Totipotency of Daucus carota L. Somatic Cells Microencapsulated Using Spray Drying Technology
Abstract
:1. Introduction
2. Results
2.1. Plant Material
2.2. Callus Induction
2.3. Cell Suspension Cultures
2.4. Encapsulation by Spray Drying
2.4.1. Stability of Encapsulated Cells during Storage
2.4.2. Viability of Encapsulated Cells during Storage
2.4.3. Cell Totipotency and Redifferentiation
2.5. Surface Morphology of Microcapsules
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Callus Induction
4.3. Cell Suspension Cultures
Concentration and Viability of Cells
4.4. Encapsulation by Spray Drying
4.4.1. Yield, Moisture and Water Activity of Powder
4.4.2. Cell Viability
4.4.3. Determination of Cell Totipotency and Redifferentiation
4.5. Surface Morphology Analysis
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, A.A.; Bishr, M.M.; El-Shanawany, M.A.; Attia, E.; Ross, S.A.; Paré, P.W. Rare trisubstituted sesquiterpenes daucanes from the wild Daucus carota. Phytochemistry 2005, 66, 1680–1684. [Google Scholar] [CrossRef] [PubMed]
- Sundararajan, S.; Nayeem, S.; Subiramani, S.; Rajendran, V.; Ramalingam, S. Optimizing culture conditions for high frequency somatic embryogenesis and plantlet conversion in Daucus carota L. Biologia 2019, 74, 695–707. [Google Scholar] [CrossRef]
- Bishayee, A.; Sarkar, A.; Chatterjee, M. Hepatoprotective activity of carrot (Daucus carota L.) against carbon tetrachloride intoxication in mouse liver. J. Ethnopharmacol. 1995, 47, 69–74. [Google Scholar] [CrossRef]
- Majumder, P.; Dasgupta, S.; Mukhopadhaya, R.; Mazumdar, U.; Gupta, M. Anti-steroidogenic activity of the petroleum ether extract and fraction 5 (fatty acids) of carrot (Daucus carota L.) seeds in mouse ovary. J. Ethnopharmacol. 1997, 57, 209–212. [Google Scholar] [CrossRef]
- Vasudevan, M.; Gunnam, K.K.; Parle, M. Antinociceptive and Anti-Inflammatory Properties of Daucus carota Seeds Extract. J. Health Sci. 2006, 52, 598–606. [Google Scholar] [CrossRef] [Green Version]
- Kamada, H.; Kobayashi, K.; Kiyosue, T.; Harada, H. Stress induced somatic embryogenesis in carrot and its application to synthetic seed production. Vitr. Cell. Dev. Biol.-Plant. 1989, 25, 1163–1166. [Google Scholar] [CrossRef]
- Komamine, A.; Kawahara, R.; Matsumoto, M.; Sunabori, S.; Toya, T.; Fujiwara, A.; Tsukahara, M.; Smith, J.; Ito, M.; Fukuda, H.; et al. Mechanisms of somatic embryogenesis in cell cultures: Physiology, biochemistry, and molecular biology. Vitr. Cell. Dev. Biol.-Plant. 1992, 28, 11–14. [Google Scholar] [CrossRef]
- Fukuda, H.; Ito, M.; Sugiyama, M.; Komamine, A. Mechanisms of the proliferation and differentiation of plant cells in cell culture systems. Int. J. Dev. Biol. 1994, 38, 287–299. [Google Scholar]
- Tokuji, Y.; Fukuda, H. A Rapid Method for Transformation of Carrot (Daucus carota L.) by Using Direct Somatic Embryogenesis. Biosci. Biotechnol. Biochem. 1999, 63, 519–523. [Google Scholar] [CrossRef]
- Chandrasekhara, R.M. Synthetic seeds: A review in agriculture and forestry. Afr. J. Biotechnol. 2012, 11, 14254–14275. [Google Scholar] [CrossRef]
- Gantait, S.; Kundu, S.; Ali, N.; Sahu, N.C. Synthetic seed production of medicinal plants: A review on influence of explants, encapsulation agent and matrix. Acta Physiol. Plant. 2015, 37, 98. [Google Scholar] [CrossRef]
- Patel, A.V.; Pusch, I.; Mix-Wagner, G.; Vorlop, K.D. A novel encapsulation technique for the production of artificial seeds. Plant Cell Rep. 2000, 19, 868–874. [Google Scholar] [CrossRef]
- Liu, J.R.; Jeon, J.H.; Yang, S.G.; Lee, H.S.; Song, N.H.; Jeong, W.J. Dry type of carrot (Daucus carota L.) artificial seeds. Sci. Hortic. 1992, 51, 1–11. [Google Scholar] [CrossRef]
- Janick, J.; Kitto, S.L.; Kim, Y.-H. Production of synthetic seed by desiccation and encapsulation. Vitr. Cell. Dev. Biol.-Plant. 1989, 25, 1167–1172. [Google Scholar] [CrossRef]
- Salar-Behzadi, S.; Wu, S.; Toegel, S.; Hofrichter, M.; Altenburger, I.; Unger, F.M.; Wirth, M.; Viernstein, H. Impact of heat treatment and spray drying on cellular properties and culturability of Bifidobacterium bifidum BB-12. Food Res. Int. 2013, 54, 93–101. [Google Scholar] [CrossRef]
- Peralta, G.H.; Bergamini, C.V.; Audero, G.; Páez, R.; Wolf, I.V.; Perotti, M.C.; Hynes, E.R. Spray-dried adjunct cultures of autochthonous non-starter lactic acid bacteria. Int. J. Food Microbiol. 2017, 255, 17–24. [Google Scholar] [CrossRef]
- Chandralekha, A.; Tavanandi, A.H.; Amrutha, N.; Hebbar, H.U.; Raghavarao, K.S.M.S.; Gadre, R. Encapsulation of yeast (Saccharomyces cereviciae) by spray drying for extension of shelf life. Dry. Technol. 2015, 34, 1307–1318. [Google Scholar] [CrossRef]
- Aponte, M.; Troianiello, G.D.; Di Capua, M.; Romano, R.; Blaiotta, G. Impact of different spray-drying conditions on the viability of wine Saccharomyces cerevisiae strains. World J. Microbiol. Biotechnol. 2015, 32, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Schuck, P.; Dolivet, A.; Méjean, S.; Hervé, C.; Jeantet, R. Spray drying of dairy bacteria: New opportunities to improve the viability of bacteria powders. Int. Dairy J. 2013, 31, 12–17. [Google Scholar] [CrossRef]
- Zhang, Z.; Peng, S.; Sun, X.; Jie, Y.; Zhao, H.; Zhu, B.; Dziugan, P.; Zhang, B. A novel insight to screen the optimal spray-drying protectants and parameters for manufacturing lactic acid bacteria preparations. Dry. Technol. 2019, 38, 1843–1856. [Google Scholar] [CrossRef]
- Huang, S.; Vignolles, M.-L.; Chen, X.D.; Le Loir, Y.; Jan, G.; Schuck, P.; Jeantet, R. Spray drying of probiotics and other food-grade bacteria: A review. Trends Food Sci. Technol. 2017, 63, 1–17. [Google Scholar] [CrossRef]
- Barbosa, J.; Borges, S.; Amorim, M.M.; Pereira, M.J.V.; Oliveira, A.L.S.; Pintado, M.M.; Teixeira, P. Comparison of spray drying, freeze drying and convective hot air drying for the production of a probiotic orange powder. J. Funct. Foods 2015, 17, 340–351. [Google Scholar] [CrossRef]
- Bustamante, M.; Oomah, B.D.; Rubilar, M.; Shene, C. Effective Lactobacillus plantarum and Bifidobacterium infantis encapsulation with chia seed (Salvia hispanica L.) and flaxseed (Linum usitatissimum L.) mucilage and soluble protein by spray drying. Food Chem. 2017, 216, 97–105. [Google Scholar] [CrossRef]
- Esparza, A.G.; Ah-Hen, K.S.; Montenegro, O.; Briceño, E.; Stevenson, J.; Alvarado, R.; Gentina, J.C. Survival of Spray-Dried Rhodotorula mucilaginosa isolated from Natural Microbiota of Murta Berries and Antagonistic Effect on Botrytis cinerea. Food Technol. Biotechnol. 2019, 57, 222–229. [Google Scholar] [CrossRef]
- Baena-Aristizábal, C.M.; Foxwell, M.; Wright, D.; Villamizar-Rivero, L. Microencapsulation of Rhizobium leguminosarum bv. trifolii with guar gum: Preliminary approach using spray drying. J. Biotechnol. 2019, 302, 32–41. [Google Scholar] [CrossRef]
- Pawlicki, N.; Sangwan, R.S.; Sangwan-Norreel, B.S. Factors influencing the Agrobacterium tumefaciens-mediated transformation of carrot (Daucus carota L.). Plant Cell Tissue Organ Cult. (PCTOC) 1992, 31, 129–139. [Google Scholar] [CrossRef]
- Nomura, K.; Komamine, A. Molecular mechanisms of somatic embryogenesis. Oxf. Surv. Plant Mol. Cell Biol. 1986, 3, 456–466. [Google Scholar]
- Rabiei, K.; Polyakov, A.; Khodambashi, M.; Sharafova, O.; Kalashnikova, E.; Hooshmand, S.; Omidi, M. Carrot (Daucus carota L.) In Vitro Regeneration. Veg. Crop. Res. Bull. 2010, 73, 13–22. [Google Scholar] [CrossRef]
- Jafari, S.M.; Assadpoor, E.; He, Y.; Bhandari, B. Encapsulation Efficiency of Food Flavours and Oils during Spray Drying. Dry. Technol. 2008, 26, 816–835. [Google Scholar] [CrossRef]
- Rajam, R.; Kumar, S.B.; Prabhasankar, P.; Anandharamakrishnan, C. Microencapsulation of Lactobacillus plantarum MTCC 5422 in fructooligosaccharide and whey protein wall systems and its impact on noodle quality. J. Food Sci. Technol. 2014, 52, 4029–4041. [Google Scholar] [CrossRef] [PubMed]
- Chávez, B.E.; Ledeboer, A.M. Drying of Probiotics: Optimization of Formulation and Process to Enhance Storage Survival. Dry. Technol. 2007, 25, 1193–1201. [Google Scholar] [CrossRef]
- Lapsiri, W.; Bhandari, B.; Wanchaitanawong, P. Viability of Lactobacillus plantarum TISTR 2075 in Different Protectants during Spray Drying and Storage. Dry. Technol. 2012, 30, 1407–1412. [Google Scholar] [CrossRef]
- Bhagwat, A.; Bhushette, P.; Annapure, U.S. Spray drying studies of probiotic Enterococcus strains encapsulated with whey protein and maltodextrin. Beni-Suef Univ. J. Basic Appl. Sci. 2020, 9, 1–8. [Google Scholar] [CrossRef]
- Santivarangkna, C.; Kulozik, U.; Foerst, P. Alternative Drying processes for the Industrial Preservation of Lactic Acid Starter Cultures. Biotechnol. Prog. 2007, 23, 302–315. [Google Scholar] [CrossRef] [PubMed]
- Pant, B.; Manandhar, S. In Vitro Propagation of Carrot (Daucus carota) L. Sci. World 1970, 5, 51–53. [Google Scholar] [CrossRef]
- Qin, Y.H.; Da Silva, J.A.T.; Bi, J.H.; Zhang, S.L.; Hu, G.B. Response of in vitro strawberry to antibiotics. Plant Growth Regul. 2011, 65, 183–193. [Google Scholar] [CrossRef]
- Shehata, A.M.; Wannarat, W.; Skirvin, R.M.; Norton, M.A. The dual role of carbenicillin in shoot regeneration and somatic embryogenesis of horseradish (Armoracia rusticana) in vitro. Plant Cell Tissue Organ Cult. (PCTOC) 2010, 102, 397–402. [Google Scholar] [CrossRef]
- Asif, M.; Eudes, F.; Randhawa, H.; Amundsen, E.; Yanke, J.; Spaner, D. Cefotaxime prevents microbial contamination and improves microspore embryogenesis in wheat and triticale. Plant Cell Rep. 2013, 32, 1637–1646. [Google Scholar] [CrossRef]
- Mathias, R.J.; Boyd, L.A. Cefotaxime stimulates callus growth, embryogenesis and regeneration in hexaploid bread wheat (Triticum aestivum L. em. thell). Plant Sci. 1986, 46, 217–223. [Google Scholar] [CrossRef]
- Grewal, D.; Gill, R.; Gosal, S.S. Influence of antibiotic cefotaxime on somatic embryogenesis and plant regeneration in indica rice. Biotechnol. J. 2006, 1, 1158–1162. [Google Scholar] [CrossRef]
- Plus, J.; George, L.; Eapen, S.; Rao, P.S. Enhanced plant regeneration in pearl millet (Pennisetum americanum) by ethylene inhibitors and cefotaxime. Plant Cell Tissue Organ Cult. (PCTOC) 1993, 32, 91–96. [Google Scholar] [CrossRef]
- Grzebelus, E.; Skop, L. Effect of β-lactam antibiotics on plant regeneration in carrot protoplast cultures. Vitr. Cell. Dev. Biol.-Plant. 2014, 50, 568–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mittal, P.; Gosal, S.S.; Senger, A.; Kumar, P. Impact of cefotaxime on somatic embryogenesis and shoot regeneration in sugarcane. Physiol. Mol. Biol. Plants 2009, 15, 257–265. [Google Scholar] [CrossRef] [Green Version]
- Luján-Hidalgo, M.C.; Rustrian-Castellanos, I.E.; Arias-Castro, C.; Gutiérrez-Miceli, F.; Rodríguez-Mendiola, M.A.; Mancilla-Margalli, N.A.; Abud-Archila, M. Microencapsulation of microbial consortium and volatile compounds of palm (Acrocomia aculeata) wine. Rev. Mex. Ing. Quim. 2019, 18, 1245–1259. [Google Scholar] [CrossRef]
- Loksuwan, J. Characteristics of microencapsulated β-carotene formed by spray drying with modified tapioca starch, native tapioca starch and maltodextrin. Food Hydrocoll. 2007, 21, 928–935. [Google Scholar] [CrossRef]
- Turasan, H.; Sahin, S.; Sumnu, G. Encapsulation of rosemary essential oil. LWT 2015, 64, 112–119. [Google Scholar] [CrossRef]
- Rosenberg, M.; Kopelman, I.J.; Talmon, Y. Factors affecting retention in spray-drying microencapsulation of volatile materials. J. Agric. Food Chem. 1990, 38, 1288–1294. [Google Scholar] [CrossRef]
- Eckert, C.; Serpa, V.G.; dos Santos, A.C.F.; da Costa, S.M.; Dalpubel, V.; Lehn, D.N.; de Souza, C.F.V. Microencapsulation of Lactobacillus plantarum ATCC 8014 through spray drying and using dairy whey as wall materials. LWT 2017, 82, 176–183. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Gamborg, O.L.; Miller, R.A.; Ojima, K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 1968, 50, 151–158. [Google Scholar] [CrossRef]
- Justamante, M.S.; Ibáñez, S.; Villanova, J.; Pérez-Pérez, J.M. Vegetative propagation of argan tree (Argania spinosa (L.) Skeels) using in vitro germinated seeds and stem cuttings. Sci. Hortic. 2017, 225, 81–87. [Google Scholar] [CrossRef]
- Mineykina, A.; Shumilina, D.; Bondareva, L.; Soldatenko, A.; Domblides, E. Effect of Beta-Lactam Antibiotics on Microspore Embryogenesis in Brassica Species. Plants 2020, 9, 489. [Google Scholar] [CrossRef] [PubMed]
- Gautam, C.; Prabhu, H.V.; Nargund, V. In vitro Evaluation of Fungicides, Botanicals and Bioagents against Peziotrichum corticolum causing Black Banded Disease of Mango. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 652–661. [Google Scholar] [CrossRef]
- Channakeshava, C.; Pankaja, N. In Vitro Evaluation of Fungicides, Plant Extracts and Biocontrol Agents against Brown Leaf Spot of Paddy. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 127–132. [Google Scholar] [CrossRef]
- Dugassa, A.; Alemu, T.; Woldehawariat, Y. In-vitro compatibility assay of indigenous Trichoderma and Pseudomonas species and their antagonistic activities against black root rot disease (Fusarium solani) of faba bean (Vicia faba L.). BMC Microbiol. 2021, 21, 115. [Google Scholar] [CrossRef]
Encapsulant Agents | Outlet Air Temperature (°C) | Powder Yield (%) | Water Activity (Aw) | Moisture Content (%) | Cell Viability (%) |
---|---|---|---|---|---|
Control * | 60 | 1.9c | 0.479a | 10.54a | 34b |
MDGA | 60 | 73a | 0.119c | 2.62c | 100a |
MDGA | 50 | 70ab | 0.186b | 3.27bc | 100a |
MDXG | 60 | 68ab | 0.110c | 3.68b | 100a |
MDXG | 50 | 63b | 0.142bc | 3.73b | 100a |
LSD | 7.46 | 0.048 | 1.05 | 4.88 |
Encapsulant Agents | OT (°C) | Time of Storage (Days) | ||||||
---|---|---|---|---|---|---|---|---|
30 | 60 | 90 | 120 | 150 | 180 | LSD | ||
MDGA | 60 | 0.120BCa | 0.122Ba | 0.125Ca | 0.128Ba | 0.130Ba | 0.135Ba | 0.025 |
MDGA | 50 | 0.188Aa | 0.192Aa | 0.195Aa | 0.196Aa | 0.201Aa | 0.205Aa | 0.041 |
MDXG | 60 | 0.113Ca | 0.117Ba | 0.121Ca | 0.123Ba | 0.131Ba | 0.143Ba | 0.044 |
MDXG | 50 | 0.148Ba | 0.151Aba | 0.155Ba | 0.160Aba | 0.165Aba | 0.168Aba | 0.048 |
LSD | 0.031 | 0.047 | 0.024 | 0.053 | 0.042 | 0.053 |
Encapsulant Agents | OT (°C) | Time of Storage (Days) | ||||||
---|---|---|---|---|---|---|---|---|
30 | 60 | 90 | 120 | 150 | 180 | LSD | ||
MDGA | 60 | 100Aa | 100Aa | 100Aa | 98Aa | 95Ab | 92Ac | 2.41 |
MDGA | 50 | 100Aa | 100Aa | 100Aa | 99Aa | 96Ab | 93Ac | 2.14 |
MDXG | 60 | 100Aa | 100Aa | 100Aa | 97Aab | 96Ab | 92Ac | 2.90 |
MDXG | 50 | 100Aa | 100Aa | 100Aa | 98Ab | 95Ac | 90Ad | 1.02 |
LSD | 0 | 0 | 0 | 3.12 | 1.802 | 4.51 |
Type of Cell Suspension | Time of Culture (Days) | ||||||
---|---|---|---|---|---|---|---|
7 | 14 | 21 | 28 | 35 | 42 | Secondary Embryogenesis | |
Cells without spray drying | 5.3a | 10a | 14.7a | 20.7a | 27.6a | 24.6a | Yes |
Cells with spray drying (OT = 50 °C, MDGA) | 0b | 0b | 0b | 3b | 13.3b | 19a | Yes |
LSD | 4.03 | 4.80 | 4.03 | 5.39 | 8.58 | 13.7 |
Treatment * |
Outlet Air Temperature (°C) | Encapsulant Agent |
---|---|---|
Control | 60 | Without encapsulant agents |
1 | 60 | Maltodextrin-gum Arabic (MDGA) |
2 | 50 | Maltodextrin-gum Arabic (MDGA) |
3 | 50 | Maltodextrin-xanthan gum (MDXG) |
4 | 60 | Maltodextrin-xanthan gum (MDXG) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santiz-Gómez, J.A.; Abud-Archila, M.; Ruíz-Valdiviezo, V.M.; Sánchez-Roque, Y.; Gutiérrez-Miceli, F.A. Totipotency of Daucus carota L. Somatic Cells Microencapsulated Using Spray Drying Technology. Plants 2021, 10, 2491. https://doi.org/10.3390/plants10112491
Santiz-Gómez JA, Abud-Archila M, Ruíz-Valdiviezo VM, Sánchez-Roque Y, Gutiérrez-Miceli FA. Totipotency of Daucus carota L. Somatic Cells Microencapsulated Using Spray Drying Technology. Plants. 2021; 10(11):2491. https://doi.org/10.3390/plants10112491
Chicago/Turabian StyleSantiz-Gómez, José Alfredo, Miguel Abud-Archila, Víctor Manuel Ruíz-Valdiviezo, Yazmin Sánchez-Roque, and Federico Antonio Gutiérrez-Miceli. 2021. "Totipotency of Daucus carota L. Somatic Cells Microencapsulated Using Spray Drying Technology" Plants 10, no. 11: 2491. https://doi.org/10.3390/plants10112491
APA StyleSantiz-Gómez, J. A., Abud-Archila, M., Ruíz-Valdiviezo, V. M., Sánchez-Roque, Y., & Gutiérrez-Miceli, F. A. (2021). Totipotency of Daucus carota L. Somatic Cells Microencapsulated Using Spray Drying Technology. Plants, 10(11), 2491. https://doi.org/10.3390/plants10112491