Coco Peat as Agricultural Waste Sorbent for Sustainable Diesel-Filter System
Abstract
:1. Introduction
2. Results and Discussion
2.1. Screening of Different Types of CP Sorbent Materials
2.2. Characterisation of Biosorbent
2.2.1. FTIR Spectrum Analysis of CP
2.2.2. Surface Morphology Analysis
2.3. Optimisation of Diesel–Seawater Sorption Conditions via OFAT
2.3.1. Effects of Heat Treatment
2.3.2. Effects of Heating Time
2.3.3. Effects of Packing Density in the Filter Spacer Column
2.3.4. Effects of Diesel Concentration
2.4. Statistical Approach via Response Surface Methodology
2.4.1. Plackett Burman Design
2.4.2. Central Composite Design (CCD)
2.5. Model Validation and Performance Analysis
3. Materials and Methods
3.1. Materials
3.2. Laboratory Scale Set-Up and Sorbent Selection
3.3. Sorbent Characterisation
3.3.1. Fourier Transform Infrared Spectroscopy (FTIR) Measurement
3.3.2. Morphological Analysis
3.4. Statistical Optimisation
3.4.1. Evaluation of Optimal Effects on the Efficiency of Diesel–Seawater Sorption Using OFAT
3.4.2. Plackett–Burman (PB) Design
3.4.3. Central Composite Design (CCD)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choi, H.M.; Cloud, R.M. Natural sorbents in oil spill cleanup. Environ. Sci. Technol. 1992, 26, 772–776. [Google Scholar] [CrossRef]
- Olga, V.R.; Darina, V.I.; Alexandr, A.I.; Alexandra, A. Cleanup of water surface from oil spills using natural sorbent materials. Procedia Chem. 2014, 10, 145–150. [Google Scholar] [CrossRef] [Green Version]
- Yati, I.; Aydin, G.O.; Sonmez, H.B. Cross-linked poly (tetrahydrofuran) as promising sorbent for organic solvent/oil spill. J. Hazard. Mater. 2016, 309, 210–218. [Google Scholar] [CrossRef]
- Abdelwahab, O. Assessment of raw luffa as a natural hollow oleophilic fibrous sorbent for oil spill cleanup. Alex. Eng. J. 2014, 53, 213–218. [Google Scholar] [CrossRef] [Green Version]
- El-Din, G.A.; Amer, A.; Malsh, G.; Hussein, M. Study on the use of banana peels for oil spill removal. Alex. Eng. J. 2018, 57, 2061–2068. [Google Scholar] [CrossRef]
- Angelova, D.; Uzunov, I.; Uzunova, S.; Gigova, A.; Minchev, L. Kinetics of oil and oil products adsorption by carbonized rice husks. Chem. Eng. J. 2011, 172, 306–311. [Google Scholar] [CrossRef]
- Bayat, A.; Aghamiri, S.F.; Moheb, A.; Vakili-Nezhaad, G.R. Oil spill cleanup from sea water by sorbent materials. Chem. Eng. Technol. 2005, 28, 1525–1528. [Google Scholar] [CrossRef]
- Onwuka, J.C.; Agbaji, E.B.; Ajibola, V.O.; Okibe, F.G. Kinetic studies of surface modification of lignocellulosic Delonix regia pods as sorbent for crude oil spill in water. J. Appl. Res. Technol. 2016, 14, 415–424. [Google Scholar] [CrossRef]
- Paulauskienė, T.; Jucikė, I. Aquatic oil spill cleanup using natural sorbents. Environ. Sci. Pollut. Res. 2015, 22, 14874–14881. [Google Scholar] [CrossRef] [PubMed]
- Hubbe, M.A.; Beck, K.R.; Gilbert, W.O.; Sharma, Y.C. Dye biosorption: Review. BioResources 2012, 7, 2592–2687. [Google Scholar]
- International Tanker Owners Pollution Federation Limited (ITOPF). Oil Tanker Spill Statistics 2019; International Tanker Owners Pollution Federation Limited (ITOPF): London, UK, 2020. [Google Scholar]
- Khatoon, H.; Rai, J.P.N. Agricultural waste materials as biosorbents for the removal of heavy metals and synthetics dyes. Octa J. Environ. Res. 2016, 4, 208–229. [Google Scholar]
- Ibrahim, S.; Wang, S.; Ang, H.M. Removal of emulsified oil from oily wastewater using agricultural waste barley straw. Biochem. Eng. J. 2010, 49, 78–83. [Google Scholar] [CrossRef]
- Obeng, G.Y.; Amoah, D.Y.; Opoku, R.; Sekyere, C.K.K.; Adjei, E.A.; Mensah, E. Coconut wastes as bioresource for sustainable energy: Quantifying wastes, calorific values and emissions in Ghana. Energies 2020, 13, 2178. [Google Scholar] [CrossRef]
- Abdullah, M.; Rahmah, A.U.; Man, Z. Physicochemical and sorption characteristics of Malaysian Ceiba pentandra (L.) Gaertn. as a natural oil sorbent. J. Hazard. Mater. 2010, 177, 683–691. [Google Scholar] [CrossRef]
- Rahim, A.R.A.; Rabat, N.E.; Johari, K.; Saman, N.; Mat, H. Removal of lead (ii) ions from aqueous solution using desiccated coconut waste as low-cost adsorbent. Chem. Eng. Trans. 2019, 72, 169–174. [Google Scholar]
- Bhatnagar, A.; Vilar, V.; Botelho, C.; Boaventura, R. Coconut-based biosorbents for water treatment—A review of the recent literature. Adv. Colloid Interface Sci. 2010, 160, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Krishnapillai, M.V.; Young-Uhk, S.; Friday, J.B.; Haase, D.L. Locally produced cocopeat growing media for container plant production. Tree Plant. Notes 2020, 63, 29–38. [Google Scholar]
- Ahmed, J.K.; Ahmaruzzaman, M. Adsorptive desulfurization of feed diesel using chemically impregnated coconut coir waste. Int. J. Environ. Sci. Technol. 2015, 12, 2847–2856. [Google Scholar] [CrossRef] [Green Version]
- Das Ravindranath, A. Coir pith—A medium for oil absorption. CORD 2019, 35, 13. [Google Scholar] [CrossRef]
- Klavins, M.; Porshnov, D. Development of a new peat-based oil sorbent using peat pyrolysis. Environ. Technol. 2013, 34, 1577–1582. [Google Scholar] [CrossRef] [PubMed]
- Mažeikienė, A.; Vaiškūnaitė, R.; Vaišis, V. Oil removal from runoff with natural sorbing filter fillers. J. Environ. Manag. 2014, 141, 155–160. [Google Scholar] [CrossRef]
- Panamgama, L.A.; Peramune, P. Coconut coir pith lignin: A physicochemical and thermal characterization. Int. J. Biol. Macromol. 2018, 113, 1149–1157. [Google Scholar] [CrossRef] [PubMed]
- Al-Majed, A.A.; Adebayo, A.R.; Hossain, M.E. A sustainable approach to controlling oil spills. J. Environ. Manag. 2012, 113, 213–227. [Google Scholar] [CrossRef] [PubMed]
- Anuzyte, E.; Vaisis, V. Natural oil sorbents modification methods for hydrophobicity improvement. Energy Procedia 2018, 147, 295–300. [Google Scholar] [CrossRef]
- Xu, X.; Bai, B.; Wang, H.; Suo, Y. Enhanced adsorptive removal of Safranine T from aqueous solutions by waste sea buckthorn branch powder modified with dopamine: Kinetics, equilibrium, and thermodynamics. J. Phys. Chem. Solids 2015, 87, 23–31. [Google Scholar] [CrossRef]
- Abel, U.A.; Habor, G.R.; Oseribho, O.I. Adsorption studies of oil spill clean-up using coconut coir activated carbon (CCAC). Am. J. Chem. Eng. 2020, 8, 36. [Google Scholar] [CrossRef]
- Agarry, S.E.; Oghenejoboh, K.M.; Oghenejoboh, E.O.; Owabor, C.N.; Ogunleye, O.O. Adsorptive remediation of crude oil contaminated marine water using chemically and thermally modified coconut (Cocos nucifera) husks. J. Environ. Treat. Tech. 2020, 8, 694–707. [Google Scholar]
- Valia, S.P.; Teli, M.D. Application of modified coir fiber as eco-friendly oil sorbent. J. Fash. Technol. Text. Eng. 2013, 1. [Google Scholar] [CrossRef]
- Yusof, N.A.; Mukhair, H.; Malek, E.A.; Mohammad, F. Esterified coconut coir by fatty acid chloride as biosorbent in oil spill removal. BioResources 2015, 10, 8025–8038. [Google Scholar] [CrossRef] [Green Version]
- Daniel, A.B.; Zahir, E.; Asghar, M.A. On the practicability of a new bio sorbent: Lasani sawdust and coconut coir for cleanup of oil spilled on water. Pet. Sci. Technol. 2019, 37, 1143–1154. [Google Scholar] [CrossRef]
- Ngah, W.W.; Hanafiah, M.A.K.M. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review. Bioresour. Technol. 2008, 99, 3935–3948. [Google Scholar] [CrossRef] [PubMed]
- Adewuyi, A. Chemically modified biosorbents and their role in the removal of emerging pharmaceutical waste in the water system. Water 2020, 12, 1551. [Google Scholar] [CrossRef]
- Wang, J.; Wang, A.; Wang, W. Robustly superhydrophobic/superoleophilic kapok fiber with ZnO nanoneedles coating: Highly efficient separation of oil layer in water and capture of oil droplets in oil-in-water emulsions. Ind. Crops Prod. 2017, 108, 303–311. [Google Scholar] [CrossRef]
- Zamparas, M.; Tzivras, D.; Dracopoulos, V.; Ioannides, T. Application of sorbents for oil spill cleanup focusing on natural-based modified materials: A review. Molecules 2020, 25, 4522. [Google Scholar] [CrossRef] [PubMed]
- Danley-Thomson, A.A.; Gardner, C.M.; Gwin, C.A.; Gunsch, C.K. Cocopeat for wastewater treatment in the developing world. I: Comparison to traditional packing media in lab scale biofiltration columns. J. Environ. Eng. 2016, 142, 04015069. [Google Scholar] [CrossRef]
- Hume, E.P. Coir dust or cocopeat—A byproduct of the coconut. Econ. Bot. 1949, 3, 42–45. [Google Scholar] [CrossRef]
- Premkumar, Y.; Vijayaraghavan, K. Biosorption potential of coco-peat in the removal of methylene blue from aqueous solutions. Sep. Sci. Technol. 2014, 50, 1439–1446. [Google Scholar] [CrossRef]
- Zhang, L.; Tu, L.-Y.; Liang, Y.; Chen, Q.; Li, Z.-S.; Li, C.-H.; Wang, Z.-H.; Li, W. Coconut-based activated carbon fibers for efficient adsorption of various organic dyes. RSC Adv. 2018, 8, 42280–42291. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Wang, Z.; Yang, L.; Li, X.; Zhang, Y.; Lu, C. Coco peat powder as a source of magnetic sorbent for selective oil–water separation. Ind. Crops Prod. 2017, 101, 1–10. [Google Scholar] [CrossRef]
- Herrick, E.C.; Carstea, D.; Goldgraben, G. Sorbent Materials for Cleanup of Hazardous Spills; United States Environmental Protection Agency (EPA): Washington, DC, USA, 1996.
- Silva Tilak, V. Method of Oil Cleanup Using Coconut Coir Pith. US6391120B1, 21 May 2002. [Google Scholar]
- Osamor, A.; Momoh, Z.; Ifelebuegu, A. An evaluation of the adsorptive properties of coconut husk for oil spill cleanup. In Proceedings of the International Conference on Advances in Applied science and Environmental Technology—ASET 2015, Bangkok, Thailand, 28–29 December 2015; pp. 33–37. [Google Scholar] [CrossRef]
- Anirudhan, T.; Unnithan, M.R. Arsenic (V) removal from aqueous solutions using an anion exchanger derived from coconut coir pith and its recovery. Chemosphere 2007, 66, 60–66. [Google Scholar] [CrossRef]
- Anirudhan, T.S.; Sreekumari, S.S.; Bringle, C.D. Removal of phenols from water and petroleum industry refinery effluents by activated carbon obtained from coconut coir pith. Adsorption 2009, 15, 439–451. [Google Scholar] [CrossRef]
- Etim, U.; Umoren, S.; Eduok, U. Coconut coir dust as a low cost adsorbent for the removal of cationic dye from aqueous solution. J. Saudi Chem. Soc. 2016, 20, S67–S76. [Google Scholar] [CrossRef] [Green Version]
- Namasivayam, C.; Sureshkumar, M.V. Removal of chromium (VI) from water and wastewater using surfactant modified coconut coir pith as a biosorbent. Bioresour. Technol. 2008, 99, 2218–2225. [Google Scholar] [CrossRef]
- Kavitha, D.; Namasivayam, C. Experimental and kinetic studies on methylene blue adsorption by coir pith carbon. Bioresour. Technol. 2007, 98, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Qasim, M.; Ansari, T.M.; Hussain, M. Combustion, performance, and emission evaluation of a diesel engine with biodiesel like fuel blends derived from a mixture of Pakistani waste canola and waste transformer oils. Energies 2017, 10, 1023. [Google Scholar] [CrossRef] [Green Version]
- Fernando, J.A.K.M.; Amarasinghe, A.D.U.S. Drying kinetics and mathematical modeling of hot air drying of coconut coir pith. SpringerPlus 2016, 5, 807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, S.; Suidan, M.T.; Venosa, A.D. Partially acetylated sugarcane bagasse for wicking oil from contaminated wetlands. Chem. Eng. Technol. 2011, 34, 1989–1996. [Google Scholar] [CrossRef] [Green Version]
- Rocha, C.G.; Zaia, D.A.M.; da Silva Alfaya, R.V.; da Silva Alfaya, A.A. Use of rice straw as biosorbent for removal of Cu (II), Zn (II), Cd (II) and Hg (II) ions in industrial effluents. J. Hazard. Mater. 2009, 166, 383–388. [Google Scholar] [CrossRef]
- Ndifreke, W.E.; Aydinlik, N.P. KOH modified Thevetia peruviana shell activated carbon for sorption of dimethoate from aqueous solution. J. Environ. Sci. Health Part B 2019, 54, 1–13. [Google Scholar] [CrossRef]
- Amarasinghe, B. Lead and cadmium removal from aqueous medium using coir pith as adsorbent: Batch and fixed bed column studies. J. Trop. For. Environ. 2011, 1, 36–47. [Google Scholar] [CrossRef]
- El Gheriany, I.A.; El Saqa, F.A.; Amer, A.A.E.R.; Hussein, M. Oil spill sorption capacity of raw and thermally modified orange peel waste. Alex. Eng. J. 2020, 59, 925–932. [Google Scholar] [CrossRef]
- Fernando, J.; Amarasinghe, A. Effects of retting and drying on quality of coir pith and coco discs. J. Natl. Sci. Found. Sri Lanka 2017, 45, 3. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Behera, S.K.; Meena, H.; Chakraborty, S.; Meikap, B.C. Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal. Int. J. Min. Sci. Technol. 2018, 28, 621–629. [Google Scholar] [CrossRef]
- Box, G.E.P.; Draper, N.R. A basis for the selection of a response surface design. J. Am. Stat. Assoc. 1959, 54, 622–654. [Google Scholar] [CrossRef]
- Sarabia, L.A.; Ortiz, M.C. Response surface methodology. In Comprehensive Chemometrics; Brown, S.D., Tauler, R., Walczak, B., Eds.; Elsevier: Oxford, UK, 2009; pp. 345–390. [Google Scholar] [CrossRef]
- Ghazi, R.M. Response surface methodology optimization of oil removal using banana peel as biosorbent. Malays. J. Anal. Sci. 2017, 21, 1101–1110. [Google Scholar]
- Sidik, S.; Jalil, A.; Triwahyono, S.; Adam, S.; Satar, M.; Hameed, B. Modified oil palm leaves adsorbent with enhanced hydrophobicity for crude oil removal. Chem. Eng. J. 2012, 203, 9–18. [Google Scholar] [CrossRef]
- American Society for Testing and Materials (ASTM). Sorbent Test Program 1999–2000; American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 2000. [Google Scholar]
- Bazargan, A.; Tan, J.; McKay, G. Standardization of oil sorbent performance testing. J. Test. Eval. 2014, 43, 1271–1278. [Google Scholar] [CrossRef]
- Abdullah, M.; Gudang, K.P. Prelimary study of response surface methodology for optimization of oil removal by adsorbent-based pineapple peel waste. Malays. J. Ind. Technol. 2017, 2, 25–29. [Google Scholar]
- Vanaja, K.; Rani, R.S. Design of experiments: Concept and applications of Plackett Burman design. Clin. Res. Regul. Aff. 2007, 24, 1–23. [Google Scholar] [CrossRef]
- Plackett, R.L.; Burman, J.P. The design of optimum multifactorial experiments. Biometrika 1946, 33, 305–325. [Google Scholar] [CrossRef]
- Zakaria, N.; Gomez-Fuentes, C.; Khalil, K.A.; Convey, P.; Roslee, A.; Zulkharnain, A.; Sabri, S.; Shaharuddin, N.; Cárdenas, L.; Ahmad, S. Statistical optimisation of diesel biodegradation at low temperatures by an Antarctic marine bacterial consortium isolated from non-contaminated seawater. Microorganisms 2021, 9, 1213. [Google Scholar] [CrossRef] [PubMed]
- Khuri, A.I. Response surface methodology and its applications in agricultural and food sciences. Biom. Biostat. Int. J. 2017, 5, 1–11. [Google Scholar] [CrossRef] [Green Version]
Run | A: Temperature (°C) | B: Time (min) | C: Packing Density (g/cm3) | D: Diesel Concentration % (v/v) | Diesel Absorbed (mL) | Seawater Absorbe (mL) |
---|---|---|---|---|---|---|
1 | 190 | 10.0 | 0.080 | 15.0 | 50.00 ± 0.00 | 21.67 ± 4.08 |
2 | 190 | 10.0 | 0.030 | 30.0 | 31.67 ± 5.40 | 3.33 ± 2.04 |
3 | 190 | 25.0 | 0.030 | 30.0 | 35.00 ± 0.00 | 5.00 ± 0.00 |
4 | 210 | 25.0 | 0.030 | 15.0 | 3.00 ± 0.00 | 25.00 ± 0.00 |
5 | 210 | 10.0 | 0.080 | 30.0 | 65.00 ± 1.41 | 10.00 ± 0.00 |
6 | 200 | 17.5 | 0.055 | 22.5 | 53.67 ± 2.48 | 8.33 ± 2.04 |
7 | 200 | 17.5 | 0.055 | 22.5 | 53.67 ± 2.48 | 8.33 ± 2.04 |
8 | 200 | 17.5 | 0.055 | 22.5 | 53.67 ± 2.48 | 8.33 ± 2.04 |
9 | 190 | 25.0 | 0.080 | 15.0 | 55.00 ± 0.00 | 13.33 ± 2.04 |
10 | 190 | 25.0 | 0.080 | 30.0 | 54.33 ± 0.81 | 8.33 ± 2.04 |
11 | 190 | 10.0 | 0.030 | 15.0 | 22.00 ± 1.22 | 11.00 ± 1.22 |
12 | 200 | 17.5 | 0.055 | 22.5 | 53.67 ± 2.48 | 8.33 ± 2.04 |
13 | 210 | 25.0 | 0.080 | 15.0 | 0.00 | 65.00 ± 0.00 |
14 | 210 | 25.0 | 0.030 | 30.0 | 10.00 ± 0.00 | 25.00 ± 0.00 |
15 | 210 | 10.0 | 0.030 | 15.0 | 30.33 ± 0.41 | 6.67 ± 2.04 |
16 | 200 | 17.5 | 0.055 | 22.5 | 53.67 ± 2.48 | 8.33 ± 2.04 |
17 | 210 | 10.0 | 0.080 | 30.0 | 70.33 ± 4.51 | 5.00 ± 3.19 |
18 | 200 | 17.5 | 0.055 | 22.5 | 53.67 ± 2.48 | 8.33 ± 2.04 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 4587.30 | 4 | 1146.82 | 8.43 | 0.0018 * | significant |
A-Temperature | 400.59 | 1 | 400.59 | 2.95 | 0.1118 | |
B-Time | 1045.33 | 1 | 1045.33 | 7.69 | 0.0169 * | |
C-Packing density | 2205.04 | 1 | 2205.04 | 16.21 | 0.0017 * | |
D-Diesel concentration | 936.33 | 1 | 936.33 | 6.88 | 0.0222 * | |
Curvature | 1312.05 | 1 | 1312.05 | 9.65 | 0.0091 | |
Residual | 1632.11 | 12 | 136.01 | |||
Lack of Fit | 1617.89 | 6 | 269.65 | 113.76 | <0.0001 *** | significant |
Pure Error | 14.22 | 6 | 2.37 | |||
Cor Total | 7531.46 | 17 | ||||
Std. Dev. | 11.66 | R2 | 0.7376 | |||
Mean | 41.59 | Adjusted R2 | 0.6501 | |||
C.V. % | 28.04 | Predicted R2 | 0.2288 | |||
Adeq Precision | 9.4226 |
Run | A: Time (min) | B: Packing Density (g/cm3) | C: Diesel Concentration % (v/v) | Diesel Absorbed (mL) | Seawater Absorbed (mL) | ||
---|---|---|---|---|---|---|---|
Experimental Value | Predicted Value | Experimental Value | Predicted Value | ||||
1 | 10 | 0.08 | 15 | 48.33 ± 2.04 | 51.40 | 21.67 ± 2.04 | 19.42 |
2 | 10 | 0.03 | 15 | 21.00 ± 1.22 | 18.83 | 15.47 ± 0.57 | 15.85 |
3 | 25 | 0.08 | 15 | 54.33 ± 0.41 | 48.27 | 17.00 ± 2.45 | 20.54 |
4 | 17.5 | 0.055 | 22.5 | 48.67 ± 1.08 | 48.45 | 5.00 ± 0.00 | 5.09 |
5 | 4.88655 | 0.055 | 22.5 | 32.40 ± 1.59 | 28.57 | 20.67 ± 2.86 | 23.54 |
6 | 17.5 | 0.055 | 22.5 | 48.67 ± 1.08 | 48.45 | 5.00 ± 0.00 | 5.09 |
7 | 17.5 | 0.055 | 22.5 | 48.67 ± 1.08 | 48.45 | 5.00 ± 0.00 | 5.09 |
8 | 17.5 | 0.0129552 | 22.5 | 16.67 ± 0.82 | 23.43 | 2.33 ± 1.78 | 0.0950 |
9 | 17.5 | 0.055 | 22.5 | 48.67 ± 1.08 | 48.45 | 5.00 ± 0.00 | 5.09 |
10 | 17.5 | 0.055 | 35.1134 | 50.50 ± 3.08 | 54.11 | 6.67 ± 2.04 | 4.71 |
11 | 17.5 | 0.055 | 22.5 | 48.67 ± 1.08 | 48.45 | 5.00 ± 0.00 | 5.09 |
12 | 30.1134 | 0.055 | 22.5 | 11.00 ± 0.00 | 22.40 | 30.00 ± 0.00 | 24.01 |
13 | 25 | 0.03 | 30 | 33.33 ± 3.49 | 24.91 | 3.67 ± 1.63 | 8.11 |
14 | 10 | 0.03 | 30 | 28.40 ± 1.02 | 29.11 | 10.00 ± 0.00 | 8.67 |
15 | 17.5 | 0.0970448 | 22.5 | 76.00 ± 1.22 | 76.81 | 14.67 ± 3.27 | 13.79 |
16 | 17.5 | 0.055 | 22.5 | 48.67 ± 1.08 | 48.45 | 5.00 ± 0.00 | 5.09 |
17 | 17.5 | 0.055 | 9.88655 | 35.17 ± 0.82 | 39.12 | 11.67 ± 4.08 | 10.51 |
18 | 25 | 0.08 | 30 | 59.00 ± 0.71 | 55.81 | 19.00 ± 0.71 | 20.82 |
19 | 10 | 0.08 | 30 | 68.60 ± 2.87 | 69.08 | 8.33 ± 2.04 | 8.48 |
20 | 25 | 0.03 | 15 | 30.60 ± 1.77 | 24.76 | 2.00 ± 0.00 | 4.06 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 4854.49 | 9 | 539.39 | 13.94 | 0.0001 *** | significant |
A | 45.97 | 1 | 45.97 | 1.19 | 0.3012 | |
B | 3439.11 | 1 | 3439.11 | 88.90 | <0.0001 *** | |
C | 271.16 | 1 | 271.16 | 7.01 | 0.0244 * | |
AB | 41.10 | 1 | 41.10 | 1.06 | 0.3269 | |
AC | 51.34 | 1 | 51.34 | 1.33 | 0.2761 | |
BC | 27.38 | 1 | 27.38 | 0.7078 | 0.4199 | |
A2 | 950.03 | 1 | 950.03 | 24.56 | 0.0006 ** | |
B2 | 5.02 | 1 | 5.02 | 0.1296 | 0.7263 | |
C2 | 6.04 | 1 | 6.04 | 0.1562 | 0.7010 | |
Residual | 386.85 | 10 | 38.69 | |||
Lack of Fit | 386.85 | 5 | 77.37 | |||
Pure Error | 0.0000 | 5 | 0.0000 | |||
Cor Total | 5241.34 | 19 | ||||
Std. Dev. | 6.22 | R2 | 0.9262 | |||
Mean | 42.87 | Adjusted R2 | 0.8598 | |||
C.V. % | 14.51 | Predicted R2 | 0.4362 | |||
Adeq Precision | 13.1818 |
Parameters | Optimised Value | Efficiency of Diesel Absorbed | |
---|---|---|---|
Predicted Value | Experimental Value | ||
Time (min) | 14.1 | 71.91 mL (59.93%) | 71.00 ± 0.71 mL (59.17%) |
Packing density (g/cm3) | 0.08 | ||
Diesel concentration % (v/v) | 30 |
Parameters | Optimised Values | |
---|---|---|
OFAT | RSM | |
Temperature (°C) | 200 | 200 |
Time (min) | 20.0 | 14.1 |
Packing density (g/cm3) | 0.06 | 0.08 |
Diesel concentration % (v/v) | 25 | 30 |
Diesel absorbed (mL) | 58.33 ± 2.04 | 71.00 ± 0.71 |
Efficiency of diesel absorbed (%) | 58.33 ± 2.04% | 59.17 ± 0.71% |
Factors | Units | Experimental Value | |
---|---|---|---|
Low (−1) | High (+1) | ||
A: Temperature | °C | 190 | 210 |
B: Time | min | 10 | 25 |
C: Packing density | g/cm3 | 0.03 | 0.08 |
D: Diesel concentration | % (v/v) | 15 | 30 |
Factors | Units | Experimental Values | ||||
---|---|---|---|---|---|---|
Alpha (−2) | Low (−1) | 0 | High (+1) | Alpha (+2) | ||
A: Time | min | 4.88655 | 10 | 17.5 | 25 | 30.1134 |
B: Packing density | g/cm3 | 0.0129552 | 0.03 | 0.055 | 0.08 | 0.0970448 |
C: Diesel concentration | % (v/v) | 9.88655 | 15 | 22.5 | 30 | 35.1134 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verasoundarapandian, G.; Zakaria, N.N.; Shaharuddin, N.A.; Khalil, K.A.; Puasa, N.A.; Azmi, A.A.; Gomez-Fuentes, C.; Zulkharnain, A.; Wong, C.Y.; Rahman, M.F.; et al. Coco Peat as Agricultural Waste Sorbent for Sustainable Diesel-Filter System. Plants 2021, 10, 2468. https://doi.org/10.3390/plants10112468
Verasoundarapandian G, Zakaria NN, Shaharuddin NA, Khalil KA, Puasa NA, Azmi AA, Gomez-Fuentes C, Zulkharnain A, Wong CY, Rahman MF, et al. Coco Peat as Agricultural Waste Sorbent for Sustainable Diesel-Filter System. Plants. 2021; 10(11):2468. https://doi.org/10.3390/plants10112468
Chicago/Turabian StyleVerasoundarapandian, Gayathiri, Nur Nadhirah Zakaria, Noor Azmi Shaharuddin, Khalilah Abdul Khalil, Nurul Aini Puasa, Alyza Azzura Azmi, Claudio Gomez-Fuentes, Azham Zulkharnain, Chiew Yen Wong, Muhammad Fahdli Rahman, and et al. 2021. "Coco Peat as Agricultural Waste Sorbent for Sustainable Diesel-Filter System" Plants 10, no. 11: 2468. https://doi.org/10.3390/plants10112468
APA StyleVerasoundarapandian, G., Zakaria, N. N., Shaharuddin, N. A., Khalil, K. A., Puasa, N. A., Azmi, A. A., Gomez-Fuentes, C., Zulkharnain, A., Wong, C. Y., Rahman, M. F., & Ahmad, S. A. (2021). Coco Peat as Agricultural Waste Sorbent for Sustainable Diesel-Filter System. Plants, 10(11), 2468. https://doi.org/10.3390/plants10112468