Hypolipidemic and Antioxidant Effects of Guishe Extract from Agave lechuguilla, a Mexican Plant with Biotechnological Potential, on Streptozotocin-Induced Diabetic Male Rats
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Animals and Diabetes Induction
3.2. Plant Material and Extract Preparation
3.3. Blood Chemistry
3.4. Kidney Mitochondria Isolation
3.5. Lipid Peroxidation in Rat Kidney Mitochondria
3.6. Catalase Activity
3.7. Mitochondria SOD Activity
3.8. Determination of Glutathione (GSSG/GSH, GSSG, and GSH)
3.9. Determination of Glutathione Peroxidase (GSH-Px)
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stephens, J.W.; Brown, K.E.; Min, T. Chronic kidney disease in type 2 diabetes: Implications for managing glycaemic control, cardiovascular and renal risk. Diabetes Obes. Metab. 2020, 22, 32–45. [Google Scholar] [CrossRef]
- Del Razo-Olvera, F.M.; Reyes-Munoz, E.; Rojas-Martínez, R.; Guerrero-Romero, F.; Mehta, R.; Dávila-Olmedo, W.E.; Bello-Chavolla, O.Y.; Melgarejo-Hernández, M.A.; Durazo-Arvizu, R.; Aguilar-Salinas, C.A. Development and validation of a tool for predicting type 2 diabetes in Mexican women of reproductive age. Endocrinol. Diabetes Nutr. 2020, 67, 578–585. [Google Scholar] [CrossRef]
- Chen, L.; Magliano, D.J.; Zimmet, P.Z. The worldwide epidemiology of type 2 diabetes mellitus—Present and future perspectives. Nat. Rev. Endocrinol. 2012, 8, 228–236. [Google Scholar] [CrossRef]
- Atkinson, M.A.; Eisenbarth, G.S.; Michels, A.W. Type 1 diabetes. Lancet 2014, 383, 69–82. [Google Scholar] [CrossRef] [Green Version]
- Mekala, K.C.; Bertoni, A.G. Epidemiology of diabetes mellitus. In Transplantation, Bioengineering, and Regeneration of the Endocrine Pancreas; Giuseppe, O., Piemonti, L., Ricordi, C., Stratta, R.J., Gruessner, R.W.G., Eds.; Academic Press: Cambridge, MA, USA, 2019; Volume 1. [Google Scholar]
- Khazaei, H.; Pesce, M.; Patruno, A.; Aneva, I.Y.; Farzaei, M.H. Medicinal plants for diabetes associated neurodegenerative diseases: A systematic review of preclinical studies. Phytother. Res. 2021, 35, 1697–1718. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Cederbaum, A.I. Mitochondrial catalase and oxidative injury. Neurosignals 2001, 10, 189–199. [Google Scholar] [CrossRef]
- Esquivel-Gutiérrez, E.R.; Alcaraz-Meléndez, L.; Salgado-Garciglia, R.; Saavedra-Molina, A. Antioxidant effects of damiana (Turnera diffusa Willd. ex Schult.) in kidney mitochondria from streptozotocin-diabetic rats. Nat. Prod. Res. 2018, 32, 2840–2843. [Google Scholar]
- Andrade-Cetto, A.; Heinrich, M. Mexican plants with hypoglycaemic effect used in the treatment of diabetes. J. Ethnopharmacol. 2005, 99, 325–348. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Moya, E.; Romero-Manzanares, A.; Nobel, P.S. Highlights for Agave productivity. GCB Bioenergy 2011, 3, 4–14. [Google Scholar] [CrossRef]
- Peña-Rodríguez, A.; Pelletier-Morreeuw, Z.; García-Luján, J.; Rodríguez-Jaramillo, M.D.C.; Guzmán-Villanueva, L.; Escobedo-Fregoso, C.; Tovar-Ramírez, D.; Reyes, A.G. Evaluation of Agave lechuguilla by-product crude extract as a feed additive for juvenile shrimp Litopenaeus vannamei. Aquac. Res. 2020, 51, 1336–1345. [Google Scholar] [CrossRef]
- Díaz-Jiménez, L.; Carlos-Hernández, S.; Jasso de Rodríguez, D.; Rodríguez-García, R. Conceptualization of a biorefinery for guishe revalorization. Ind. Crop. Prod. 2019, 138, 111441. [Google Scholar] [CrossRef]
- Morreeuw, Z.P.; Escobedo-Fregoso, C.; Ríos-González, L.J.; Castillo-Quiroz, D.; Reyes, A.G. Transcriptome-based metabolic profiling of flavonoids in Agave lechuguilla waste biomass. Plant Sci. 2021, 305, 110748. [Google Scholar] [CrossRef] [PubMed]
- Morreeuw, Z.P.; Castillo-Quiroz, D.; Ríos-González, L.J.; Martínez-Rincón, R.; Estrada, N.; Melchor-Martínez, E.M.; Iqbal, H.M.N.; Parra-Saldivar, R.; Reyes, A.G. High Throughput Profiling of Flavonoid Abundance in Agave lechuguilla Residue-Valorizing under Explored Mexican Plant. Plants 2021, 10, 695. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Liang, H.; Guo, Y.; Yang, D. Cyanidin 3-O-galactoside: A Natural Compound with Multiple Health Benefits. Int. J. Mol. Sci. 2021, 22, 2261. [Google Scholar] [CrossRef]
- Peng, P.; Jin, J.; Zou, G.; Sui, Y.; Han, Y.; Zhao, D.; Liu, L. Hesperidin prevents hyperglycemia in diabetic rats by activating the insulin receptor pathway. Exp. Ther. Med. 2021, 21, 53. [Google Scholar] [CrossRef] [PubMed]
- Elekofehinti, O.O. Saponins: Anti-diabetic principles from medicinal plants—A review. Pathophysiology 2015, 22, 95–103. [Google Scholar] [CrossRef]
- Sharp, P.; Villano, J.S. The Laboratory Rat, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012; p. 22. [Google Scholar]
- Seymour, L.; Saltzman, A. Are urea and creatinine uremic toxins in the rat? Ren. Fail. 2001, 23, 53–59. [Google Scholar]
- Liu, Z.; Que, S.; Xu, J.; Peng, T. Alanine aminotransferase-old biomarker and new concept: A review. Int. J. Med. Sci. 2014, 11, 925. [Google Scholar] [CrossRef] [Green Version]
- Vozarova, B.; Stefan, N.; Lindsay, R.S.; Saremi, A.; Pratley, R.E.; Bogardus, C.; Tataranni, P.A. High alanine aminotransferase is associated with decreased hepatic insulin sensitivity and predicts the development of type 2 diabetes. Diabetes 2002, 51, 1889–1895. [Google Scholar] [CrossRef] [Green Version]
- Qian, K.; Zhong, S.; Xie, K.; Yu, D.; Yang, R.; Gong, D.W. Hepatic ALT isoenzymes are elevated in gluconeogenic conditions including diabetes and suppressed by insulin at the protein level. Diabetes Metab. Res. Rev. 2015, 31, 562–571. [Google Scholar] [CrossRef] [Green Version]
- Sharma, K. Mitochondrial dysfunction in the diabetic kidney. In Mitochondrial Dynamics in Cardiovascular Medicine, 1st ed.; Santulli, G., Ed.; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Pérez-Gallardo, R.V.; Noriega-Cisneros, R.; Esquivel-Gutiérrez, E.R.; Calderón-Cortés, E.; Cortés-Rojo, C.; Manzo-Avalos, S.; Campos-García, J.; Salgado-Garciglia, R.; Montoya-Pérez, R.; Boldogh, I.; et al. Effects of diabetes on oxidative and nitrosative stress in kidney mitochondria from aged rats. J. Bioenergy Biomembr. 2014, 46, 511–518. [Google Scholar] [CrossRef]
- Zhang, M.; Swarts, S.G.; Yin, L.; Liu, C.; Tian, Y.; Cao, Y.; Swarts, M.; Yang, S.; Zhang, S.B.; Ju, S.; et al. Antioxidant properties of quercetin. In Oxygen Transport to Tissue XXXII, 1st ed.; LaManna, J.C., Puchowicz, M.A., Xu, K., Harrison, D.K., Bruley, D.F., Eds.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Lakhanpal, P.; Rai, D.K. Quercetin: A versatile flavonoid. Internet J. Med. Update 2007, 2, 22–37. [Google Scholar] [CrossRef] [Green Version]
- Cayen, M.N.; Dvornik, D. Effect of diosgenin on lipid metabolism in rats. J. Lipid Res. 1979, 20, 162–174. [Google Scholar] [CrossRef]
- Jucá, M.M.; Cysne Filho, F.M.S.; De Almeida, J.C.; Mesquita, D.D.S.; Barriga, J.R.D.M.; Dias, K.C.F.; Barbosa, T.M.; Vasconcelos, L.C.; Leal, L.K.A.M.; Júnior, J.E.R.H.; et al. Flavonoids: Biological activities and therapeutic potential. Nat. Prod. Res. 2018, 34, 692–705. [Google Scholar] [CrossRef]
- Morreeuw, Z.P.; Ríos-González, L.J.; Salinas-Salazar, C.; Melchor-Martínez, E.M.; Ascacio-Valdés, J.A.; Parra-Saldívar, R.; Iqbal, H.M.N.; Reyes, A.G. Early Optimization Stages of Agave lechuguilla Bagasse Processing towards Biorefinery: Drying Procedure and Enzymatic Hydrolysis for Flavonoids Extraction. Molecules 2021, in press. [Google Scholar]
- Anguiano-Sevilla, L.A.; Lugo-Cervantes, E.; Ordaz-Pichardo, C.; Rosas-Trigueros, J.L.; Jaramillo-Flores, M.E. Apoptosis induction of agave lechuguilla torrey extract on human lung adenocarcinoma cells (SK-LU-1). Int. J. Mol. Sci. 2018, 19, 3765. [Google Scholar] [CrossRef] [Green Version]
- De Aluja, A.S. Animales de laboratorio y la Norma Oficial Mexicana (NOM-062-ZOO-1999). Gac. Méd. Méx. 2002, 138, 295–298. [Google Scholar]
- Ganda, O.P.; Rossini, A.A.; Like, A.A. Studies on streptozotocin diabetes. Diabetes 1976, 25, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Secretaría del Medio Ambiente y Recursos Naturales (Semarnat). Norma Oficial Mexicana NOM-008-SEMARNAT-1996. Procedimientos, Criterios y Especificaciones Para Realizar el Aprovechamiento, Transporte y Almacenamiento de Cogollos; Secretaría del Medio Ambiente y Recursos Naturales: Semarnat, Ciudad de México, México, 1996.
- Saavedra-Molina, A.; Devlin, T.M. Effect of extra-and intra-mitochondrial calcium on citrulline synthesis. Amino Acids 1997, 3, 293–298. [Google Scholar] [CrossRef]
- Gornall, A.G.; Bardawill, C.J.; David, M.M. Determination of serum proteins by means of the biuret reaction. J. Biol. Chem. 1949, 177, 751–766. [Google Scholar] [CrossRef]
- Buege, J.A.; Aust, S.D. Microsomal lipid peroxidation. Methods Enzymol. 1978, 52, 302–310. [Google Scholar] [PubMed]
- Jeulin, C.; Soufir, J.C.; Weber, P.; Laval-Martin, D.; Calvayrac, R. Catalase activity in human spermatozoa and seminal plasma. Gamete Res. 1989, 24, 85–196. [Google Scholar] [CrossRef]
- Suzuki, K. Measurement of Mn-SOD and Cu, Zn-SOD. In Experimental Protocols for Reactive Oxygen and Nitrogen Species, 1st ed.; Taniguichi, N., Gutteridge, J., Eds.; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Huerta-Cervantes, M.; Peña-Montes, D.J.; Montoya-Pérez, R.; Trujillo, X.; Huerta, M.; López-Vázquez, M.Á.; Olvera-Cortés, M.E.; Saavedra-Molina, A. Gestational Diabetes Triggers Oxidative Stress in Hippocampus and Cerebral Cortex and Cognitive Behavior Modifications in Rat Offspring: Age- and Sex-Dependent Effects. Nutrients 2020, 12, 376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawrence, R.A.; Burk, R.F. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem. Biophys. Res. Commun. 1976, 71, 952–958. [Google Scholar] [CrossRef]
Parameter | Units | Control | DM | Control 150 mg/kg | DM 150 mg/kg | Control 300 mg/kg | DM 300 mg/kg | Control 600 mg/kg | DM 600 mg/kg |
---|---|---|---|---|---|---|---|---|---|
Glucose | mg/dL | 131.67 ± 1.20 | 374.67 ± 38.68 * | 118.00 ± 4.04 | 445.67 ± 21.54 * | 116.00 ± 2.08 | 386.67 ± 22.82 * | 134.67 ± 0.33 | 344.67 ± 22.45 * |
Urea | mg/dL | 37.70 ± 0.61 | 80.59 ± 3.73 * | 37.43 ± 1.50 | 145.48 ± 1.28 * | 144.51 ± 1.19 | 222.97 ± 13.47 * | 228.91 ± 5.81 | 322.38 ± 8.48 * |
Creatinine | mg/dL | 0.27 ± 0.03 | 0.30 ± 0.00 | 1.13 ± 0.09 * | 0.63 ± 0.03 | 1.23 ± 0.09 | 1.07 ± 0.17 | 1.27 ± 0.12 | 1.07 ± 0.03 |
Cholesterol | mg/dL | 150.67 ± 0.33 | 152.67 ± 1.20 | 151.00 ± 0.58 | 155.67 ± 0.67 | 154.00 ± 2.31 | 154.67 ± 1.86 | 155.00 ± 2.65 | 151.67 ± 0.67 |
Triglycerides | mg/dL | 144.33 ± 1.86 | 126.33 ± 1.20 * | 99.67 ± 0.33 | 117.00 ± 2.00* | 101.00 ± 2.89 | 85.00 ± 2.31 * | 90.00 ± 3.21 | 86.00 ± 4.93 |
Uric Acid | mg/dL | 1.03 ± 0.15 | 1.97 ± 0.13 * | 3.13 ± 0.15 | 2.77 ± 0.32 | 3.30 ± 0.21 | 4.30 ± 0.25 * | 3.70 ± 0.06 | 2.80 ± 0.00 |
T Bilirubin | mg/dL | 0.10 ± 0.00 | 0.13 ± 0.03 | 0.17 ± 0.03 | 0.17 ± 0.03 | 0.23 ± 0.07 | 0.23 ± 0.09 | 0.17 ± 0.03 | 0.20 ± 0.06 |
D Bilirubin | mg/dL | 0.07 ± 0.03 | 0.10 ± 0.00 | 0.03 ± 0.03 | 0.03 ± 0.03 | 0.07 ± 0.03 | 0.03 ± 0.03 | 0.03 ± 0.03 | 0.07 ± 0.03 |
ALT | U/L | 106.9 ± 11.15 | 127.60 ± 7.39 | 190.60 ± 9.37 | 380.77 ± 11.34 * | 215.20 ± 0.85 | 573.80 ± 20.71 * | 195.40 ± 15.59 | 644.03 ± 4.29 * |
Enzyme | Units | Control | DM | Control 150 mg/kg | DM 150 mg/kg | Control 300 mg/kg | DM 300 mg/kg | Control 600 mg/kg | DM 600 mg/kg |
---|---|---|---|---|---|---|---|---|---|
mSOD | U mg−1 prot | 178.9 ± 17.7 | 321.9 ± 5.9 * | 244.2 ± 5.2 | 313.7 ± 12.4 * | 265.0 ± 14.8 | 303.2 ± 27.0 | 216.5 ± 3.3 | 193.8 ±17.8 |
Catalase | U mg−1 prot | 31.2 ± 1.6 | 34.7 ± 0.2 | 22.6 ± 0.5 | 21.6 ± 1.0 | 27.5 ± 1.9 | 24.1 ± 1.7 | 36.6 ± 0.9 | 20.1 ± 0.6 * |
GSH-Px | µM Min−1 Mg−1 prot | 33.4 ± 0.1 | 29.8 ± 0.4 * | 42.5 ± 0.5 | 37.7 ± 1.3 * | 95.2 ± 0.8 | 94.4 ± 1.0 | 98.3 ± 1.6 | 94.5 ± 1.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esquivel-Gutiérrez, E.R.; Manzo-Avalos, S.; Peña-Montes, D.J.; Saavedra-Molina, A.; Morreeuw, Z.P.; Reyes, A.G. Hypolipidemic and Antioxidant Effects of Guishe Extract from Agave lechuguilla, a Mexican Plant with Biotechnological Potential, on Streptozotocin-Induced Diabetic Male Rats. Plants 2021, 10, 2492. https://doi.org/10.3390/plants10112492
Esquivel-Gutiérrez ER, Manzo-Avalos S, Peña-Montes DJ, Saavedra-Molina A, Morreeuw ZP, Reyes AG. Hypolipidemic and Antioxidant Effects of Guishe Extract from Agave lechuguilla, a Mexican Plant with Biotechnological Potential, on Streptozotocin-Induced Diabetic Male Rats. Plants. 2021; 10(11):2492. https://doi.org/10.3390/plants10112492
Chicago/Turabian StyleEsquivel-Gutiérrez, Edgar R., Salvador Manzo-Avalos, Donovan J. Peña-Montes, Alfredo Saavedra-Molina, Zoé P. Morreeuw, and Ana G. Reyes. 2021. "Hypolipidemic and Antioxidant Effects of Guishe Extract from Agave lechuguilla, a Mexican Plant with Biotechnological Potential, on Streptozotocin-Induced Diabetic Male Rats" Plants 10, no. 11: 2492. https://doi.org/10.3390/plants10112492
APA StyleEsquivel-Gutiérrez, E. R., Manzo-Avalos, S., Peña-Montes, D. J., Saavedra-Molina, A., Morreeuw, Z. P., & Reyes, A. G. (2021). Hypolipidemic and Antioxidant Effects of Guishe Extract from Agave lechuguilla, a Mexican Plant with Biotechnological Potential, on Streptozotocin-Induced Diabetic Male Rats. Plants, 10(11), 2492. https://doi.org/10.3390/plants10112492