Does Elemental Sulfur Act as an Effective Measure to Control the Seasonal Growth Dynamics of Potato Tubers (Solanum tuberosum L.)?
Abstract
:1. Introduction
- Does the pre-tuberization period of potato growth impact the development of tuber sink strength?
- To what extent and for how long do the temporary sinks limit the tuber sink strength?
- Is it possible to effectively control the sink strength of potato tissues competing with the tubers by agronomic measures?
2. Results
2.1. In-Season Trends of Tuber Yield Development
2.2. In-Season Trends in Potato Non-Storage Organs Development
- (1)
- Progressive, which lasted until the 45th DAE;
- (2)
- Stagnation, which lasted from the 45th to the 75th DAE;
- (3)
- Depressive, which started from the 75th DAE and lasted until the potato harvest.
- (1)
- Steep initial rise, peaking just after the 35th DAE;
- (2)
- A slight decline, after reaching the maximum biomass;
- (3)
- Significantly less decline on the S50 variant compared to the S0.
2.3. Competition Analysis of Tubers and Non-Storage Potato Organs Growth
- Ascending phase: 0.04 (RS) < 0.27 (LE) < 0.45 (ST, g g−1 tuber DW);
- Descending phase: −0.41 (LE) < −0.26 (ST) < −0.03 (RS g g−1 tuber DW).
- S0:
- Ascending phase: 0.07 (RS) < 0.48 (ST, g g−1 tuber DW);
- Descending phase: −0.45 (ST) < −0.13 (LE) < −0.06 (RS g g−1 tuber DW).
- S50:
- Ascending phase: 0.07 (RS) < 0.48 (ST, g g−1 tuber DW);
- Descending phase: −0.45 (ST) < −0.13 (LE) < −0.06 (RS g g−1 tuber DW).
2.4. The In-Season Growth and Partitioning of Total Dry Matter
- (1)
- Share of the stem biomass in the B in the early stages of tuber growth;
- (2)
- The length of the stability period of stem biomass share.
3. Discussion
3.1. Tuber Yields and Seasonal Trends of Potato Tubers Growth
3.2. Growth Competition between the Tuber and Non-Storage Potato Organs
- (1)
- Ascending, having the status of a temporary sink;
- (2)
- Stagnating, which is a transition stage between the sink and a pure source phase;
- (3)
- Descending, having the status of a pure source.
- (1)
- In a year of favorable growth conditions for potatoes at the beginning of vegetation;
- (2)
- On soils with high natural fertility (high content of humus and available nutrients);
- (3)
- Under a good supply of nitrogen, including its applied dose.
4. Materials and Methods
4.1. Experimental Site
4.2. Weather Conditions
4.3. Treatments and Crop Management
- N rate (acronym N): 60 and 120 kg N ha−1;
- Sulfur: without S (S0), with sulfur (S50);
- Periodic sampling of potato plants during the potato growing season was used as a third experimental factor [40].
4.4. Plant Material Sampling and Analysis
4.5. Calculated Parameters
4.5.1. Growth Pattern of Potato Organs
4.5.2. Critical Day of Tubers Growth—DAEcritt
4.5.3. Competition Indices
- CI index—the competition index, i.e., the growth rate of a specific potato organ per unit of tuber biomass. This parameter is equal to the value of the slope of the obtained linear equation (CD), g g−1 tuber;
- TTBopt—optimal value of the temporary tuber biomass for the maximum biomass of the competing potato organ, g m−2 DW;
- Bmax—maximum biomass of the potato organ competing with the tubers, g m−2 DW.
- Ascending sub-phase: Bas = aasTU + bas;
- Descending sub-phase: Bd = −adsTU + bds.
4.6. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Lemoine, R.; La Camera, S.; Atanassova, R.; Dedaldechamp, F.; Allario, T.; Pourtau, N.; Bonnemain, J.-L.; Laloi, M.; Coutos-Thevenot, P.; Maurousset, L.; et al. Source-to-sink transport of sugars and regulation by environmental factors. Front. Plant Sci. 2013, 24, 272. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.R.; Rao, I.M.; Merchant, A. Source-sink relationships in crop plants and their influence on yield development and nutritional quality. Front. Plant Sci. 2018, 9, 1889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Xiong, B.; Wang, S.; Deng, X.; Yin, L.; Li, H. Regulation effects of water and nitrogen on the source-sink relationship in potato during the tuber bulking stage. PLoS ONE 2016, 11, e0146877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, S.D. Multiple signaling pathway control tuber induction in potato. Plant Physiol. 1999, 119, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silva Oliveira, C.A. Potato crop growth as affected by nitrogen and plant density. Pesq. Agropec. Bras. Brasilia 2000, 35, 939–950. [Google Scholar]
- White, A.C.; Rogers, A.; Rees, M.; Osborne, C.P. How can we make plants grow faster? A source-sink perspective on growth rate. J. Exp. Bot. 2016, 67, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Katoh, A.; Ashida, H.; Kasajima, I.; Shigeoka, S.; Yokota, A. Potato yield enhancement through intensification of sink and source performances. Breed Sci. 2015, 65, 77–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gayler, S.E.; Wang, E.; Priesack, T.; Schaaf, T.; Maidl, F.X. Modelling biomass growth, N-uptake and phenological development of potato crop. Geoderma 2002, 105, 367–383. [Google Scholar] [CrossRef]
- Oparka, K.J.; Davies, H.V.; Prior, D.A.M. The influence of applied nitrogen on export and partitioning of current assimilate by field grown potato plants. Ann. Bot. 1987, 59, 211–323. [Google Scholar] [CrossRef]
- Tan, X.L.; Guo, T.W.; Song, S.Y.; Zhang, P.L.; Zhang, X.C.; Zhao, C. Balanced fertilizer management strategy enhances potato yield and marketing quality. Agron. J. 2016, 108, 2235–2244. [Google Scholar] [CrossRef]
- Grzebisz, W.; Čermák, P.; Rroco, E.; Szczepaniak, W.; Potarzycki, J. Potassium impact on nitrogen use efficiency in potato—A case study from the Central-East Europe. Plant Soil Environ. 2017, 63, 422–427. [Google Scholar]
- Koch, M.; Naumann, M.; Pawelzik, E.; Gransee, A.; Thiel, E. The importance of nutrient management for potato production. Part I: Plant Nutrition and yield. Potato Res. 2020, 63, 97–119. [Google Scholar] [CrossRef] [Green Version]
- Engels, C.; Marschner, H. Allocation of photosynthate to individual tubers of Solanum tuberosum L. III. Relationship between growth rate of individual tubers, tuber weight and stolon growth prior to tuber initiation. J. Exp. Bot. 1986, 37, 1813–1822. [Google Scholar] [CrossRef]
- Grzebisz, W.; Potarzycki, J. The in-season nitrogen concentration in the potato tuber as the yield driver. Agron. J. 2020, 112, 1287–1308. [Google Scholar] [CrossRef]
- Grzebisz, W.; Potarzycki, J.; Biber, M. The early prognosis of tuber yield based on nitrogen status in potato tops. Plant Soil Environ. 2018, 64, 539–545. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, P.D.; Mahmood, S. Dry matter production and partitioning in potato plants subjected to combined deficiencies of nitrogen, phosphorus and potassium. Ann. Appl. Biol. 2003, 143, 215–229. [Google Scholar] [CrossRef]
- Shoul, O. Magnesium transport and function in plants: The tip of the iceberg. Biometals 2002, 15, 309–323. [Google Scholar]
- Alva, A.K.; Ren, H.; Moore, A.D. Water and nitrogen management effects on biomass accumulation and partitioning in two potato cultivars. Am. J. Plant Sci. 2012, 3, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Abalos, D.; Jeffrey, S.; Sanz-Cobena, A.; Guardia, G.; Vallejo, A. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency. Agric. Ecosyst. Environ. 2014, 189, 136–144. [Google Scholar] [CrossRef]
- Germida, J.J.; Janzen, H.H. Factors affecting the oxidation of elemental sulfur in soils. Fertil. Res. 1993, 35, 101–114. [Google Scholar] [CrossRef]
- Kovar, J.L.; Grant, C.A. Nutrient cycling in soils: Sulfur. Soil Manag. Build. A Stable Base Agric. 2011, 103–115. [Google Scholar] [CrossRef] [Green Version]
- Jamal, A.; Moon, Y.-S.; Abdin, M.Z. Sulphur—A general overview and interaction with nitrogen. Austr. J. Crop Sci. 2010, 4, 523–529. [Google Scholar]
- Kalbarczyk, R.; Kalbarczyk, E. The needs and deficiency in atmospheric precipitation in cultivated mid-late and late potato in Poland. Infrastruct. Ecol. Rural Areas 2009, 3, 129–140. [Google Scholar]
- Skowera, B. Changes of hydrothermal conditions in the Polish area (1971–2010). Fragm. Agron. 2008, 31, 74–87. [Google Scholar]
- Haverkort, A.J.; Struik, P.C. Yield levels of potato crops: Recent achievements and future prospects. Field Crops Res. 2015, 182, 76–85. [Google Scholar] [CrossRef]
- Saravia, D.; Forfán-Vignolo, E.R.; Gutiérrez, R.; De Mendiburu, F.; Schafleitner, R.; Bonierbale, M.; Khan, M.A. Yield and physiological response of potatoes indicate different strategies to cope with drought stress and nitrogen fertilization. Am. J. Potato Res. 2016, 93, 288–295. [Google Scholar] [CrossRef] [Green Version]
- Sharma, D.K.; Kushwah, S.S.; Nema, P.K.; Rathore, S.S. Effect of Sulphur on yield and quality of potato (Solanum tuberosum L.). Int. J. Agric. Res 2011, 6, 143–148. [Google Scholar] [CrossRef] [Green Version]
- Barczak, B.; Nowak, K.; Knapowski, T. Potato yield is affected by Sulphur form and rate. Agrochimica 2013, LVII, 363–372. [Google Scholar]
- Kolbe, H.; Stephan-Beckmann, S. Development, growth and chemical composition of the potato crop (Solanum tuberosum L.). Tuber and whole plant. Potato Res. 1997, 40, 135–153. [Google Scholar] [CrossRef]
- Körner, C. Growth controls photosynthesis–mostly. Nova Acta Leopold. 2013, 114, 273–283. [Google Scholar]
- Körner, C. Paradigm shift in plant growth control. Curr. Opin. Plant Biol. 2015, 25, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Struik, P.C.; Geertsema, J.; Custers, C. Effects of shoot, root and stolon temperature on the development of the potato (Solanum tuberosum L.) plant. I. Development of the haulm. Potato Res. 1989, 32, 133–141. [Google Scholar] [CrossRef]
- Kooman, P.L.; Rabbinge, R. An analysis of the relation between dry matter allocation to the tuber nd earliness of a potato crop. Ann. Bot. 1996, 77, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Cambouris, A.N.; St. Luce, M.; Zebarth, B.J.; Ziadi, N.; Grant, C.A.; Perron, I. Potato response to nitrogen sources and rates in an irrigated sandy soil. Agron. J. 2016, 108, 391–401. [Google Scholar] [CrossRef]
- Kaplan, M.; Ulger, I.; Kokten, K.; Uzun, S.; Oral, E.V.; Ozaktan, H.; Temizgul, R.; Kale, H. Nutritional composition of potato (Solanum tuberosum L.) haulms. Prog. Nutr. 2018, 20, 90–95. [Google Scholar]
- WRB. World Reference Base for Soil Resources 2014; Word Soil Resources Reports, 106; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015; Available online: http://www.fao.org/3/a-i3794e.pdf (accessed on 13 April 2019).
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Comm. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Trávník, K.; Zbíral, J.; Němec, P. Agrochemical soil testing—Mehlich III; Central Institute for Supervising and Testing in Agriculture: Brno, Czech Republic, 1999. (In Czech) [Google Scholar]
- Houba, V.J.G.; Temminghoff, E.J.M.; Gaikhorst, G.A.; van Vark, W. Soil analysis procedures using 0.01 M calcium chloride as extraction reagents. Commun. Soil Sci. Plant Anal. 2000, 31, 1299–1396. [Google Scholar] [CrossRef]
- Bardsley, C.E.; Lancaster, J.D. Determination of reserve sulfur and soluble sulfates in soils. Soil Sci. Soc. Am. J. 1960, 24, 265–268. [Google Scholar] [CrossRef]
- Altman, N.; Krzywinski, M. Split plot design. Nat. Methods 2015, 12, 165–166. [Google Scholar] [CrossRef]
Source of Variation | Factor Level | Degree of Freedom | Roots and Stolons | Leaves | Stems | Tubers | Total Biomass | Tuber’s Harvest Index | Roots and Stolons | Leaves | Stems | Tubers | Total Biomass | Tuber’s Harvest Index |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
g m−2 DW | % | g m−2 DW | % | |||||||||||
2006 | 2007 | |||||||||||||
Nitrogen (N) kg ha−1 | 60 | 1 | 48.2 | 334.6 | 304.9 | 910.9 | 1385.9 | 48.6 | 51.7 | 245.8 | 414.0 | 861.6 | 1359.4 | 47.2 |
120 | 49.3 | 312.7 | 298.3 | 915.5 | 1361.5 | 49.1 | 56.3 | 282.4 | 490.1 | 721.0 | 1356.6 | 39.2 | ||
F value and significance | 2.3 ns | 6.8 ** | 0.9 ns | 0.1 ns | 2.1 ns | 0.7 ns | 29.3 *** | 43.8 *** | 29.3 *** | 43.8 *** | 68.3 *** | 94.9 *** | ||
Sulfur (S) kg ha−1 | 0 | 1 | 48.4 | 333.3 | 302.6 | 897.6 | 1371.6 | 48.3 | 54.7 | 263.3 | 463.7 | 686.8 | 1285.3 | 39.8 |
50 | 49.3 | 314.0 | 300.6 | 914.5 | 1375.8 | 49.4 | 53.4 | 265.4 | 440.3 | 896.0 | 1430.7 | 46.6 | ||
F value and significance | 0.84 ns ‡ | 5.3 * | 0.1 ns | 6.8 ** | 0.06 ns | 4.5 * | 2.3 ns | 0.1 ns | 2.3 ns ‡ | 0.1 ns | 6.4 ** | 65.6 *** | ||
Sampling time (T), DAE 1 | 15 | 9 x 8 y 7 z | 17.9 | 51.2 | nd † | nd | 69.1 | nd | 7.7 | 71.4 | nd † | nd | 79.1 | nd |
25 | 36.1 | 187.4 | 61.9 | nd | 285.4 | nd | 49.5 | 282.9 | 210.3 | nd | 542.6 | nd | ||
35 | 42.6 | 308.6 | 131.9 | 73.4 | 556.5 | 16.0 | 40.2 | 388.1 | 355.6 | 158.0 | 941.9 | 13.2 | ||
45 | 63.0 | 396.5 | 247.1 | 400.5 | 1107.0 | 23.0 | 58.1 | 381.6 | 421.4 | 277.4 | 1138.5 | 35.9 | ||
55 | 64.9 | 452.6 | 384.7 | 604.9 | 1507.0 | 30.8 | 62.7 | 325.5 | 493.6 | 426.1 | 1307.9 | 41.0 | ||
65 | 61.5 | 498.6 | 429.7 | 770.2 | 1759.9 | 40.0 | 75.0 | 280.6 | 575.6 | 645.9 | 1577.1 | 43.8 | ||
75 | 60.3 | 485.5 | 456.5 | 1027.3 | 2029.6 | 46.0 | 76.6 | 268.6 | 593.3 | 828.4 | 1766.9 | 50.4 | ||
85 | 52.2 | 349.8 | 389.5 | 1269.6 | 2061.0 | 54.9 | 68.3 | 247.8 | 555.0 | 1087.5 | 1958.6 | 61.9 | ||
95 | 47.3 | 300.4 | 320.9 | 1469.0 | 2134,5 | 62.9 | 56.3 | 204.9 | 489.3 | 1299.3 | 2049.8 | 69.0 | ||
105 | 41.9 | 206.1 | 292.2 | 1686.7 | 2226.9 | 72.0 | 46.0 | 189.8 | 374.2 | 1608.0 | 2218.1 | 75.8 | ||
F value and significance | 160.0 *** | 117.5 *** | 162.3 *** | 1136.1 *** | 930.0 *** | 671.2 *** | 222.6 *** | 116.3 *** | 222.6 *** | 116.3 *** | 81.0 *** | 277.7 *** | ||
Significance of interactions ‡ | ||||||||||||||
N × S | 1 | * | *** | *** | ns | *** | *** | ns | ns | ns | *** | *** | *** | |
N × T | 9 x,8 y,7 z | *** | ns | *** | * | ** | * | ns | *** | ** | ns | ns | ns | |
S × T | 9,8,7 | *** | ns | ns | ns | ns | ns | *** | * | ** | ** | ** | ns | |
N× S× T | 9,8,7 | *** | *** | *** | ns | *** | *** | ** | ns | ns | ns | ns | ns |
Plant Part | DAEop | DAEcrit | DAEdiff | Bmax, g m−2 DW |
---|---|---|---|---|
2006 | ||||
Roots + stolons, RS | 66.1 | 33.0 | 33.1 | 63.4 |
Leaves, LE | 64.7 | 47.2 | 17.5 | 470.4 |
Stems, ST | 66.4 | 37.4 | 29.0 | 422.2 |
2007, S0 | ||||
Roots + stolons, RS | 67.9 | 31.8 | 36.1 | 74.5 |
Leaves, LE | 41.7 | 51.9 | −10.2 | 403.3 |
Stems, ST | 73.7 | 58.6 | 15.1 | 590.4 |
2007, S50 | ||||
Roots + stolons, RS | 70.5 | 27.0 | 43.5 | 70.0 |
Leaves, LE | 46.0 | 46.4 | −0.4 | 394.5 |
Stems, ST | 70.3 | 51.5 | 18.8 | 551.2 |
Ascending Phase | Descending Phase | TTBcrit, g m−2 DW | Bmax, g m−2 DW |
---|---|---|---|
2006 | |||
B-RS = 0.044 TUY + 41.1 n = 3, R2 = 0.90, p ≤ 0.05 | B-RS = −0.03 TUY + 88.1 n = 4, R2 = 0.99, p ≤ 0.01 | 652.8 | 69.8 |
B-LE = 0.27 TUY + 288.1 n = 4, R2 = 0.99, p ≤ 0.01 | B-LE = −0.041 TUY + 894 n = 4, R2 = 0.98, p ≤ 0.01 | 888.4 | 529.7 |
B-ST = 0.45 TUY + 91.9 n = 4, R2 = 0.90, p ≤ 0.05 | B-ST = −0.26 TUY + 716.4 n = 4, R2 = 0.97, p ≤ 0.01 | 883.3 | 486.7 |
2007, S0 | |||
B-RS = 0.067 TUY + 36.7 n = 5, R2 = 0.94, p ≤ 0.01 | B-RS = −0.06 TUY + 127.6 n = 3, R2 = 0.99, p ≤ 0.01 | 693.9 | 85.3 |
Stagnation, (DAE 35 + 45) | B-LE = −0.13 TUY + 362.3 n = 6, R2 = 0.96, p ≤ 0.01 | - | 383.2 |
B-ST = 0.48 TUY + 300.7 n = 5, R2 = 0.96, p ≤ 0.01 | B-ST = −0.45 TUY + 1029.2 n = 3, R2 = 0.99, p ≤ 0.01 | 788.4 | 676.0 |
207, S50 | |||
B-RS = 0.06 TUY + 29.9 n = 4, R2 = 0.86, p ≤ 0.05 | B-RS = −0.023 TUY + 91.4 n = 4, R2 = 0.97, p ≤ 0.01 | 741.0 | 74.4 |
Stagnation, (DAE 35 + 45) | B-LE = −0.13 TUY + 400.6 n = 8, R2 = 0.94, p ≤ 0.01 | - | 383.2 |
B-ST = 0.38 TUY + 303.4 n = 4, R2 = 0.99, p ≤ 0.01 | B-ST = −0.23 TUY + 776.4 n = 4, R2 = 0.98, p ≤ 0.01 | 778.0 | 599.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grzebisz, W.; Frąckowiak, K.; Spiżewski, T.; Przygocka-Cyna, K. Does Elemental Sulfur Act as an Effective Measure to Control the Seasonal Growth Dynamics of Potato Tubers (Solanum tuberosum L.)? Plants 2022, 11, 248. https://doi.org/10.3390/plants11030248
Grzebisz W, Frąckowiak K, Spiżewski T, Przygocka-Cyna K. Does Elemental Sulfur Act as an Effective Measure to Control the Seasonal Growth Dynamics of Potato Tubers (Solanum tuberosum L.)? Plants. 2022; 11(3):248. https://doi.org/10.3390/plants11030248
Chicago/Turabian StyleGrzebisz, Witold, Karolina Frąckowiak, Tomasz Spiżewski, and Katarzyna Przygocka-Cyna. 2022. "Does Elemental Sulfur Act as an Effective Measure to Control the Seasonal Growth Dynamics of Potato Tubers (Solanum tuberosum L.)?" Plants 11, no. 3: 248. https://doi.org/10.3390/plants11030248
APA StyleGrzebisz, W., Frąckowiak, K., Spiżewski, T., & Przygocka-Cyna, K. (2022). Does Elemental Sulfur Act as an Effective Measure to Control the Seasonal Growth Dynamics of Potato Tubers (Solanum tuberosum L.)? Plants, 11(3), 248. https://doi.org/10.3390/plants11030248