo 2018. [Google Scholar] [CrossRef]
- Almagro Armenteros, J.J.; Sønderby, C.K.; Sønderby, S.K.; Nielsen, H.; Winther, O. DeepLoc: Prediction of Protein Subcellular Localization Using Deep Learning. Bioinformatics 2017, 33, 3387–3395. [Google Scholar] [CrossRef]
- Matsuda, S.; Vert, J.-P.; Saigo, H.; Ueda, N.; Toh, H.; Akutsu, T. A Novel Representation of Protein Sequences for Prediction of Subcellular Location Using Support Vector Machines. Protein Sci. 2005, 14, 2804–2813. [Google Scholar] [CrossRef] [Green Version]
- Emanuelsson, O.; Nielsen, H.; von Heijne, G. ChloroP, a Neural Network-Based Method for Predicting Chloroplast Transit Peptides and Their Cleavage Sites. Protein Sci. 1999, 8, 978–984. [Google Scholar] [CrossRef] [Green Version]
- Claros, M.G.; Vincens, P. Computational Method to Predict Mitochondrially Imported Proteins and Their Targeting Sequences. Eur. J. Biochem. 1996, 241, 779–786. [Google Scholar] [CrossRef]
- Hobohm, U.; Sander, C. A Sequence Property Approach to Searching Protein Databases. J. Mol. Biol. 1995, 251, 390–399. [Google Scholar] [CrossRef] [Green Version]
- Vasiliou, V.; Bairoch, A.; Tipton, K.F.; Nebert, D.W. Eukaryotic Aldehyde Dehydrogenase (ALDH) Genes: Human Polymorphisms, and Recommended Nomenclature Based on Divergent Evolution and Chromosomal Mapping. Pharmacogenetics 1999, 9, 421–434. [Google Scholar] [PubMed]
- Lee, T.-H.; Tang, H.; Wang, X.; Paterson, A.H. PGDD: A Database of Gene and Genome Duplication in Plants. Nucleic Acids Res. 2013, 41, D1152-8. [Google Scholar] [CrossRef]
- Tan, S.; Wu, S. Genome Wide Analysis of Nucleotide-Binding Site Disease Resistance Genes in Brachypodium Distachyon. Comp. Funct. Genom. 2012, 2012, 418208. [Google Scholar] [CrossRef] [Green Version]
- Ameline-Torregrosa, C.; Wang, B.-B.; O’Bleness, M.S.; Deshpande, S.; Zhu, H.; Roe, B.; Young, N.D.; Cannon, S.B. Identification and Characterization of Nucleotide-Binding Site-Leucine-Rich Repeat Genes in the Model Plant Medicago Truncatula. Plant Physiol. 2008, 146, 5–21. [Google Scholar] [CrossRef] [Green Version]
- Darzentas, N. Circoletto: Visualizing Sequence Similarity with Circos. Bioinformatics 2010, 26, 2620–2621. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [Green Version]
- Boratyn, G.M.; Thierry-Mieg, J.; Thierry-Mieg, D.; Busby, B.; Madden, T.L. Magic-BLAST, an Accurate RNA-Seq Aligner for Long and Short Reads. BMC Bioinform. 2019, 20, 405. [Google Scholar] [CrossRef]
- Bhatti, M.A. Effects of Inoculum Density and Temperature on Root Rot and Wilt of Chickpea. Plant Dis. 1992, 76, 50. [Google Scholar] [CrossRef]
- Die, J.V.; Román, B. RNA Quality Assessment: A View from Plant qPCR Studies. J. Exp. Bot. 2012, 63, 6069–6077. [Google Scholar] [CrossRef] [Green Version]
- Schmittgen, T.D.; Livak, K.J. Analyzing Real-Time PCR Data by the Comparative CT Method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Die, J.V.; Obrero, Á.; González-Verdejo, C.I.; Román, B. Characterization of the 3’:5’ Ratio for Reliable Determination of RNA Quality. Anal. Biochem. 2011, 419, 336–338. [Google Scholar] [CrossRef]
- Zuker, M. Mfold Web Server for Nucleic Acid Folding and Hybridization Prediction. Nucleic Acids Res. 2003, 31, 3406–3415. [Google Scholar] [CrossRef] [PubMed]
- Ramakers, C.; Ruijter, J.M.; Deprez, R.H.L.; Moorman, A.F.M. Assumption-Free Analysis of Quantitative Real-Time Polymerase Chain Reaction (PCR) Data. Neurosci. Lett. 2003, 339, 62–66. [Google Scholar] [CrossRef]
- Hellemans, J.; Mortier, G.; De Paepe, A.; Speleman, F.; Vandesompele, J. QBase Relative Quantification Framework and Software for Management and Automated Analysis of Real-Time Quantitative PCR Data. Genome Biol. 2007, 8, R19. [Google Scholar] [CrossRef] [Green Version]
- Castro, P.; Román, B.; Rubio, J.; Die, J.V. Selection of Reference Genes for Expression Studies in Cicer arietinum L.: Analysis of Cyp81E3 Gene Expression against Ascochyta Rabiei. Mol. Breed. 2012, 29, 261–274. [Google Scholar] [CrossRef] [Green Version]
- Die, J.V.; Gil, J.; Millan, T. Genome-Wide Identification of the Auxin Response Factor Gene Family in Cicer Arietinum. BMC Genom. 2018, 19, 301. [Google Scholar] [CrossRef] [Green Version]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate Normalization of Real-Time Quantitative RT-PCR Data by Geometric Averaging of Multiple Internal Control Genes. Genome Biol. 2002, 3, RESEARCH0034. [Google Scholar] [CrossRef] [Green Version]
Gene ID | Locus ID | Chr | Chr Start | Chr End | Strand | RNA ID | Exons | Protein ID | Protein Length (aa) | Molecular Weight | Isoforms Number | Isoelectric Point |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CaALDH3F1 | LOC101497113 | Ca1 | 11,135,019 | 11,130,555 | - | XM_004486911 | 10 | XP_004486968 | 494 | 54.82 | 1 | 8.10 |
CaALDH22A1 | LOC101512347 | Ca1 | 17,180,053 | 17,171,549 | - | XM_004487701 | 14 | XP_004487758 | 595 | 65.35 | 1 | 6.72 |
CaALDH7A1 | LOC101513733 | Ca1 | 23,039,421 | 23,046,624 | + | XM_012718791 | 15 | XP_012574245 | 508 | 54.09 | 2 | 5.70 |
CaALDH5F1 | LOC101506901 | Ca1 | 37,645,851 | 37,658,363 | + | XM_004488493 | 20 | XP_004488550 | 530 | 56.59 | 1 | 6.58 |
CaALDH18B3 | LOC101499756 | Ca3 | 8,714,224 | 8,700,487 | - | XM_012713409 | 20 | XP_012568863 | 717 | 77.75 | 2 | 5.96 |
CaALDH3H3 | LOC101515558 | Ca4 | 38,313,842 | 38,325,387 | + | XM_004498289 | 10 | XP_004498346 | 488 | 53.06 | 1 | 8.43 |
CaALDH10A8 | LOC101507930 | Ca5 | 39,963,842 | 39,971,506 | + | XM_004501904 | 15 | XP_004501961 | 503 | 54.53 | 1 | 5.37 |
CaALDH3H2 | LOC101510937 | Ca5 | 44,008,221 | 44,002,223 | - | XM_004502425 | 11 | XP_004502482 | 488 | 53.18 | 3 | 7.01 |
CaALDH3H4 | LOC101511680 | Ca5 | 44,024,284 | 44,016,817 | - | XM_004502428 | 10 | XP_004502485 | 486 | 52.99 | 1 | 8.33 |
CaALDH18B2 | LOC101490622 | Ca6 | 1,317,458 | 1,311,762 | - | XM_012716567 | 21 | XP_012572021 | 715 | 77.65 | 1 | 6.62 |
CaALDH2C5 | LOC101493969 | Ca6 | 3,278,797 | 3,283,156 | + | XM_004503375 | 10 | XP_004503432 | 480 | 52.33 | 1 | 6.44 |
CaALDH3H1 | LOC101505038 | Ca6 | 6,829,385 | 6,835,166 | + | XM_004503842 | 12 | XP_004503899 | 542 | 59.76 | 2 | 7.96 |
CaALDH6B2 | LOC101490310 | Ca6 | 15,177,302 | 15,170,648 | - | XM_004504810 | 19 | XP_004504867 | 539 | 57.63 | 1 | 7.08 |
CaALDH18B1 | LOC101512568 | Ca6 | 44,541,903 | 44,527,947 | - | XM_027335197 | 21 | XP_027190998 | 759 | 82.38 | 4 | 6.82 |
CaALDH3F2 | LOC101491914 | Ca6 | 53,416,538 | 53,426,529 | + | XM_004507038 | 10 | XP_004507095 | 488 | 54.56 | 1 | 9.22 |
CaALDH11A3 | LOC101510843 | Ca7 | 1,260,647 | 1,264,733 | + | XM_004507665 | 9 | XP_004507722 | 496 | 52.81 | 1 | 6.53 |
CaALDH12A1 | LOC101490107 | Ca7 | 8,738,308 | 8,744,740 | + | XM_004508712 | 16 | XP_004508769 | 553 | 61.30 | 1 | 6.17 |
CaALDH10A9 | LOC101506136 | Ca7 | 9,155,132 | 9,150,438 | - | XM_004508765 | 14 | XP_004508822 | 503 | 54.40 | 1 | 5.37 |
CaALDH2B4 | LOC101490532 | Ca7 | 9,459,504 | 9,464,830 | + | XM_004508796 | 12 | XP_004508853 | 536 | 58.58 | 3 | 7.57 |
CaALDH3F3 | LOC101511819 | Ca7 | 14,455,263 | 14,450,584 | - | XM_012718277 | 10 | XP_012573731 | 488 | 54.13 | 1 | 7.99 |
CaALDH2B7 | LOC101492709 | Ca7 | 21,404,965 | 21,399,791 | - | XM_004509777 | 11 | XP_004509834 | 539 | 58.04 | 1 | 6.58 |
CaALDH2C6 | LOC101513875 | Ca8 | 14,992,271 | 14,983,690 | - | XM_012719313 | 9 | XP_012574767 | 498 | 44.10 | 1 | 5.55 |
CaALDH2C4 | LOC101514219 | Ca8 | 14,998,332 | 15,002,867 | + | XM_004512910 | 9 | XP_004512967 | 503 | 54.64 | 2 | 6.19 |
CaALDH3H7 | LOC101502106 | Un | 0 | 0 | - | XM_004514027 | 0 | XP_004514084 | 134 | 15.07 | 1 | 9.49 |
CaALDH18B4 | LOC105852801 | Un | 0 | 0 | - | XM_012719507 | 0 | XP_012574961 | 248 | 27.72 | 1 | 4.34 |
CaALDH3H5 | LOC101497514 | Un | 0 | 0 | - | XM_027330984 | 0 | XP_027186785 | 214 | 23.51 | 4 | 9.21 |
CaALDH3H6 | LOC101488602 | Un | 0 | 0 | - | XM_027330333 | 0 | XP_027186134 | 145 | 16.19 | 4 | 9.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carmona-Molero, R.; Jimenez-Lopez, J.C.; Caballo, C.; Gil, J.; Millán, T.; Die, J.V. Aldehyde Dehydrogenase 3 Is an Expanded Gene Family with Potential Adaptive Roles in Chickpea. Plants 2021, 10, 2429. https://doi.org/10.3390/plants10112429
Carmona-Molero R, Jimenez-Lopez JC, Caballo C, Gil J, Millán T, Die JV. Aldehyde Dehydrogenase 3 Is an Expanded Gene Family with Potential Adaptive Roles in Chickpea. Plants. 2021; 10(11):2429. https://doi.org/10.3390/plants10112429
Chicago/Turabian StyleCarmona-Molero, Rocío, Jose C. Jimenez-Lopez, Cristina Caballo, Juan Gil, Teresa Millán, and Jose V. Die. 2021. "Aldehyde Dehydrogenase 3 Is an Expanded Gene Family with Potential Adaptive Roles in Chickpea" Plants 10, no. 11: 2429. https://doi.org/10.3390/plants10112429
APA StyleCarmona-Molero, R., Jimenez-Lopez, J. C., Caballo, C., Gil, J., Millán, T., & Die, J. V. (2021). Aldehyde Dehydrogenase 3 Is an Expanded Gene Family with Potential Adaptive Roles in Chickpea. Plants, 10(11), 2429. https://doi.org/10.3390/plants10112429