The Effect of Soil-Climate Conditions, Farmyard Manure and Mineral Fertilizers on Potato Yield and Soil Chemical Parameters
Abstract
:1. Introduction
2. Results
2.1. Weather Conditions
2.1.1. Caslav
2.1.2. Ivanovice
2.1.3. Lukavec
2.2. Potato Yields
2.2.1. Caslav
2.2.2. Ivanovice
2.2.3. Lukavec
2.3. Soil Properties
2.3.1. Caslav
2.3.2. Ivanovice
2.3.3. Lukavec
2.4. PCA and FA Results
2.5. Linear Regression Model Results
3. Discussion
4. Materials and Methods
4.1. General Experiment Description
4.2. Soil Analyses
4.3. Data Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diaz, L.F.; de Bertoldi, M.; Bidlingmaier, W.; Stentiford, E. Compost Science and Technology-Waste Management Series; Elsevier Ltd.: Amsterdam, The Netherlands, 2007; Volume 8, ISBN 978-0-08-043960-0. [Google Scholar]
- Bogaard, A.; Fraser, R.; Heaton, T.H.E.; Wallace, M.; Vaiglova, P.; Charles, M.; Jones, G.; Evershed, R.P.; Styring, A.K.; Andersen, N.H.; et al. Crop manuring and intensive land management by Europe’s first farmers. Proc. Natl. Acad. Sci. USA 2013, 110, 12589–12594. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Cui, B.; Zhang, Q.; Wang, Z.; Sun, J.; Niu, W. Effects of manure fertilizer on crop yield and soil properties in China: A meta-analysis. Catena 2020, 193, 104617. [Google Scholar] [CrossRef]
- Hamm, A.C.; Tenuta, M.; Krause, D.O.; Ominski, K.H.; Tkachuk, V.L.; Flaten, D.N. Bacterial communities of an agricultural soil amended with solid pig and dairy manures, and urea fertilizer. Appl. Soil Ecol. 2016, 103, 61–71. [Google Scholar] [CrossRef]
- Kobierski, M.; Lemanowicz, J.; Wojewódzki, P.; Kondratowicz-Maciejewska, K. The Effect of Organic and Conventional Farming Systems with Different Tillage on Soil Properties and Enzymatic Activity. Agronomy 2020, 10, 1809. [Google Scholar] [CrossRef]
- Chen, Y.; Camps-Arbestain, M.; Shen, Q.; Singh, B.; Cayuela, M.L. The long-term role of organic amendments in building soil nutrient fertility: A meta-analysis and review. Nutr. Cycl. Agroecosystems 2018, 111, 103–125. [Google Scholar] [CrossRef]
- Simon, T.; Czakó, A. Influence of long-term application of organic and inorganic fertilizers on soil properties. Plant Soil Environ. 2014, 60, 314–319. [Google Scholar] [CrossRef] [Green Version]
- Bobulska, L.; Fazekašová, D.; Angelovičová, L.; Kotorová, D. Impact of ecological and conventional farming systems on chemical and biological soil quality indices in a cold mountain climate in Slovakia. Biol. Agric. Hortic. 2015, 31, 205–218. [Google Scholar] [CrossRef]
- Yang, Z.; Ha, L. Analysis and comparison of nutrient contents in different animal manures from Beijing suburbs. Agric. Sci. 2013, 4, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Eghball, B.; Wienhold, B.J.; Gilley, J.E.; Eigenberg, R.A. Biological Systems Engineering: Papers and Publications Mineralization of Manure Nutrients Mineralization of manure nutrients. J. Soil Water Conserv. 2002, 57, 470–473. [Google Scholar]
- Ghirardini, A.; Grillini, V.; Verlicchi, P. A review of the occurrence of selected micropollutants and microorganisms in different raw and treated manure–Environmental risk due to antibiotics after application to soil. Sci. Total Environ. 2020, 707, 136118. [Google Scholar] [CrossRef] [PubMed]
- Lassaletta, L.; Billen, G.; Garnier, J.; Bouwman, L.; Velazquez, E.; Mueller, N.D.; Gerber, J. Nitrogen use in the global food system: Past trends and future trajectories of agronomic performance, pollution, trade, and dietary demand. Environ. Res. Lett. 2016, 11, 095007. [Google Scholar] [CrossRef]
- Zwolak, A.; Sarzyńska, M.; Szpyrka, E.; Stawarczyk, K. Sources of Soil Pollution by Heavy Metals and Their Accumulation in Vegetables: A Review. Water Air Soil Pollut. 2019, 230, 164. [Google Scholar] [CrossRef] [Green Version]
- Verbeeck, M.; Salaets, P.; Smolders, E. Trace element concentrations in mineral phosphate fertilizers used in Europe: A balanced survey. Sci. Total Environ. 2020, 712, 136419. [Google Scholar] [CrossRef] [PubMed]
- Czarnecki, S.; Düring, R.-A. Influence of long-term mineral fertilization on metal contents and properties of soil samples taken from different locations in Hesse, Germany. SOIL 2015, 1, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Tsvetkov, I.; Atanassov, A.; Vlahova, M.; Carlier, L.; Christov, N.; Lefort, F.; Rusanov, K.; Badjakov, I.; Dincheva, I.; Tchamitchian, M.; et al. Plant organic farming research—Current status and opportunities for future development. Biotechnol. Biotechnol. Equip. 2018, 32, 241–260. [Google Scholar] [CrossRef] [Green Version]
- Menšík, L.; Hlisnikovský, L.; Pospisilova, L.; Kunzová, E. The effect of application of organic manures and mineral fertilizers on the state of soil organic matter and nutrients in the long-term field experiment. J. Soils Sediments 2018, 18, 2813–2822. [Google Scholar] [CrossRef]
- Lošák, T.; Čermák, P.; Hlušek, J. Changes in fertilisation and liming of soils of the Czech Republic for the past 20 years. Arch. Agron. Soil Sci. 2012, 58, S238–S242. [Google Scholar] [CrossRef]
- Piwowar, A. Consumption of Mineral Fertilizers in the Polish Agriculture—Trends and Directions of Changes. Agric. Res. 2021, 1–11. [Google Scholar] [CrossRef]
- Kubát, J.; Lipavský, J. Evaluation of organic matter content in arable soils in the Czech Republic. In Crop Science and Land use for Food and Bioenergy; Agrobios Publications: Jodhpur, India, 2011; p. 500. ISBN 9788190430982. [Google Scholar]
- Liu, E.; Yan, C.; Mei, X.; He, W.; Bing, S.H.; Ding, L.; Liu, Q.; Liu, S.; Fan, T. Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China. Geoderma 2010, 158, 173–180. [Google Scholar] [CrossRef]
- Vašák, F.; Cerny, J.; Buráňová, Š.; Kulhanek, M.; Balik, J. Soil pH changes in long-term field experiments with different fertilizing systems. Soil Water Res. 2016, 10, 19–23. [Google Scholar] [CrossRef] [Green Version]
- Cakmak, D.; Saljnikov, E.; Mrvic, V.; Jakovljevic, M.; Marjanovic, Z.; Sikiric, B.; Maksimovic, S. Soil Properties and Trace Elements Contents Following 40 Years of Phosphate Fertilization. J. Environ. Qual. 2010, 39, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Couto, R.D.R.; Faversani, J.; Ceretta, C.A.; Ferreira, P.A.A.; Marchezan, C.; Facco, D.B.; Garlet, L.P.; Silva, J.; Comin, J.J.; Bizzi, C.A.; et al. Health risk assessment and soil and plant heavy metal and bromine contents in field plots after ten years of organic and mineral fertilization. Ecotoxicol. Environ. Saf. 2018, 153, 142–150. [Google Scholar] [CrossRef]
- Maltas, A.; Dupuis, B.; Sinaj, S. Yield and Quality Response of Two Potato Cultivars to Nitrogen Fertilization. Potato Res. 2018, 61, 97–114. [Google Scholar] [CrossRef]
- Olesen, J.E.; Bindi, M. Consequences of climate change for European agricultural productivity, land use and policy. Eur. J. Agron. 2002, 16, 239–262. [Google Scholar] [CrossRef]
- Eitzinger, J.; Trnka, M.; Semerádová, D.; Thaler, S.; Svobodová, E.; Hlavinka, P.; Šiška, B.; Takáč, J.; Malatinská, L.; Nováková, M.; et al. Regional climate change impacts on agricultural crop production in Central and Eastern Europe—Hotspots, regional differences and common trends. J. Agric. Sci. 2013, 151, 787–812. [Google Scholar] [CrossRef]
- Rymuza, K.; Radzka, E.; Lenartowicz, T. Effect of weather conditions on early potato yields in east-central Poland. Commun. Biometry Crop Sci. 2015, 10, 65–72. [Google Scholar]
- Ierna, A.; Mauromicale, G. Potato growth, yield and water productivity response to different irrigation and fertilization regimes. Agric. Water Manag. 2018, 201, 21–26. [Google Scholar] [CrossRef]
- Kunzová, E.; Hejcman, M. Yield development of winter wheat over 50 years of FYM, N, P and K fertilizer application on black earth soil in the Czech Republic. Field Crop. Res. 2009, 111, 226–234. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Polyzos, N.; Antoniadis, V.; Barros, L.; Ferreira, I.C. The Impact of Fertilization Regime on the Crop Performance and Chemical Composition of Potato. Agronomy 2020, 10, 474. [Google Scholar] [CrossRef] [Green Version]
- Moore, A.D.; Olsen, N.L.; Carey, A.M.; Leytem, A.B. Residual Effects of Fresh and Composted Dairy Manure Applications on Potato Production. Am. J. Potato Res. 2011, 88, 324–332. [Google Scholar] [CrossRef] [Green Version]
- Ierna, A.; Mauromicale, G. Sustainable and Profitable Nitrogen Fertilization Management of Potato. Agronomy 2019, 9, 582. [Google Scholar] [CrossRef] [Green Version]
- Jovovic, Z.; Dolijanovic, Z.; Spalevic, V.; Dudic, B.; Przulj, N.; Velimirovic, A.; Popovic, V. Effects of Liming and Nutrient Management on Yield and Other Parameters of Potato Productivity on Acid Soils in Montenegro. Agronomy 2021, 11, 980. [Google Scholar] [CrossRef]
- Nurmanov, Y.T.; Chernenok, V.G.; Kuzdanova, R.S. Potato in response to nitrogen nutrition regime and nitrogen fertilization. Field Crop. Res. 2019, 231, 115–121. [Google Scholar] [CrossRef]
- Meloun, M.; Militský, J. Statistical Data Analysis, a Practical Guide; Woodhead Publishing Limited: Cambridge, UK, 2011; ISBN 0-85709-109-3. [Google Scholar]
- Hamouz, K.; Lachman, J.; Pazderů, K.; Hejtmánková, K.; Cimr, J.; Musilová, J.; Pivec, V.; Orsák, M.; Svobodova, A. Effect of cultivar, location and method of cultivation on the content of chlorogenic acid in potatoes with different flesh colour. Plant Soil Environ. 2013, 59, 465–471. [Google Scholar] [CrossRef] [Green Version]
- Hamouz, K.; Pazderů, K.; Lachman, J.; Čepl, J.; Kotikova, Z. Effect of cultivar, flesh colour, locality and year on carotenoid content in potato tubers. Plant Soil Environ. 2016, 62, 86–91. [Google Scholar] [CrossRef] [Green Version]
- Pazderů, K.; Hamouz, K.; Lachman, J.; Kasal, P. Yield potential and antioxidant activity of potatoes with coloured flesh. Plant Soil Environ. 2016, 61, 417–421. [Google Scholar] [CrossRef]
- Affleck, I.; Sullivan, J.A.; Tarn, R.; Falk, D.E. Genotype by environment interaction effect on yield and quality of potatoes. Can. J. Plant Sci. 2008, 88, 1099–1107. [Google Scholar] [CrossRef]
- Kabała, C. Chernozem (czarnoziem)—Soil of the year 2019 in Poland. Origin, classification and use of chernozems in Poland. Soil Sci. Annu. 2019, 70, 184–192. [Google Scholar] [CrossRef]
- Czech Statistical Office. Statistical Yearbook of the Czech Republic 2020; Czech Statistical Office: Prague, Czech Republic, 2021.
- Shimoda, S.; Kanno, H.; Hirota, T. Time series analysis of temperature and rainfall-based weather aggregation reveals significant correlations between climate turning points and potato (Solanum tuberosum L.) yield trends in Japan. Agric. For. Meteorol. 2018, 263, 147–155. [Google Scholar] [CrossRef]
- Singh, B.; Kukreja, S.; Goutam, U. Impact of heat stress on potato (Solanum tuberosum L.): Present scenario and future opportunities. J. Hortic. Sci. Biotechnol. 2020, 95, 407–424. [Google Scholar] [CrossRef]
- Olga, E.; Ana, S.-R.; Rodríguez-Flores, M.S.; Montserrat, M.; Seijo, M.C. Influence of weather conditions on the physicochemical characteristics of potato tubers. Plant Soil Environ. 2018, 64, 317–323. [Google Scholar] [CrossRef]
- Handayani, T.; Watanabe, K. The combination of drought and heat stress has a greater effect on potato plants than single stresses. Plant Soil Environ. 2020, 66, 175–182. [Google Scholar] [CrossRef]
- Černý, J.; Balík, J.; Kulhánek, M.; Čásová, K.; Nedvěd, V. Mineral and organic fertilization efficiency in long-term stationary experiments. Plant Soil Environ. 2010, 56, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Suwara, I.; Pawlak-Zaręba, K.; Gozdowski, D.; Perzanowska, A. Physical properties of soil after 54 years of long-term fertilization and crop rotation. Plant Soil Environ. 2016, 62, 389–394. [Google Scholar] [CrossRef] [Green Version]
- Domagała-Świątkiewicz, I.; Gąstoł, M. Soil chemical properties under organic and conventional crop management systems in south Poland. Biol. Agric. Hortic. 2013, 29, 12–28. [Google Scholar] [CrossRef]
- Dey, A.; Srivastava, P.C.; Pachauri, S.P.; Shukla, A.K. Time-dependent release of some plant nutrients from different organic amendments in a laboratory study. Int. J. Recycl. Org. Waste Agric. 2019, 8, 173–188. [Google Scholar] [CrossRef] [Green Version]
- Balík, J.; Černý, J.; Kulhánek, M.; Sedlář, O.; Suran, P. Balance of potassium in two long-term field experiments with different fertilization treatments. Plant Soil Environ. 2019, 65, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Whetton, R.; Zhao, Y.; Nawar, S.; Mouazen, A. Modelling the Influence of Soil Properties on Crop Yields Using a Non-Linear NFIR Model and Laboratory Data. Soil Syst. 2021, 5, 12. [Google Scholar] [CrossRef]
- Maltas, A.; Kebli, H.; Oberholzer, H.R.; Weisskopf, P.; Sinaj, S. The effects of organic and mineral fertilizers on carbon sequestration, soil properties, and crop yields from a long-term field experiment under a Swiss conventional farming system. Land Degrad. Dev. 2018, 29, 926–938. [Google Scholar] [CrossRef]
- Zeng, M.; de Vries, W.; Bonten, L.T.C.; Zhu, Q.; Hao, T.; Liu, X.; Xu, M.; Shi, X.; Zhang, F.; Shen, J. Model-Based Analysis of the Long-Term Effects of Fertilization Management on Cropland Soil Acidification. Environ. Sci. Technol. 2017, 51, 3843–3851. [Google Scholar] [CrossRef] [PubMed]
- Zhengchao, Z.; Zhuoting, G.; Zhouping, S.; Fuping, Z. Effects of long-term repeated mineral and organic fertilizer applications on soil organic carbon and total nitrogen in a semi-arid cropland. Eur. J. Agron. 2013, 45, 20–26. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kožnarová, V.; Klabzuba, J. Recommendation of World Meteorological Organization to describing meteorological or climatological conditions-Information. Plant Soil Environ. 2011, 48, 190–192. [Google Scholar] [CrossRef] [Green Version]
- Sims, J.R.; Haby, V.A. Simplified Colorimetric Determination of Soil Organic Matter. Soil Sci. 1971, 112, 137–141. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Total Carbon, Organic Carbon, and Organic Matter: Methods of Soil Analysis Part 3-Chemical Methods; Soil Science Society of America, American Society of Agronomy: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Kirk, P.L. Kjeldahl Method for Total Nitrogen. Anal. Chem. 1950, 22, 354–358. [Google Scholar] [CrossRef]
- Mehlich, A. Communications in Soil Science and Plant Analysis Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 37–41. [Google Scholar] [CrossRef]
Control | FYM | FYM + N1 | FYM + N2 | FYM + NPK1 | FYM + NPK2 | FYM + NPK3 | Mean | |
---|---|---|---|---|---|---|---|---|
Caslav | ||||||||
2016 | 8.6 ± 0.4 a | 14.9 ± 1.1 b | 20.0 ± 0.9 c | 19.9 ± 0.2 c | 25.4 ± 1.2 d | 32.7 ± 1.2 e | 30.0 ± 0.8 e | 21.7 ± 1.5 D |
2017 | 7.1 ± 0.7 a | 9.3 ± 0.7 ab | 10.3 ± 0.3 ab | 12.3 ± 0.6 bc | 16.2 ± 1.1 cd | 19.9 ± 1.0 d | 25.3 ± 2.0 e | 14.3 ± 1.2 B |
2018 | 4.4 ± 0.2 a | 6.6 ± 0.3 a | 7.5 ± 0.2 ab | 7.9 ± 0.3 abc | 8.6 ± 0.6 abc | 9.5 ± 0.7 c | 9.3 ± 0.4 bc | 7.7 ± 0.3 A |
2019 | 10.6 ± 0.4 a | 11.8 ± 0.3 b | 16.7 ± 0.5 c | 20.8 ± 0.7 d | 21.3 ± 0.4 de | 23.2 ± 0.8 de | 23.6 ± 0.6 e | 18.3 ± 1.0 C |
Mean | 7.7 ± 0.6 a | 10.6 ± 0.9 b | 13.6 ± 1.3 c | 15.2 ± 1.4 c | 17.9 ± 1.7 d | 21.3 ± 2.2 e | 22.1 ± 2.1 e | |
Ivanovice | ||||||||
2016 | 18.6 ± 0.2 a | 28.7 ± 0.9 b | 30.5 ± 0.8 bc | 31.9 ± 0.8 bc | 30.9 ± 1.2 bc | 34.0 ± 2.2 bc | 35.1 ± 2.0 c | 29.9 ± 1.1 C |
2017 | 15.1 ± 2.1 a | 20.3 ± 1.7 ab | 20.7 ± 0.5 ab | 23.4 ± 0.9 b | 24.4 ± 0.6 b | 25.1 ± 1.6 b | 23.8 ± 1.3 b | 21.8 ± 0.8 B |
2018 | 8.9 ± 1.4 a | 11.9 ± 2.6 a | 11.0 ± 2.0 a | 11.6 ± 2.9 a | 12.5 ± 1.9 a | 14.2 ± 2.8 a | 13.7 ± 0.8 a | 12.0 ± 0.8 A |
2019 | 17.2 ± 0.6 a | 26.8 ± 1.6 b | 32.1 ± 2.2 bc | 28.8 ± 1.2 b | 33.9 ± 2.5 bc | 34.9 ± 2.5 bc | 38.3 ± 1.1 c | 30.3 ± 1.4 C |
Mean | 15.0 ± 1.1 a | 21.9 ± 1.9 b | 23.6 ± 2.3 bc | 23.9 ± 2.1 bc | 25.4 ± 2.3 bcd | 27.1 ± 2.4 cd | 27.7 ± 2.6 d | |
Lukavec | ||||||||
2016 | 20.4 ± 1.8 a | 29.1 ± 2.2 a | 41.9 ± 2.3 b | 48.9 ± 3.7 bc | 43.7 ± 2.6 b | 49.4 ± 2.9 bc | 59.7 ± 1.3 c | 41.9 ± 2.5 C |
2017 | 29.6 ± 2.6 a | 41.9 ± 1.9 b | 45.1 ± 2.0 b | 49.6 ± 2.7 bc | 59.1 ± 0.9 cd | 64.4 ± 0.9 c | 64.7 ± 2.8 c | 50.6 ± 2.4 D |
2018 | 22.9 ± 1.9 a | 29.0 ± 0.4 ab | 24.4 ± 0.6 a | 26.7 ± 0.7 ab | 34.0 ± 1.4 bc | 36.6 ± 3.4 c | 37.7 ± 0.8 c | 30.2 ± 1.2 B |
2019 | 15.1 ± 0.5 a | 19.2 ± 0.8 a | 25.6 ± 0.5 b | 31.3 ± 1.0 c | 32.4 ± 1.7 c | 30.6 ± 1.5 bc | 29.7 ± 1.2 bc | 26.3 ± 1.2 A |
Mean | 22.0 ± 1.6 a | 29.8 ± 2.2 b | 34.2 ± 2.5 c | 39.1 ± 2.9 d | 42.3 ± 2.9 de | 45.2 ± 3.5 ef | 47.9 ± 3.9 f |
P | P Assess. | K | K Assess. | Mg | Mg Assess. | Ca | |
---|---|---|---|---|---|---|---|
Caslav | |||||||
Control | 49 ± 12 A | Low | 120 ± 14 A | Suitable | 145 ± 26 A | Suitable | 2888 ± 118 A |
FYM | 46 ± 6 A | Low | 135 ± 16 A | Suitable | 136 ± 4 A | Suitable | 3777 ± 570 A |
FYM + N2 | 55 ± 11 A | Suitable | 141 ± 11 A | Suitable | 156 ± 6 A | Suitable | 2802 ± 94 A |
FYM + NPK2 | 158 ± 9 B | High | 221 ± 21 B | Good | 164 ± 3 A | Good | 2950 ± 198 A |
Ivanovice | |||||||
Control | 66 ± 10 A | Suitable | 181 ± 6 A | Good | 204 ± 17 A | Good | 4102 ± 152 A |
FYM | 169 ± 15 C | High | 370 ± 27 C | High | 234 ± 10 A | Good | 4131 ± 166 A |
FYM + N2 | 117 ± 12 B | High | 288 ± 21 B | Good | 252 ± 14 A | Good | 4232 ± 152 A |
FYM + NPK2 | 226 ± 8 D | Very high | 447 ± 17 C | Very high | 236 ± 5 A | Good | 4150 ± 226 A |
Lukavec | |||||||
Control | 44 ± 1 A | Low | 107 ± 6 A | Suitable | 109 ± 9 A | Suitable | 2050 ± 82 A |
FYM | 90 ± 8 B | Good | 147 ± 8 BC | Suitable | 126 ± 7 A | Suitable | 2125 ± 96 A |
FYM + N2 | 46 ± 3 A | Low | 123 ± 5 AB | Suitable | 113 ± 9 A | Suitable | 2214 ± 124 A |
FYM + NPK2 | 164 ± 5 C | High | 167 ± 4 C | Suitable | 104 ± 9 A | Low | 2182 ± 98 A |
pH (KCl) | Cox (%) | Ntot | |
---|---|---|---|
Caslav | |||
Control | 6.57 ± 0.03 A | 1.17 ± 0.06 A | 0.15 ± 0.01 A |
FYM | 6.85 ± 0.14 A | 1.20 ± 0.05 A | 0.15 ± 0.01 A |
FYM + N2 | 6.51 ± 0.07 A | 1.20 ± 0.05 A | 0.16 ± 0.01 A |
FYM + NPK2 | 6.53 ± 0.17 A | 1.29 ± 0.09 A | 0.17 ± 0.01 A |
Ivanovice | |||
Control | 6.58 ± 0.14 A | 1.67 ± 0.03 A | 0.20 ± 0.01 A |
FYM | 6.69 ± 0.08 A | 1.92 ± 0.06 B | 0.23 ± 0.01 A |
FYM + N2 | 6.62 ± 0.14 A | 1.95 ± 0.03 B | 0.23 ± 0.01 A |
FYM + NPK2 | 6.63 ± 0.11 A | 2.07 ± 0.05 B | 0.24 ± 0.01 A |
Lukavec | |||
Control | 5.84 ± 0.06 A | 1.41 ± 0.05 A | 0.19 ± 0.01 A |
FYM | 5.88 ± 0.12 A | 1.72 ± 0.06 AB | 0.23 ± 0.01 B |
FYM + N2 | 5.74 ± 0.08 A | 1.72 ± 0.03 AB | 0.23 ± 0.01 B |
FYM + NPK2 | 5.83 ± 0.05 A | 1.82 ± 0.13 B | 0.23 ± 0.01 B |
Variable | Factor Weights | Contribution of Factors | |||
---|---|---|---|---|---|
Factor 1 | Factor 2 | Factor 1 | Factor 2 | Communality | |
pH (KCl) | −0.2978 | 0.9357 | 0.0887 | 0.9644 | 0.9876 |
P | 0.7492 | 0.3972 | 0.5614 | 0.7192 | 0.9473 |
K | 0.6569 | 0.7101 | 0.4315 | 0.9359 | 0.9607 |
Ca | 0.1134 | 0.9560 | 0.0128 | 0.9268 | 0.9914 |
Mg | 0.3480 | 0.8936 | 0.1211 | 0.9196 | 0.9397 |
Cox | 0.9498 | 0.1717 | 0.9022 | 0.9317 | 0.9983 |
Ntot | 0.9693 | −0.0704 | 0.9396 | 0.9445 | 0.9977 |
Yield | 0.7811 | −0.5738 | 0.6101 | 0.9394 | 0.9336 |
pH | P | K | Ca | Mg | Cox | Nt | |
---|---|---|---|---|---|---|---|
Caslav | |||||||
Control | 6.72 | 58 | 114 | 2858 | 99 | 1.26 | 0.14 |
FYM | 6.55 | 58 | 144 | 2891 | 118 | 1.16 | 0.13 |
FYM + N2 | 6.76 | 76 | 125 | 2891 | 139 | 1.31 | 0.16 |
FYM + NPK2 | 6.52 | 188 | 225 | 2802 | 122 | 1.43 | 0.17 |
Ivanovice | |||||||
Control | 6.85 | 101 | 228 | 4451 | 200 | 1.72 | 0.19 |
FYM | 6.84 | 171 | 340 | 4371 | 222 | 1.99 | 0.23 |
FYM + N2 | 6.86 | 156 | 320 | 4481 | 238 | 2.13 | 0.25 |
FYM + NPK2 | 6.82 | 220 | 438 | 4215 | 223 | 2.04 | 0.23 |
Lukavec | |||||||
Control | 5.93 | 40 | 131 | 1945 | 92 | 1.54 | 0.20 |
FYM | 5.93 | 56 | 157 | 2096 | 108 | 1.82 | 0.23 |
FYM + N2 | 5.78 | 38 | 164 | 2047 | 99 | 1.86 | 0.23 |
FYM + NPK2 | 5.89 | 193 | 207 | 2011 | 96 | 1.82 | 0.23 |
Precipitation | Evaluation | Temperature | Evaluation | |
---|---|---|---|---|
Caslav | ||||
Normal | 593 | 9.4 | ||
2016 | 393 | V. B. Normal 4 | 9.7 | Normal |
2017 | 633 | Normal | 9.6 | Normal |
2018 | 318 | E. B. Normal 6 | 10.8 | V. A. Normal 2 |
2019 | 478 | B. Normal 4 | 10.6 | A. Normal 1 |
Ivanovice | ||||
Normal | 562 | 9.1 | ||
2016 | 474 | B. Normal 4 | 9.9 | A. Normal 1 |
2017 | 411 | V. B. Normal 5 | 9.8 | A. Normal 1 |
2018 | 384 | V. B. Normal 5 | 11.0 | E. A. Normal 3 |
2019 | 740 | V. A. Normal 2 | 10.8 | E. A. Normal 3 |
Lukavec | ||||
Normal | 698 | 7.8 | ||
2016 | 601 | B. Normal 4 | 7.9 | Normal |
2017 | 777 | A. Normal 1 | 7.9 | Normal |
2018 | 509 | V. B. Normal 5 | 8.8 | A. Normal 1 |
2019 | 680 | Normal | 9.1 | V. A. Normal 2 |
Field I. | Field II. | Field III. | Field IV. | |
---|---|---|---|---|
2015 | Winter wheat | |||
2016 | Potatoes | Winter wheat | ||
2017 | Potatoes | Winter wheat | ||
2018 | Potatoes | Winter wheat | ||
2019 | Potatoes |
Fertilization Treatment Designation | N | P | K |
---|---|---|---|
Control | 0 | 0 | 0 |
FYM (40 t ha−1) | 200 | 56 | 236 |
FYM + N1 (kg ha−1) | 240 | 56 | 236 |
FYM + N2 (kg ha−1) | 280 | 56 | 236 |
FYM + NPK1 | 240 | 136 | 336 |
FYM + NPK2 | 280 | 136 | 336 |
FYM + NPK3 | 320 | 136 | 336 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hlisnikovský, L.; Menšík, L.; Kunzová, E. The Effect of Soil-Climate Conditions, Farmyard Manure and Mineral Fertilizers on Potato Yield and Soil Chemical Parameters. Plants 2021, 10, 2473. https://doi.org/10.3390/plants10112473
Hlisnikovský L, Menšík L, Kunzová E. The Effect of Soil-Climate Conditions, Farmyard Manure and Mineral Fertilizers on Potato Yield and Soil Chemical Parameters. Plants. 2021; 10(11):2473. https://doi.org/10.3390/plants10112473
Chicago/Turabian StyleHlisnikovský, Lukáš, Ladislav Menšík, and Eva Kunzová. 2021. "The Effect of Soil-Climate Conditions, Farmyard Manure and Mineral Fertilizers on Potato Yield and Soil Chemical Parameters" Plants 10, no. 11: 2473. https://doi.org/10.3390/plants10112473
APA StyleHlisnikovský, L., Menšík, L., & Kunzová, E. (2021). The Effect of Soil-Climate Conditions, Farmyard Manure and Mineral Fertilizers on Potato Yield and Soil Chemical Parameters. Plants, 10(11), 2473. https://doi.org/10.3390/plants10112473