Formation of Potential Heterotic Groups of Oat Using Variation at Microsatellite Loci
Abstract
:1. Introduction
2. Results
2.1. Informativeness of SSR Markers
2.2. Genetic Diversity
2.3. Population Structure
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Molecular Analysis
4.3. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bityutskii, N.P.; Loskutov, I.; Yakkonen, K.; Konarev, A.; Shelenga, T.; Khoreva, V.; Blinova, E.; Ryumin, A. Screening of Avena sativa cultivars for iron, zinc, manganese, protein and oil content and fatty acid composition in whole grains. Cereal Res. Commun. 2020, 48, 87–94. [Google Scholar] [CrossRef]
- Peterson, D.M. Oat antioxidants. J. Cereal Sci. 2001, 33, 115–129. [Google Scholar] [CrossRef]
- Havrlentová, M.; Kraic, J. Content of beta-D-glucan in cereal grains. J. Food Nutr. Res. 2006, 45, 97–103. [Google Scholar]
- Redaelli, R.; Del Frate, V.; Bellato, S.; Terracciano, G.; Ciccoritti, R.; Germeier, C.U.; De Stefanis, E.; Sgrulletta, D. Genetic and environmental variability in total and soluble β-glucan in European oat genotypes. J. Cereal Sci. 2013, 57, 193–199. [Google Scholar] [CrossRef]
- Ahmad, M.; Gul-Zaffar Dar, Z.A.; Habib, M. A review of oat (Avena sativa L.) as a dual-purpose crop. Sci. Res. Essays 2014, 9, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Melchinger, A.E. Genetic diversity and heterosis. In The Genetics and Exploitation of Heterosis in Crops; Coors, J.G., Pandey, S., Eds.; American Society of Agronomy Crop Science Society of America: Madison, WI, USA, 1999; pp. 99–118. [Google Scholar]
- Tomkowiak, A.; Bocianowski, J.; Kwiatek, M.; Kowalczewski, P.Ł. Dependence of the heterosis effect on genetic distance, determined using various molecular markers. Open Life Sci. 2020, 15, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, S.; Roy, A.K.; Majumdar, A.B. Genetic diversity and variability analysis in oat (Avena sativa L.). Range Manag. Agrofor. 2011, 32, 96–99. [Google Scholar]
- Krishna, A.; Ahmed, S.; Pandey, H.C.; Kumar, V. Correlation, path and diversity analysis of oat (Avena sativa L.) genotypes for grain and fodder yield. J. Plant Sci. Res. 2014, 1, 110. [Google Scholar]
- O’Donoughue, L.S.; Souza, E.; Tanksley, S.D.; Sorrells, M.E. Relationships among North American oat cultivars based on restriction fragment length polymorphisms. Crop Sci. 1994, 34, 1251–1258. [Google Scholar] [CrossRef]
- Tinker, N.A.; Kilian, A.; Wight, C.P.; Heller-Uszynska, K.; Wenzl, P.; Rines, H.W.; Bjørnstad, Å.; Howarth, C.J.; Jannink, J.-L.; Anderson, J.M.; et al. New DArT markers for oat provide enhanced map coverage and global germplasm characterization. BMC Genom. 2009, 10, 39. [Google Scholar] [CrossRef] [Green Version]
- Boczkowska, M.; Nowosielski, J.; Nowosielska, D.; Podyma, W. Assessing genetic diversity in 23 early Polish oat cultivars based on molecular and morphological studies. Genet. Res. Crop Evol. 2014, 61, 927–941. [Google Scholar] [CrossRef] [Green Version]
- Cömertpay, G.; Habyarimana, E.; Baloch, F.S.; Güngör, H.; Dokuyucu, T.; Akkaya, A.; Dumlupinar, Z. Geographical description and molecular characterization of genetic structure and diversity using 6K SNP array in Turkish oat germplasm. Can. J. Plant Sci. 2019, 99, 12–21. [Google Scholar] [CrossRef]
- Jan, S.F.; Khan, M.R.; Iqbal, A.; Khan, F.U.; Ali, S. Genetic diversity in exotic oat germplasm and resistance against barley yellow dwarf virus. Saudi J. Biol. Sci. 2020, 27, 2622–2631. [Google Scholar] [CrossRef]
- Yan, H.; Zhou, P.; Peng, Y.; Bekele, W.A.; Ren, C.; Tinker, N.A.; Peng, Y. Genetic diversity and genome-wide association analysis in Chinese hulless oat germplasm. Theor. Appl. Genet. 2020, 133, 3365–3380. [Google Scholar] [CrossRef]
- Montilla-Bascón, G.; Sánchez-Martín, J.; Rispail, N.; Mur, L.; Langdon, T.; Griffiths, I.; Howarth, C.; Prats, E. Genetic diversity and population structure among oat cultivars and landraces. Plant Mol. Biol. Rep. 2013, 31, 1305–1314. [Google Scholar] [CrossRef] [Green Version]
- Dumlupinar, Z.; Brown, R.; Campbell, R.; Jellen, E.N.; Anderson, J.; Bonman, J.M.; Carson, M.; Chao, S.; Obert, D.; Jackson, E. The art of attrition: Development of robust oat microsatellites. Plant Breed. 2020, 135, 323–334. [Google Scholar] [CrossRef]
- Leišová-Svobodová, L.; Michel, S.; Tamm, I.; Chourová, M.; Janovska, D.; Grausgruber, H. Diversity and pre-breeding prospects for local adaptation in oat genetic resources. Sustainability 2019, 11, 6950. [Google Scholar] [CrossRef] [Green Version]
- Powell, W.; Morgante, M.; Andre, C.; Hanafey, M.; Vogel, J.; Tingey, S.; Rafalski, A. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol. Breed. 1996, 2, 225–238. [Google Scholar] [CrossRef]
- Milbourne, D.; Meyer, R.; Bradshaw, J.E.; Baird, E.; Bonar, N.; Provan, J.; Powell, W.; Waugh, R. Comparison of PCR-based marker systems for the analysis of genetic relationships in cultivated potato. Mol. Breed. 1997, 3, 127–136. [Google Scholar] [CrossRef]
- Amiryousefi, A.; Hyvönen, J.; Poczai, P. iMEC: Online marker efficiency calculator. Appl. Plant Sci. 2018, 6, e1159. [Google Scholar] [CrossRef]
- Prevost, A.; Wilkinson, M.J. A new system of comparing PCR primers applied to ISSR fingerprint of potato cultivars. Theor. Appl. Genet. 1999, 98, 107–112. [Google Scholar] [CrossRef]
- Tessier, C.J.; David, P.; This, J.; Boursiquot, M.; Charrier, A. Optimization of the choice of molecular markers for varietal identification in Vitis vinifera L. Theor. Appl. Genet. 1999, 98, 171–177. [Google Scholar] [CrossRef]
- Nikoloudakis, N.; Bladenopoulos, K.; Katsiotis, A. Structural patterns and genetic diversity among oat (Avena) landraces assessed by microsatellite markers and morphological analysis. Genet. Res. Crop Evol. 2016, 63, 801–811. [Google Scholar] [CrossRef]
- Kapoor, R.; Choudhary, K. Genetic diversity analysis of fodder oats (Avena sativa L.) germplasm by microsatellite markers. J. Agric. Sci. Technol. 2017, 19, 1369–1379. [Google Scholar]
- Bräutigam, M.; Lindlöf, A.; Zakhrabekova, S.; Gharti-Chhetri, G.; Olsson, B.; Olsson, O. Generation and analysis of 9792 EST sequences from cold acclimated oat, Avena sativa. BMC Plant Biol. 2005, 5, 18. [Google Scholar] [CrossRef]
- Becher, R. EST-derived microsatellites as a rich source of molecular markers for oats. Plant Breed. 2007, 126, 274–278. [Google Scholar] [CrossRef]
- Isabel, L.P.; Park, J.-R.; Lee, G.S.; Park, G.-H.; Kim, K.-M. Development of EST-SSR markers and analysis of genetic relationship it’s resources in hexaploid oats. J. Crop Sci. Biotechnol. 2019, 22, 243–251. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [Green Version]
- Wegary, D.; Teklewold, A.; Prasanna, B.M.; Ertiro, B.T.; Alachiotis, N.; Negera, D.; Awas, G.; Abakemal, D.; Ogugo, V.; Gowda, M.; et al. Molecular diversity and selective sweeps in maize inbred lines adapted to African highlands. Sci. Rep. 2019, 9, 13490. [Google Scholar] [CrossRef] [Green Version]
- Cullingham, C.; Miller, J.; Peery, R.; Dupuis, J.; Malenfant, R.; Gorrell, J.; Janes, J. Confidently identifying the correct K value using the ΔK method: When does K = 2? Mol. Ecol. 2020, 29, 862–869. [Google Scholar] [CrossRef] [PubMed]
- Roncallo, P.F.; Beaufort, V.; Larsen, A.O.; Dreisigacker, S.; Echenique, V. Genetic diversity and linkage disequilibrium using SNP (KASP) and AFLP markers in a worldwide durum wheat (Triticum turgidum L. var durum) collection. PLoS ONE 2019, 14, e0218562. [Google Scholar] [CrossRef] [PubMed]
- Melchinger, A.E.; Gumber, R.K. Overview of Heterosis and Heterotic Groups in Agronomic Crops. In Concepts and Breeding of Heterosis in Crop Plants, 1st ed.; Larnkey, K.R., Staub, J.E., Eds.; Crop Science Society of America: Madison, WI, USA, 1998; pp. 29–44. [Google Scholar]
- Melchinger, A.E. Use of RFLP markers for analysis of genetic relationship among breeding materials and prediction of hybrid performance. In International Crop Science I; Buxton, D.R., Shibles, R., Forsberg, R.A., Blad, B.L., Asay, K.H., Paulsen, G.M., Wilson, R.F., Eds.; Crop Science Society of America: Madison, WI, USA, 1993; pp. 621–628. [Google Scholar]
- Kwon, S.-J.; Ha, W.-G.; Hwang, H.-G.; Yang, S.-J.; Choi, H.-C.; Moon, H.-P.; Ahn, S.-N. Relationship between heterosis and genetic divergence in Tongil-type rice. Plant Breed. 2002, 121, 487–492. [Google Scholar] [CrossRef]
- Tams, S.H.; Bauer, E.; Oettler, G.; Melchinger, A.E.; Schön, C.-C. Prospects for hybrid breeding in winter triticale: II. Relationship between parental genetic distance and specific combining ability. Plant Breed. 2006, 125, 331–336. [Google Scholar] [CrossRef]
- Dermail, A.; Suriharn, B.; Chankaew, S.; Sanitchon, J.; Lertrat, K. Hybrid prediction based on SSR-genetic distance, heterosis and combining ability on agronomic traits and yields in sweet and waxy corn. Sci. Hortic. 2020, 259, 108817. [Google Scholar] [CrossRef]
- Kumar, P.; Sarma, D.; Hazarika, M. Characterization and heterotic grouping of traditional Assam rice (Oryza sativa L.). bioRxiv 2021. [Google Scholar] [CrossRef]
- Xie, F.; He, Z.; Esguerra, M.Q.; Qiu, F.; Ramanathan, V. Determination of heterotic groups for tropical Indica hybrid rice germlasm. Theor. Appl. Genet. 2014, 127, 407–417. [Google Scholar] [CrossRef]
- Geng, X.; Qu, Y.; Jia, Y.; He, S.; Pan, Z.; Wang, L.; Du, X. Assessment of heterosis based on parental genetic distance estimated with SSR and SNP markers in upland cotton (Gossypium hirsutum L.). BMC Genom. 2021, 22, 123. [Google Scholar] [CrossRef]
- Amelework, B.; Abakemal, D.; Shimelis, H.; Laing, M. Application of microsatellites in genetic diversity analysis and heterotic grouping of sorghum and maize. In Microsatellite Markers; Abdurakhmonov, I.Y., Ed.; InTech: Rijeka, Slovenia, 2016; pp. 117–138. [Google Scholar]
- Van Inghelandt, D.; Melchinger, A.E.; Lebreton, C.; Stich, B. Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theor. Appl. Genet. 2010, 120, 1289–1299. [Google Scholar] [CrossRef] [Green Version]
- Fischer, S.; Melchinger, A.E.; Korzun, V.; Wilde, P.; Schmiedchen, B.; Möhring, J.; Piepho, H.-P.; Dhillon, B.S.; Würschum, T.; Reif, J.C. Molecular marker assisted broadening of the Central European heterotic groups in rye with Eastern European germplasm. Theor. Appl. Genet. 2010, 120, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Sommer, L.; Spiller, M.; Stiewe, G.; Pillen, K.; Reif, J.C.; Schulthess, A.W. Proof of concept to unmask the breeding value of genetic resources of barley (Hordeum vulgare) with a hybrid strategy. Plant Breed. 2019, 139, 536–549. [Google Scholar] [CrossRef]
- Al-Ashkar, I.; Alotaibi, M.; Refay, Y.; Ghazy, A.; Zakri, A.; Al-Doss, A. Selection criteria for high-yielding and early-flowering bread wheat hybrids under heat stress. PLoS ONE 2020, 15, e0236351. [Google Scholar] [CrossRef] [PubMed]
- Sruthi, K.; Divya, B.; Senguttuvel, P.; Revathi, P.; Kemparaju, K.B.; Koteswararao, P.; Sundaram, R.M.; Singh, V.J.; Ranjith Kumar, E.; Bhowmick, P.K.; et al. Evaluation of genetic diversity of parental lines for development of heterotic groups in hybrid rice (Oryza sativa L.). J. Plant Biochem. Biotechnol. 2020, 29, 236–252. [Google Scholar] [CrossRef]
- Wang, Y.; Mette, M.F.; Miedaner, T.; Gottwald, M.; Wilde, P.; Reif, J.C.; Zhao, Y. The accuracy of prediction of molecular marker assisted selection and genomic selection in elite hybrid rye populations surpasses the accuracy of marker-assisted selection and is equally augmented by multiple field evaluation locations and test years. BMC Genom. 2014, 15, 556. [Google Scholar] [CrossRef] [Green Version]
- Vendelbo, N.M.; Sarup, P.; Orabi, J.; Kristensen, P.S.; Jahoor, A. Genetic structure of a germplasm for hybrid breeding in rye (Secale cereale L.). PLoS ONE 2020, 15, e0239541. [Google Scholar] [CrossRef]
- Auinger, H.J.; Schönleben, M.; Lehermeier, C.; Schmidt, M.; Korzun, V.; Geiger, H.H.; Piepho, H.-P.; Gordillo, A.; Wilde, P.; Bauer, E.; et al. Model training across multiple breeding cycles significantly improves genomic prediction accuracy in rye (Secale cereale L.). Theor. Appl. Genet. 2016, 129, 2043–2053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dellaporta, S.L.; Wood, J.; Hicks, J.B. A plant DNA minipreparation, version II. Plant Mol. Biol. Rep. 1993, 4, 19–21. [Google Scholar] [CrossRef]
- Bassam, B.J.; Caetano-Anolles, G.; Gresshoff, P.M. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 1991, 196, 80–83. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T. Paleontological Data Analysis; Blackwell Publishing Ltd.: Oxford, UK, 2006; 351p. [Google Scholar]
- Earl, D.A.; vonHoldt, B.M. Structure Harvester: A website and program for visualizing Structure output and implementing the Evanno method. Conserv. Gene. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef]
- Felsenstein, J. PHYLIP—Phylogeny Inference Package (Version 3.2). Cladistics 1989, 5, 164–166. [Google Scholar]
- Li, C.D.; Rossnagel, B.G.; Scoles, G.J. The development of oat microsatellite markers and their use in identifying relationships among Avena species and oat cultivars. Theor. Appl. Genet. 2000, 101, 1259–1268. [Google Scholar] [CrossRef]
- Pal, N.; Sandhu, J.S.; Domier, L.L.; Kolb, F.L. Development and characterization of microsatellite and RFLP-derived PCR markers in oat. Crop Sci. 2002, 42, 912–918. [Google Scholar] [CrossRef]
- Portyanko, V.A.; Hoffman, D.L.; Lee, M.; Holland, J.B. A linkage map of hexaploid oat based on grass anchor DNA clones and its relationship to other oat maps. Genome 2001, 44, 249–265. [Google Scholar] [CrossRef] [PubMed]
Locus | n | H | PIC | E | Havp | MI | D | R |
---|---|---|---|---|---|---|---|---|
AM1 | 10 | 0.3270 | 0.3720 | 2.0588 | 0.0004 | 0.0008 | 0.9578 | 4.1176 |
AM14 | 8 | 0.3779 | 0.3540 | 2.0235 | 0.0006 | 0.0011 | 0.9363 | 2.5176 |
AM22 | 3 | 0.4987 | 0.3011 | 1.5765 | 0.0020 | 0.0031 | 0.7248 | 1.8353 |
AM83 | 2 | 0.5000 | 0.3004 | 1.0000 | 0.0029 | 0.0029 | 0.7515 | 0.1412 |
AM87 | 4 | 0.3750 | 0.3551 | 1.0000 | 0.0011 | 0.0011 | 0.9381 | 0.9882 |
AM102 | 4 | 0.3750 | 0.3551 | 1.0000 | 0.0011 | 0.0011 | 0.9381 | 0.9412 |
AM115 | 4 | 0.4992 | 0.3008 | 2.0824 | 0.0015 | 0.0031 | 0.7297 | 0.2118 |
Mean | 5 | 0.4218 | 0.3341 | 1.5345 | 0.0014 | 0.0019 | 0.8538 | 1.5361 |
White | Yellow | Brown | Naked | |
---|---|---|---|---|
White | - | |||
Yellow | 0.0414 | - | ||
Brown | 0.5260 | 0.1204 | - | |
Naked | 0.0078 | 0.0014 | 0.1103 | - |
Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | Cluster 5 | Cluster 6 | Cluster 7 | |
---|---|---|---|---|---|---|---|
Cluster 1 | - | ||||||
Cluster 2 | 0.228 | - | |||||
Cluster 3 | 0.202 | 0.232 | - | ||||
Cluster 4 | 0.055 | 0.229 | 0.200 | - | |||
Cluster 5 | 0.077 | 0.202 | 0.201 | 0.063 | - | ||
Cluster 6 | 0.111 | 0.263 | 0.178 | 0.111 | 0.081 | - | |
Cluster 7 | 0.188 | 0.245 | 0.274 | 0.210 | 0.147 | 0.179 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Havrlentová, M.; Ondreičková, K.; Hozlár, P.; Gregusová, V.; Mihálik, D.; Kraic, J. Formation of Potential Heterotic Groups of Oat Using Variation at Microsatellite Loci. Plants 2021, 10, 2462. https://doi.org/10.3390/plants10112462
Havrlentová M, Ondreičková K, Hozlár P, Gregusová V, Mihálik D, Kraic J. Formation of Potential Heterotic Groups of Oat Using Variation at Microsatellite Loci. Plants. 2021; 10(11):2462. https://doi.org/10.3390/plants10112462
Chicago/Turabian StyleHavrlentová, Michaela, Katarína Ondreičková, Peter Hozlár, Veronika Gregusová, Daniel Mihálik, and Ján Kraic. 2021. "Formation of Potential Heterotic Groups of Oat Using Variation at Microsatellite Loci" Plants 10, no. 11: 2462. https://doi.org/10.3390/plants10112462
APA StyleHavrlentová, M., Ondreičková, K., Hozlár, P., Gregusová, V., Mihálik, D., & Kraic, J. (2021). Formation of Potential Heterotic Groups of Oat Using Variation at Microsatellite Loci. Plants, 10(11), 2462. https://doi.org/10.3390/plants10112462