Improvement of Growth, Yield, Seed Production and Phytochemical Properties of Satureja khuzistanica Jamzad by Foliar Application of Boron and Zinc
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Field Experiment
2.2. Sampling and Measuring Traits
2.3. Concentration of Zn and B in Leaves
2.4. Seed Germination
2.5. Essential Oil Isolation
2.6. GC-FID Analysis and Carvacrol Measurement
2.7. Extraction Process
2.8. Total Phenolic Content
2.9. Total Flavonoid Content
2.10. Antioxidant Capacity
2.10.1. DPPH Radical Scavenging Assay
2.10.2. Ferric-Reducing Antioxidant Power (FRAP) Assay
2.11. Data Analysis
3. Results
3.1. Biomass and Yield Attributes
3.2. Seed Traits
3.3. B and Zn Concentrations
3.4. Essential Oil Content and Yield and Carvacrol Content
3.5. Total Phenol and Flavonoid Contents
3.6. Antioxidant Capacity
4. Discussion
4.1. Biomass and Yield Attributes
4.2. Seed Traits
4.3. Phytochemical Evaluation and Antioxidant Activity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jamzad, Z. A new species of the genus Satureja (Lamiaceae) from Iran. Iran J. Bot. 1994, 6, 215–218. [Google Scholar]
- Hadian, J.; Akramian, M.; Heydari, H.; Mumivand, H.; Asghari, B. Composition and in vitro antibacterial activity of essential oils from four Satureja species growing in Iran. Nat. Prod. Res. 2011, 26, 98–108. [Google Scholar] [CrossRef]
- Nooshkam, A.; Mumivand, H.; Hadian, J.; Alemardan, A.; Morshedloo, M.R. Drug yield and essential oil and carvacrol contents of two species of Satureja (S. khuzistanica Jamzad and S. rechingeri Jamzad) cultivated in two different locations. J. Appl. Res. Med. Aromat. Plants 2017, 6, 126–130. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, S.; Kaundal, M.; Sharma, S.; Thakur, M. Response of damask rose (Rosa damascena Mill.) to foliar application of magnesium (Mg), copper (Cu) and zinc (Zn) sulphate under western Himalayas. Ind. Crop. Prod. 2016, 83, 596–602. [Google Scholar] [CrossRef]
- Genaidy, E.A.; Abd-Alhamid, N.; Hassan, H.S.; Hassan, A.; Hagagg, L.F. Effect of foliar application of boron trioxide and zinc oxide nanoparticles on leaves chemical composition, yield and fruit quality of Olea europaea L. cv. Picual. Bull. Natl. Res. Cent. 2020, 44, 106. [Google Scholar] [CrossRef]
- Habibi, G. Selenium ameliorates salinity stress in Petroselinum crispum by modulation of photosynthesis and by reducing shoot Na accumulation. Russ. J. Plant Physiol. 2017, 64, 368–374. [Google Scholar] [CrossRef]
- Davarpanah, S.; Tehranifar, A.; Davarynejad, G.; Abadía, J.; Khorasani, R. Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Sci. Hortic. 2016, 210, 57–64. [Google Scholar]
- Alidust, M.; Sedaghathoor, S.; Gheshlaghi, E.A. The effect of foliar application of boron and zinc on qualitative traits of hazelnut cultivars. Plant Physiol. Rep. 2019, 25, 131–139. [Google Scholar] [CrossRef]
- Khalifa, R.K.H.M.; Shaaban, S.H.A.; Rawia, A. Effect of foliar application of zinc sulfate and boric acid on growth, yield and chemical constituents of iris plants. Ozean J. Appl. Sci. 2011, 4, 130–144. [Google Scholar]
- Pinho, L.G.D.R.; Monnerat, P.H.; Pires, A.A.; Freitas, M.S.M.; Marciano, C.R. Diagnosis of Boron Deficiency in Green Dwarf Coconut Palm. Agric. Sci. 2015, 6, 164–174. [Google Scholar] [CrossRef] [Green Version]
- Christensen, L.; Beede, R.; Peacock, W. Fall foliar sprays prevent boron deficiency symptomps in grapes. Calif. Agric. 2006, 60, 100–103. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, W.; Zia, M.H.; Malhi, S.S.; Niaz, A.; Ullah, S. Boron deficiency in soils and crops: A Review. Crop. Plant. Intech. 2012, 2012, 77–114. [Google Scholar]
- Zheng, Y.; Wu, J.; Peng, X.; Zhang, Y. Field-grown Moringa oleifera response to boron fertilization: Yield component, chemical composition of seed-oil and physiology. Ind. Crop. Prod. 2019, 138, 111449. [Google Scholar] [CrossRef]
- Liu, G.; Dong, X.; Liu, L.; Wu, L.; Peng, S.; Jiang, C. Metabolic profiling reveals altered pattern of central metabolism in navel orange plants as a result of boron deficiency. Physiol. Plant. 2014, 153, 513–524. [Google Scholar] [CrossRef]
- Erdal, I.; Kepenek, K.; Kizilgoz, I. Effect of foliar iron applications at different growth stages on iron and some nutrient concentrations in strawberry cultivars. Turk. J. Agric. For. 2004, 28, 421–427. [Google Scholar]
- Singh, P.; Dwivedi, P. Micronutrients zinc and boron enhance stevioside content in Stevia rebaudiana plants while maintaining genetic fidelity. Ind. Crop. Prod. 2019, 140, 111646. [Google Scholar] [CrossRef]
- Jahani, F.; Tohidi-Moghadam, H.R.; Larijani, H.R.; Ghooshchi, F.; Oveysi, M. Influence of zinc and salicylic acid foliar application on total chlorophyll, phenolic components, yield and essential oil composition of peppermint (Mentha piperita L.) under drought stress condition. Arab. J. Geosci. 2021, 14, 1–12. [Google Scholar] [CrossRef]
- Akhtar, N.; Sarker, M.A.M.; Akhter, H.; Nadda, M.K. Effect of planting time and micronutrient as zinc chloride on the growth, yield and oil content of Mentha piperita. Bangladesh J. Sci. Ind. Res. 2009, 44, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Nahed, G.A.; Balbaa, L.K. Influence of tyrosine and zinc on growth, flowering and chemical constituents of Salvia farinacea. J. Appl. Sci. Res. 2007, 3, 1479–1489. [Google Scholar]
- Raghav, D.K.; Singh, R.K.; Saha, P.B. Effect of sulphur and boron application on uptake and yield of linseed under rainfed conditions. Int. Q. J. Environ. Sci. 2016, IX, 737–741. [Google Scholar]
- Mei, Y.A.N.G.; Lei, S.H.I.; Fang-Sen, X.U.; Jian-Wei, L.U.; Yun-Hua, W.A.N.G. Effects of B, Mo, Zn, and their interactions on seed yield of rapeseed (Brassica napus L.). Pedosphere 2009, 19, 53–59. [Google Scholar]
- Sultana, N. Influence of Foliar Application of Zinc and Boron on the Growth and Yield of Lentil. Doctoral Dissertation, Department of Agronomy Sher-e-Bangla Agricultural University, Dhaka, Bangladesh, 2018; pp. 9144270–9144279. [Google Scholar]
- Aboyeji, C.; Dunsin, O.; Adekiya, A.O.; Chinedum, C.; Suleiman, K.O.; Okunlola, F.O.; Aremu, C.O.; Owolabi, I.; Olofintoye, T.A.J. Zinc Sulphate and Boron-Based Foliar Fertilizer Effect on Growth, Yield, Minerals, and Heavy Metal Composition of Groundnut (Arachis hypogaea L.) Grown on an Alfisol. Int. J. Agron. 2019, 2019, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Gao, M.; Chen, Y.; Wu, L.; Wang, Y. Changes in the Profiles of Yield, Yield Component, Oil Content, and Citral Content in Litsea cubeba (Lour.) Persoon Following Foliar Fertilization with Zinc and Boron. Forests 2019, 10, 59. [Google Scholar] [CrossRef] [Green Version]
- Mumivand, H.; Aghemiri, A.; Aghemiri, A.; Morshedloo, M.R.; Nikoumanesh, K. Ferulago angulata and Tetrataenium lasiopetalum: Essential oils composition and antibacterial activity of the oils and extracts. Biocatal. Agric. Biotechnol. 2019, 22, 101407. [Google Scholar] [CrossRef]
- Taheri-Garavand, A.; Mumivand, H.; Fatahi, S.; Nasiri, A.; Omid, M. Modeling the kinetics of essential oil content and main constituents of mint (Mentha aquatica L) leaves during thin-layer drying process using response surface methodology. J. Food Process. Preserv. 2021, 45, e15515. [Google Scholar] [CrossRef]
- Mumivand, H.; Babalar, M.; Tabrizi, L.; Craker, L.E.; Shokrpour, M.; Hadian, J. Antioxidant properties and principal phenolic phytochemicals of Iranian tarragon (Artemisia dracunculus L.) accessions. Hortic. Environ. Biotechnol. 2017, 58, 414–422. [Google Scholar] [CrossRef]
- Mumivand, H.; Babalar, M.; Hadian, J.; Tabatabaei, S.M.F. Influence of nitrogen and calcium carbonate application rates on the minerals content of summer savory (Satureja hortensis L.) leaves. Hortic. Environ. Biotechnol. 2010, 51, 173–177. [Google Scholar]
- AOAC. Metals in plants. In Official Methods of Analysis; Helrich, K., Ed.; AOAC Inc.: Arlington, VA, USA, 1990; p. 42. [Google Scholar]
- Bewley, J.D. Seed Germination and Dormancy. Plant Cell 1997, 9, 1055–1066. [Google Scholar] [CrossRef] [Green Version]
- Mumivand, H.; Shayganfar, A.; Hasanvand, F.; Maggi, F.; Alizadeh, A.; Darvishnia, M. Antimicrobial Activity and Chemical Composition of Essential Oil from Thymus daenensis and Thymus fedtschenkoi During Phenological Stages. J. Essent. Oil Bear. Plants 2021, 24, 469–479. [Google Scholar] [CrossRef]
- Mumivand, H.; Ebrahimi, A.; Morshedloo, M.R.; Shayganfar, A. Water deficit stress changes in drug yield, antioxidant enzymes activity and essential oil quality and quantity of Tarragon (Artemisia dracunculus L.). Ind. Crop. Prod. 2021, 164, 113381. [Google Scholar] [CrossRef]
- Garcia-Salas, P.; Morales-Soto, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules 2010, 15, 8813–8826. [Google Scholar] [CrossRef]
- Spanos, G.A.; Wrolstad, R.E. Influence of processing and storage on the phenolic composition of thompson seedless grape juice. J. Agric. Food Chem. 1990, 38, 1565–1571. [Google Scholar] [CrossRef]
- Quettier-Deleu, C.; Gressier, B.; Vasseur, J.; Dine, T.; Brunet, C.; Luyckx, M.; Cazin, M.; Cazin, J.-C.; Bailleul, F.; Trotin, F. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J. Ethnopharmacol. 2000, 72, 35–42. [Google Scholar] [CrossRef]
- Choi, C.W.; Kim, S.C.; Hwang, S.S.; Choi, B.K.; Ahn, H.J.; Lee, M.Y.; Park, S.H.; Kim, S.K. Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Sci. 2002, 163, 1161–1168. [Google Scholar] [CrossRef]
- Benzie, I.; Strain, J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.U.; Aamer, M.; Chattha, M.U.; Haiying, T.; Shahzad, B.; Barbanti, L.; Nawaz, M.; Rasheed, A.; Afzal, A.; Liu, Y.; et al. The Critical Role of Zinc in Plants Facing the Drought Stress. Agriculture 2020, 10, 396. [Google Scholar] [CrossRef]
- Wasaya, A.; Shabir, M.S.; Hussain, M.; Ansar, M.; Aziz, A.; Hassan, W.; Ahmad, I. Foliar application of Zinc and Boron improved the productivity and net returns of maize grown under rainfed conditions of Pothwar plateau. J. Soil Sci. Plant Nutr. 2017, 17, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Chattha, M.U.; Hassan, M.U.; Khan, I.; Mahmood, A.; Nawaz, M.; Subhani, M.N.; Kharal, M.; Khan, S. Biofortification of Wheat Cultivars to Combat Zinc Deficiency. Front. Plant Sci. 2017, 8, 281. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.U.; Chattha, M.U.; Ullah, A.; Khan, I.; Qadeer, A.; Aamer, M.; Khan, A.U.; Nadeem, F.; Khan, T.A. Agronomic biofortification to improve productivity and grain zn concentration of bread wheat. Int. J. Agric. Biol. 2019, 21, 615–620. [Google Scholar]
- Misra, A.; Srivastava, A.K.; Srivastava, N.K.; Khan, A. Zn-acquisition and its role in growth, photosynthesis, photosynthetic pigments and biochemical changes in essential monoterpene oil(s) of Pelargonium graveolens. Photosynthetica 2005, 43, 153–155. [Google Scholar] [CrossRef]
- Mohammed, A.K.A.M.S.; Abdulhadi, M.D. Effect of zinc sulphate and ascorbic acid on growth and flowering of Petunia hybrida cv. ‘Night sky’. Indian J. Ecol. 2021, 13, 120–123. [Google Scholar]
- Rahman, H.; Sattar, A.; Ali, R.; Trina, T.N.; Sarker, M.H. Effects of the Selected Combination of Boron and Zinc in Presence of Different Doses of NPK Fertilizers on Yield and Quality of Okra Seed. Am. J. Biol. Environ. Stat. 2021, 7, 19. [Google Scholar] [CrossRef]
- Ravikumar, C.; Karthikeyan, A.; Senthilvalavan, P.; Manivannan, R. Effect of sulphur, zinc and boron on the growth and yield enhancement of sunflower (Helianthus annuus L.). J. Appl. Nat. Sci. 2021, 13, 295–300. [Google Scholar] [CrossRef]
- Eggert, K.; von Wirén, N. Response of the plant hormone network to boron deficiency. N. Phytol. 2017, 216, 868–881. [Google Scholar] [CrossRef] [Green Version]
- Al-Tameemi, A.J.; Al-Juboori, A.W. Effect of levels and frequency of nitrogen application and the foliar spraying of boron on growth and yield of red cabbage. Int. J. Agricult. Stat. Sci. 2020, 16, 1667–1671. [Google Scholar]
- Rehman, A.; Farooq, M.; Naveed, M.; Nawaz, A.; Shahzad, B. Seed priming of Zn with endophytic bacteria improves the productivity and grain biofortification of bread wheat. Eur. J. Agron. 2018, 94, 98–107. [Google Scholar] [CrossRef]
- Meena, R.; Jat, G.; Jain, D. Impact of foliar application of different nano-fertilizers on soil microbial properties and yield of wheat. J. Environ. Biol. 2021, 42, 302–308. [Google Scholar] [CrossRef]
- Farooq, M.; Darwish Almamari, S.A.; Rehman, A.; Al-Busaidi, W.M.; Wahid, A.; Al-Ghamdi, S.S. Morphological, physiological and biochemical aspects of zinc seed priming-induced drought tolerance in faba bean. Sci. Hortic. 2021, 281, 109894. [Google Scholar] [CrossRef]
- Azeem, M.; Shoujun, Y.; Qasim, M.; Abbasi, M.W.; Ahmed, N.; Hanif, T.; Adnan, M.Y.; Ahmad, R.; Dong, R. Foliar enrichment of potassium and boron overcomes salinity barriers to improve growth and yield potential of cotton (Gossypium hirsutum L.). J. Plant Nutr. 2021, 44, 438–454. [Google Scholar] [CrossRef]
- Zhu, H.; Bañuelos, G. Influence of salinity and boron on germination, seedling growth and transplanting mortality of guayule: A combined growth chamber and greenhouse study. Ind. Crop. Prod. 2016, 92, 236–243. [Google Scholar] [CrossRef]
- Pandey, N.; Gupta, B. The impact of foliar boron sprays on reproductive biology and seed quality of black gram. J. Trace Elem. Med. Biol. 2013, 27, 58–64. [Google Scholar] [CrossRef]
- Gowhar, A.D. Impact of boron nutrition in fruit crops. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 4145–4155. [Google Scholar]
- Dayem, A.A.; Hossain, M.K.; Bin Lee, S.; Kim, K.; Saha, S.K.; Yang, G.-M.; Choi, H.Y.; Cho, S.-G. The Role of Reactive Oxygen Species (ROS) in the Biological Activities of Metallic Nanoparticles. Int. J. Mol. Sci. 2017, 18, 120. [Google Scholar] [CrossRef] [Green Version]
- Marreiro, D.D.N.; Cruz, K.J.C.; Morais, J.B.S.; Beserra, J.B.; Severo, J.S.; De Oliveira, A.R.S. Zinc and Oxidative Stress: Current Mechanisms. Antioxidants 2017, 6, 24. [Google Scholar] [CrossRef]
- López-Morales, D.; De La Cruz-Lázaro, E.; Sánchez-Chávez, E.; Preciado-Rangel, P.; Márquez-Quiroz, C.; Osorio-Osorio, R. Impact of Agronomic Biofortification with Zinc on the Nutrient Content, Bioactive Compounds, and Antioxidant Capacity of Cowpea Bean (Vigna unguiculata L. Walpers). Agronomy 2020, 10, 1460. [Google Scholar] [CrossRef]
- Said-Al Ahl, H.A.H.; Mahmoud, A.A. Effect of zinc and/or iron foliar application on growth and essential oil of sweet basil (Ocimum basilicum L.) Under salt stress. Ozean J. Appl. Sci. 2010, 3, 97–111. [Google Scholar]
- Shahhoseini, R.; Azizi, M.; Asili, J.; Moshtaghi, N.; Samiei, L. Effects of zinc oxide nanoelicitors on yield, secondary metabolites, zinc and iron absorption of feverfew (Tanacetum parthenium L. Schultz bip.). Acta Physiol. Plant. 2020, 42, 52. [Google Scholar] [CrossRef]
- Thurzó, S.; Szabó, Z.; Nyéki, J.; Nagy, P.T.; Silva, A.P.; Gonçalves, B. Effect of boron and calcium sprays on photosynthetic pigments, total phenols and flavonoid content of sweet cherry (Prunus avium L.). Miner. Nutr. Fruit Crops. Acta Hort. 2010, 868, 457–462. [Google Scholar] [CrossRef]
- Meriño-Gergichevich, C.; Morina, F.; Jorquera-Fontena, E.; Seguel, A. Differential Tolerance and Phenolic Leaf Profile in Response to Boron Supply in Two Highbush Blueberry Genotypes. J. Soil Sci. Plant Nutr. 2020, 20, 610–620. [Google Scholar] [CrossRef]
- Wojcik, P.; Wojcik, M. Effect of Boron Fertilization on Sweet Cherry Tree Yield and Fruit Quality. J. Plant Nutr. 2006, 29, 1755–1766. [Google Scholar] [CrossRef]
- Tavallali, V.; Karimi, S.; Espargham, O. Boron Enhances Antioxidative Defense in the Leaves of Salt-affected Pistacia vera Seedlings. Hortic. J. 2018, 87, 55–62. [Google Scholar] [CrossRef]
- Sarafi, E.; Siomos, A.; Tsouvaltzis, P.; Chatzissavvidis, C.; Therios, I. Boron and maturity effects on biochemical parameters and antioxidant activity of pepper (Capsicum annuum L.) cultivars. Turk. J. Agric. For. 2018, 42, 237–247. [Google Scholar] [CrossRef]
- Sugier, D.; Sugier, P.; Kowalski, R.; Kolodziej, B.; Olesińska, K. Foliar boron fertilization as factor affecting the essential oil content and yield of oil components from flower heads of Arnica montana L. and Arnica chamissonis Less. cultivated for industry. Ind. Crop. Prod. 2017, 109, 587–597. [Google Scholar] [CrossRef]
- Choudhary, S.; Zehra, A.; Naeem, M.; Khan, M.M.A.; Aftab, T. Effects of boron toxicity on growth, oxidative damage, antioxidant enzymes and essential oil fingerprinting in Mentha arvensis and Cymbopogon flexuosus. Chem. Biol. Technol. Agric. 2020, 7, 1–11. [Google Scholar] [CrossRef]
No | Soil Properties | Unit | No | Soil Properties | Unit |
---|---|---|---|---|---|
1 | Total nitrogen (%) | 0.23 | 9 | Organic carbon (%) | 1.17 |
2 | Available potassium (mg·kg−1) | 277 | 10 | Available phosphorus (mg·kg−1) | 6.6 |
3 | pH | 7.7 | 11 | EC (ds/m) | 2.03 |
4 | Iron (mg·kg−1) | 1.71 | 12 | Sand (%) | 18.6 |
5 | Magnesium (mg·kg−1) | 99.4 | 13 | Clay (%) | 29.2 |
6 | Zinc (mg·kg−1) | 0.83 | 14 | Silt (%) | 44.2 |
7 | Copper (mg·kg−1) | 0.41 | 15 | Calcium carbonate (%) | 10.8 |
8 | Boron (mg·kg−1) | 0.41 |
Treatments | Number of Sub-Branches | Plant Fresh Weight (g·Plant−1) | Plant Dry Weight (g·Plant−1) | Stem Dry Weight (g·Plant−1) | Drug Yield (g·Plant−1) | Leaf/Stem | |
---|---|---|---|---|---|---|---|
Zinc | Control (0) | 35.60 b | 139.66 b | 58.59 b | 24.50 a | 34.09 b | 1.38 a |
0.3 % | 40.86 a | 143.41 b | 61.63 a | 25.36 a | 35.49 b | 1.40 a | |
0.6 % | 42.19 a | 151.72 a | 64.54 a | 26.28 a | 37.80 a | 1.45 a | |
Boron | Control (0) | 40.57 a | 125.24 c | 54.42 c | 24.04 b | 30.37 c | 1.27 b |
0.4 % | 38.27 a | 148.66 b | 61.82 b | 24.74 b | 36.52 b | 1.48 a | |
0.8 % | 39.81 a | 160.88 a | 68.52 a | 27.36 a | 40.49 a | 1.48 a |
Treatments | Plant Height (cm) | Canopy Diameter (cm) | Number of Main Branches | Number of Sub-Branches | Plant Fresh Weight (g·Plant−1) | Plant Dry Weight (g·Plant−1) | Stem Dry Weight (g·Plant−1) | Drug Yield (g·Plant−1) | |
---|---|---|---|---|---|---|---|---|---|
Zinc | Control (0) | 51.44 b | 57.91 a | 13.38 b | 52.61 a | 246.68 b | 109.16 b | 45.10 b | 64.05 b |
0.3 % | 53.22 ab | 68.61 a | 17.11 b | 63.56 a | 296.54 b | 123.89 b | 46.76 b | 77.12 ab | |
0.6 % | 55.67 a | 69.13 a | 22.50 a | 62.67 a | 363.34 a | 157.82 a | 65.20 a | 92.61 a | |
Boron | Control (0) | 50.11 b | 52.05 b | 14.33 b | 40.50 b | 231.29 b | 96.43 b | 31.53 c | 64.89 b |
0.4 % | 54.39 a | 70.83 a | 17.22 ab | 63.89 a | 306.86 a | 138.81 a | 55.54 b | 83.27 a | |
0.8 % | 55.83 a | 72.77 a | 21.44 a | 74.44 a | 368.41 a | 155.62 a | 70.00 a | 85.62 a |
Treatments | Seed Yield (g·m−2) | Seed Germination (%) | 1000-Seed Weight (g) | Seed Emptiness (%) | Boron Concentration (mg·kg−1) | Zinc Concentration (mg·kg−1) | |
---|---|---|---|---|---|---|---|
Zinc | Control (0) | 0.129 c | 60.05 b | 1.58 b | 22.70 a | 13.94 a | 15.09 c |
0.3 % | 0.144 b | 64.21 a | 1.73 a | 23.11 a | 14.35 a | 19.85 b | |
0.6 % | 0.155 a | 67.01 a | 1.79 a | 21.81 a | 14.11 a | 25.22 a | |
Boron | Control (0) | 0.124 c | 57.14 c | 1.50 c | 23.93 a | 9.84 c | 19.61 a |
0.4 % | 0.138 b | 62.87 b | 1.74 b | 23.16 ab | 13.37 b | 20.77 a | |
0.8 % | 0.165 a | 71.26 a | 1.86 a | 20.54 b | 19.19 a | 19.78 a |
Treatments | Seed Yield (g·m−2) | Seed Germination (%) | 1000-Seed Weight (g) | Seed Emptiness (%) | Boron Concentration (mg·kg−1) | Zinc Concentration (mg·kg−1) | |
---|---|---|---|---|---|---|---|
Zinc | Control (0) | 0.735 c | 65.04 b | 1.78 b | 21.42 a | 14.94 a | 16.98 c |
0.3 % | 0.789 b | 70.10 a | 1.93 a | 21.7 a | 15.24 a | 22.19 b | |
0.6 % | 0.845 a | 72.01 a | 1.99 a | 20.08 a | 14.89 a | 27.55 a | |
Boron | Control (0) | 0.727 c | 62.14 c | 1.70 c | 23.33 a | 10.62 c | 21.94 a |
0.4 % | 0.788 b | 68.08 b | 1.94 b | 21.80 a | 14.48 b | 23.11 a | |
0.8 % | 0.854 a | 76.92 a | 2.06 a | 18.11 b | 19.96 a | 21.67 a |
Treatments | Essential Oil Content (%) | Essential Oil Yield (g·m−2) | Carvacrol (%) | Total Phenol (mg GAE·g−1 Dry Weight) | FRAP Assay (μmol Fe+2·g−1 Dry Weight) | DPPH Assay (IC50 mg·mL−1) | |
---|---|---|---|---|---|---|---|
Zinc | Control (0) | 2.05 c | 3.52 c | 87.38 a | 51.77 b | 634.98 b | 0.088 a |
0.3 % | 2.32 b | 4.16 b | 90.28 a | 52.61 b | 696.32 a | 0.085 a | |
0.6 % | 2.65 a | 5.05 a | 88.79 a | 58.12 a | 731.25 a | 0.072 b | |
Boron | Control (0) | 2.15 c | 3.29 c | 86.52 b | 46.03 c | 651.14 b | 0.095 a |
0.4 % | 2.31 b | 4.24 b | 88.60 b | 54.65 b | 668.60 b | 0.077 b | |
0.8 % | 2.55 a | 5.20 a | 91.83 a | 61.80 a | 742.81 a | 0.073 b |
Treatments | Essential Oil Content (%) | Essential Oil Yield (g·m−2) | Total Phenol (mg GAE·g−1 Dry Weight) | Total Flavonoid (mg RE·g−1 Dry Weight) | FRAP Assay (μmol Fe+2·g−1 Dry Weight) | DPPH Assay (IC50 mg·mL−1) | |
---|---|---|---|---|---|---|---|
Zinc | Control (0) | 2.18 c | 7.08 b | 57.70 a | 31.45 a | 744.19 b | 0.078 a |
0.3 % | 2.48 b | 9.62 b | 60.98 a | 32.13 a | 772.66 b | 0.076 ab | |
0.6 % | 2.84 a | 13.31 a | 64.22 a | 30.68 a | 820.14 a | 0.068 b | |
Boron | Control (0) | 2.27 c | 7.56 b | 53.14 b | 27.58 b | 736.69 b | 0.087 a |
0.4 % | 2.47 b | 10.49 ab | 61.97 a | 32.78 a | 768.60 b | 0.070 b | |
0.8 % | 2.76 a | 11.97 a | 67.77 a | 33.90 a | 831.70 a | 0.066 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mumivand, H.; Khanizadeh, P.; Morshedloo, M.R.; Sierka, E.; Żuk-Gołaszewska, K.; Horaczek, T.; Kalaji, H.M. Improvement of Growth, Yield, Seed Production and Phytochemical Properties of Satureja khuzistanica Jamzad by Foliar Application of Boron and Zinc. Plants 2021, 10, 2469. https://doi.org/10.3390/plants10112469
Mumivand H, Khanizadeh P, Morshedloo MR, Sierka E, Żuk-Gołaszewska K, Horaczek T, Kalaji HM. Improvement of Growth, Yield, Seed Production and Phytochemical Properties of Satureja khuzistanica Jamzad by Foliar Application of Boron and Zinc. Plants. 2021; 10(11):2469. https://doi.org/10.3390/plants10112469
Chicago/Turabian StyleMumivand, Hasan, Parisa Khanizadeh, Mohammad Reza Morshedloo, Edyta Sierka, Krystyna Żuk-Gołaszewska, Tomasz Horaczek, and Hazem M. Kalaji. 2021. "Improvement of Growth, Yield, Seed Production and Phytochemical Properties of Satureja khuzistanica Jamzad by Foliar Application of Boron and Zinc" Plants 10, no. 11: 2469. https://doi.org/10.3390/plants10112469
APA StyleMumivand, H., Khanizadeh, P., Morshedloo, M. R., Sierka, E., Żuk-Gołaszewska, K., Horaczek, T., & Kalaji, H. M. (2021). Improvement of Growth, Yield, Seed Production and Phytochemical Properties of Satureja khuzistanica Jamzad by Foliar Application of Boron and Zinc. Plants, 10(11), 2469. https://doi.org/10.3390/plants10112469