Valorization of Fig (Ficus carica L.) Waste Leaves: HPLC-QTOF-MS/MS-DPPH System for Online Screening and Identification of Antioxidant Compounds
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determination of Total Polyphenol Content
2.2. Determination of Total Flavonoids Content
2.3. Antioxidant Capacity
2.4. Flavonoid Characterization of Fig Leaves by HPLC-DAD-ESI-MS
2.5. Radical Scavenging Capacity of Fig Flavonoids by Online HPLC-DPPH
2.6. Identification of Flavonoid Compounds
3. Materials and Method
3.1. Chemicals and Materials
3.2. Instrumentation
3.3. Sample Preparation
3.4. Total polyphenol Content
3.5. Total Flavonoid Content
3.6. DPPH Radical Scavenging Capacity
3.7. 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic) Acid (ABTS) Radical Scavenging Capacity
3.8. Ferric-Ion-Reducing Antioxidant Power (FRAP)
3.9. HPLC-DAD-ESI-MS Analysis
3.10. Online HPLC-DPPH Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jules, J. The Fig: Horticultural Reviews; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Zohary, D.; Spiegel-Roy, P. Beginnings of fruit growing in the old world. Science 1975, 187, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Afsah-Hejri, L.; Toudeshki, A.; Homayouni, T.; Mehrazi, S.; Ghomlami Pareh, A.; Gordon, P.; Ehsani, R. Potential of ozonated-air (OA) application to reduce the weight and volume loss in fresh figs (Ficus carica L.). Postharvest Biol. Technol. 2021, 180, 111631. [Google Scholar] [CrossRef]
- Abdel-Rahman, R.; Ghoneimy, E.; Abdel-Wahab, A.; Eldeeb, N.; Salem, M.; Salama, E.; Ahmed, T. The therapeutic effects of Ficus carica extract as antioxidant and anticancer agent. S. Afr. J. Bot. 2021, 141, 273–277. [Google Scholar] [CrossRef]
- Muhammad, N.; Alam, Z. Impact of maturity on phenolic composition and antioxidant activity of medicinally important leaves of Ficus carica L. Physiol. Mol. Biol. Plants. 2018, 24, 1–7. [Google Scholar]
- Li, Z.; Yang, Y.; Liu, M.; Zhang, C.; Cui, Q. A comprehensive review on phytochemistry, bioactivities, toxicity studies, and clinical studies on Ficus carica L. leaves. Biomed. Pharmacother. 2021, 137, 111393. [Google Scholar] [CrossRef]
- Mahmoudi, S.; Khali, M.; Benkhaled, A.; Benamirouche, K.; Baiti, I. Phenolic and flavonoid contents, antioxidant and antimicrobial activities of leaf extracts from ten Algerian Ficus carica L. varieties. Asian Pac. J. Trop. Biomed. 2016, 6, 239–245. [Google Scholar] [CrossRef] [Green Version]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease-ScienceDirect. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef]
- Alcántara, C.; Ugi, T.; Abdelkebir, R.; García-Pérez, J.; Jambrak, A.R.; Lorenzo, J.M.; Collado, M.C.; Granato, D.; Barba, F.J. Effects of ultrasound-assisted extraction and solvent on the phenolic profile, bacterial growth, and anti-Inflammatory/antioxidant activities of mediterranean olive and Fig Leaves extracts. Molecules 2020, 25, 1718. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Valdeolívar, C.; Alvarez-Fitz, P.; Zacapala-Gómez, A.; Acevedo-Quiroz, M.; Mendoza-Catalán, M. Phytochemical profile and antiproliferative effect of Ficus crocata extracts on triple-negative breast cancer cells. BMC Complementary Med. Ther. 2020, 20, 191. [Google Scholar] [CrossRef]
- Canal, J.R.; Torres, M.; Romero, A.; Pérez, C. A chloroform extract obtained from a decoction of Ficus carica leaves improves the cholesterolaemic status of rats with streptozotocin-induced diabetes. Acta Physiologica Hungarica 2000, 87, 71–76. [Google Scholar] [CrossRef]
- Konyalioglu, S.; Saglam, H.; Kivcak, B. α-tocopherol, flavonoid, and phenol contents and antioxidant activity of Ficus carica. leaves. Pharm. Biol. 2008, 43, 683–686. [Google Scholar] [CrossRef]
- Ali, B.; Mujeeb, M.; Aeri, V.; Mir, S.R.; Faiyazuddin, M.; Shakeel, F. Anti-inflammatory and antioxidant activity of Ficus carica L. leaves. Nat. Prod. Res. 2012, 26, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Han, J.; Im, K.; Whang, W.K.; Min, H. Antioxidative and anti-inflammatory activities of an ethanol extract from fig (Ficus carica) branches. Food Sci. Biotechnol. 2013, 22, 1071–1075. [Google Scholar] [CrossRef]
- Pérez, C.; Canal, J.R.; Campillo, J.E.; Romero, A.; Torres, M.D. Hypotriglyceridaemic activity of Ficus carica leaves in experimental hypertriglyceridaemic rats. Phytothe. Res. 1999, 13, 188–191. [Google Scholar] [CrossRef]
- Pérez, C.; Domínguez, E.; Ramiro, J.M.; Romero, A.; Campillo, J.E.; Torres, M. A study on the glycaemic balance in streptozotocin diabetic rats treated with an aqueous extract of Ficus carica (fig tree) leaves. Phytother. Res. 1996, 10, 82–83. [Google Scholar] [CrossRef]
- Serraclara, A.; Hawkins, F.; Pérez, C.; Domnguez, E.; Campillo, J.E.; Torres, M.D. Hypoglycemic action of an oral fig-leaf decoction in type-I diabetic patients 1. Diabetes Res. Clin. Pract. 1998, 39, 19–22. [Google Scholar] [CrossRef]
- Arvaniti, O.S.; Samaras, Y.; Gatidou, G.; Thomaidis, N.S.; Stasinakis, A.S. Review on fresh and dried figs: Chemical analysis and occurrence of phytochemical compounds, antioxidant capacity and health effects. Food Res. Int. 2019, 119, 244–267. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.J.; Li, X.; Li, C.Y.; Li, S.; Wang, T.T.; Fu, Y.J. Ingenious application of ethylenediaminetetraacetic acid disodium to improve the extraction yield of psoralen in fig (Ficus carica L.) leaves. Nat. Prod. Res. 2021. [Google Scholar] [CrossRef]
- Garcia, C.; Blesso, C.N. Antioxidant properties of anthocyanins and their mechanism of action in atherosclerosis. Free. Radic. Biol. Med. 2021, 172, 152–166. [Google Scholar] [CrossRef]
- Lijuan, Y.; Na, Z.; Chenbiao, W.; Chunhong, W. Highly selective separation and purification of anthocyanins from bilberry based on a macroporous polymeric adsorbent. J. Agric. Food Chem. 2015, 63, 3543–3550. [Google Scholar]
- Bu, Y.; Lee, K.; Jung, H.S.; Moon, S.K. Therapeutic effects of traditional herbal medicine on cerebral ischemia: A perspective of vascular protection. Chin. J. Integr. Med. 2013, 19, 804–814. [Google Scholar] [CrossRef]
- Maron, D.J. Flavonoids for reduction of atherosclerotic risk. Curr. Atheroscler. Rep. 2004, 6, 73–78. [Google Scholar] [CrossRef]
- Li, Y.M.; Fan, Y.; Liu, Y.; Hao, M.F.; Li, X.; Liu, L.; Zi, H.; Li, J. Effect of compatibility of astragalus flavonoids and kudzu flavonoids on glucose and lipid metabolism in liver tissue. Chin. J. Exp. Tradit. Med. Formulae. 2015, 21, 109–112. [Google Scholar]
- Dawidowicz, A.L.; Wianowska, D.; Olszowy, M. On practical problems in estimation of antioxidant activity of compounds by DPPH method (Problems in estimation of antioxidant activity). Food Chem. 2012, 131, 1037–1043. [Google Scholar] [CrossRef]
- Okur, I.; Baltacioglu, C.; Agcam, E.; Baltacioglu, H.; Alpas, H. Evaluation of the effect of different extraction techniques on sour cherry pomace phenolic content and antioxidant activity and determination of phenolic compounds by FTIR and HPLC. Waste Biomass Valorization 2019, 10, 3545–3555. [Google Scholar] [CrossRef]
- Brito, E.; Araújo, M.C.P.D.; Lin, L.Z.; Harnly, J. Determination of the flavonoid components of cashew apple (Anacardium occidentale) by LC-DAD-ESI/MS. Food Chem. 2007, 105, 1112–1118. [Google Scholar]
- Nuengchamnong, N.; Ingkaninan, K. On-line HPLC-MS-DPPH assay for the analysis of phenolic antioxidant compounds in fruit wine: Antidesma thwaitesianum Muell. Food Chem. 2010, 118, 147–152. [Google Scholar] [CrossRef]
- Shi, P.; Du, W.; Wang, Y.; Teng, X.; Chen, X.; Ye, L. Total phenolic, flavonoid content, and antioxidant activity of bulbs, leaves, and flowers made from Eleutherine bulbosa (Mill.). Urb. Food Sci. Nutr. 2018, 7, 148–154. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Ding, X.P.; Qi, J.; Yu, B.Y. Determination of antioxidant activity of tea by HPLC-DPPH. J. China Pharm. Univ. 2012, 43, 236–240. [Google Scholar]
- Qian, Z.M.; Chen, L.; Wu, M.Q.; Li, D.Q. Rapid screening and characterization of natural antioxidants in polygonum viviparum by an on-line system integrating the pressurised liquid micro-extraction, HPLC-DAD-QTOF-MS/MS analysis and antioxidant assay. J. Chromatogr. 2020, 1137, 121926. [Google Scholar] [CrossRef]
- Belguith-Hadriche, O.; Ammar, S.; del Contreras, M.M.; Fetoui, H.; Segura-Carretero, A.; El Feki, A.; Bouaziz, M. HPLC-DAD-QTOF-MS profiling of phenolics from leaf extracts of two Tunisian fig cultivars: Potential as a functional food. Biomed. Pharmacother. 2017, 89, 185–193. [Google Scholar] [CrossRef]
- Adjé, F.; Lozano, Y.F.; Gernevé, C.; Lozano, P.R.; Meudec, E.; Adima, A.A.; Gaydou, E.M. Phenolic acid and flavonol water extracts of Delonix regia red flowers. Ind. Crops Prod. 2012, 37, 303–310. [Google Scholar] [CrossRef]
- Zhou, J.; Xie, G.; Yan, X. Encyclopedia of Traditional Chinese Medicines - Molecular Structures, Pharmacological Activities, Natural Sources and Applications; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Qasim, M.; Muhammad, H.; Ikram, A. Antioxidant and antimicrobial activities of Ixora coccinea root and quantification of phenolic compounds using HPLC. S. Afr. J. Bot. 2020, 135, 71–79. [Google Scholar]
- Zhang, L.H.; Li, Q.G. Analysis of electrospray ionization cracking law of schaftoside. Chin. Med. Sci. 2016, 6, 52–54. [Google Scholar]
- Deng, S.S.; Liu, H.X.; Ma, L.H.; Wang, T.T.; Wang, Y.D.; Huang, X.P. Qualitative analysis and HPLC determination of flavonoids in Leaves of Cymbiditis cerevissimal by UPLC-MS/MS. China Med. Her. 2018, 15, 80–88. [Google Scholar]
- Fernando, W.; Attanayake, A.; Perera, H.; Sivakanesan, R.; Fujimoto, Y. Isolation, identification and characterization of pancreatic lipase inhibitors from Trigonella foenum-graecum seeds. S. Afr. J. Bot. 2019, 121, 51–57. [Google Scholar] [CrossRef]
- Yang, J.; Qian, D.; Jiang, S.; Shang, E.X.; Guo, J.; Duan, J.A. Identification of rutin deglycosylated metabolites produced by human intestinal bacteria using UPLC–Q-TOF/MS. J. Chromatogr.B. 2012, 898, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Joea, B.; Ago, A.; Mo, A.; Maaa, C.; Mg, A. Pharmacological evaluation of hydro-ethanol and hot water leaf extracts of Bauhinia galpinii (Fabaceae): A South African ethnomedicinal plant. S. Afr. J. Bot. 2020, 128, 28–34. [Google Scholar]
- Li, Y.X.; Zhang, Y.Q.; Yang, T.; Li, H.; Guo, J.; Zhao, Q.Q.; Xie, J.B. Pharmacokinetics and tissue distribution study of Isovitexin in rats by HPLC-MS/MS. J. Chromatogr.B 2015, 991, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Zhang, H.; Dzah, C.S.; Zhang, J.; Duan, Y. Subcritical water extraction, identification, antioxidant and antiproliferative activity of polyphenols from lotus seedpod. Sep. Purif. Technol. 2020, 236, 116217. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, C.; Zhang, H. Hepatoprotective effects of kaempferol 3-O-rutinoside and kaempferol 3-O-glucoside from Carthamus tinctorius L. on CCl4-induced oxidative liver injury in mice. J. Food Drug Anal. 2015, 23, 310–317. [Google Scholar] [CrossRef]
- Zhao, B.J.; Zhang, Q.; Liang, X.C.; Xie, J.; Sun, Q. Quercetin reduces inflammation in a rat model of diabetic peripheral neuropathy by regulating the TLR4/MyD88/NF-κB signalling pathway. Eur J. Pharmacol. 2021, 912, 174607. [Google Scholar] [CrossRef]
- Hung, T.M.; Lee, J.S.; Chuong, N.N.; Kim, J.A.; Min, B.S. Kinetics and molecular docking studies of cholinesterase inhibitors derived from water layer of lycopodiella cernua (l.) pic. serm. (ii). Chem. Biol. Interact. 2015, 240, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Gullón, B.; Lú-Chau, T.A.; Moreira, M.T.; Lema, J.M.; Eibes, G. Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends Food Sci. Tech. 2017, 67, 220–235. [Google Scholar] [CrossRef]
- Neupane, P.; Lamichhane, J. Estimation of total phenolic content, total flavonoid content and antioxidant capacities of five medicinal plants from Nepal. Vegetos 2020, 33, 360–366. [Google Scholar] [CrossRef]
- Jin, L.; Li, X.B.; Tian, D.Q.; Fang, X.P.; Yu, Y.M.; Zhu, H.Q.; Ge, Y.Y.; Ma, G.Y.; Wang, W.Y.; Xiao, W.F.; et al. Antioxidant properties and color parameters of herbal teas in China. Ind. Crops Prod. 2016, 87, 198–209. [Google Scholar] [CrossRef]
PeakNo. | Retention Time (min) | First-Level Mass Spectrometry | Secondary Mass Spectrometry | Molecular Weight | Molecular Formula | Identification | Literature Resource | Relative Content a (%) | Relative Antioxidative Power b |
---|---|---|---|---|---|---|---|---|---|
1 | 10.3 | 771 | 609, 462, 301 | 772 | C33H40O21 | 3-O-(rhamnopyranosyl-glucopyranosyl)-7-O-(glucopyranosyl)-quercetin | [33] | 6.4 | 1.7 |
2 | 11.7 | 365 | 203, 159, 130 | 366 | C17H18O9 | 2-carboxyl-1, 4-naphthohydroquinone-4-O-glucopyranoside | [34] | 3.1 | 1.2 |
3 | 11.8 | 579 | 519, 489, 429, 369 | 580 | C26H28O15 | luteolin 6-C-glucopyranoside, 8-C-arabinopyranoside | [35] | 1.9 | 0.4 |
4 | 12.7 | 563 | 473, 443, 353 | 564 | C26H28O14 | schaftoside | [36] | 15.6 | 0.1 |
5 | 13.0 | 447 | 369, 357, 327, 297, 285, 133 | 448 | C21H20O11 | isoorientin | [37] | 1.1 | 7.5 |
6 | 13.2 | 563 | 443, 353, 473, 383 | 564 | C26H28O14 | isoschaftoside | [38] | 34.4 | 1.0 |
7 | 14.0 | 609 | 301, 151, 257, 273 | 610 | C27H30O16 | rutin | [39] | 27.1 | 0.5 |
8 | 14.2 | 577 | 457, 293 | 578 | C27H30O14 | 2″-O-rhamnosylvitexin | [40] | 1.9 | 0.7 |
9 | 14.3 | 432 | 341, 311, 283 | 432 | C21H20O10 | isovitexin | [41] | 4.7 | 0.4 |
10 | 14.4 | 463 | 301, 151 | 464 | C21H20O12 | isoquercetin | [42] | 3.6 | 0.4 |
11 | 15.4 | 593 | 285 | 594 | C27H30O15 | kaempferol-3-O-rutinoside | [43] | 0.1 | 5.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Yu, M.; Li, S.; Yang, X.; Qiao, B.; Shi, S.; Zhao, C.; Fu, Y. Valorization of Fig (Ficus carica L.) Waste Leaves: HPLC-QTOF-MS/MS-DPPH System for Online Screening and Identification of Antioxidant Compounds. Plants 2021, 10, 2532. https://doi.org/10.3390/plants10112532
Li C, Yu M, Li S, Yang X, Qiao B, Shi S, Zhao C, Fu Y. Valorization of Fig (Ficus carica L.) Waste Leaves: HPLC-QTOF-MS/MS-DPPH System for Online Screening and Identification of Antioxidant Compounds. Plants. 2021; 10(11):2532. https://doi.org/10.3390/plants10112532
Chicago/Turabian StyleLi, Chunying, Meiting Yu, Shen Li, Xue Yang, Bin Qiao, Sen Shi, Chunjian Zhao, and Yujie Fu. 2021. "Valorization of Fig (Ficus carica L.) Waste Leaves: HPLC-QTOF-MS/MS-DPPH System for Online Screening and Identification of Antioxidant Compounds" Plants 10, no. 11: 2532. https://doi.org/10.3390/plants10112532
APA StyleLi, C., Yu, M., Li, S., Yang, X., Qiao, B., Shi, S., Zhao, C., & Fu, Y. (2021). Valorization of Fig (Ficus carica L.) Waste Leaves: HPLC-QTOF-MS/MS-DPPH System for Online Screening and Identification of Antioxidant Compounds. Plants, 10(11), 2532. https://doi.org/10.3390/plants10112532