Pharmacological Investigations in Traditional Utilization of Alhagi maurorum Medik. in Saharan Algeria: In Vitro Study of Anti-Inflammatory and Antihyperglycemic Activities of Water-Soluble Polysaccharides Extracted from the Seeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Extraction and Purification of Polysaccharides
2.3. Biochemical Composition
2.4. FT-IR Spectroscopy Analysis
2.5. Analysis of Monosaccharide Composition Using GC/MS-EI
2.6. Polysaccharide Hydrolysis
2.7. NMR Analysis
2.8. Molecular Weight
2.9. Biological Properties of Polysaccharides Extracts
2.9.1. Albumin Denaturation Inhibitory Activity
2.9.2. Antihyperglycemic Activity
2.10. Statistical Analysis
3. Results and Discussion
3.1. Biochemical Characterization
3.2. Structural Characterization
3.2.1. FT-IR Spectroscopy
3.2.2. GC-MS/EI
3.2.3. 1H, 13C NMR and HSQC Analysis
3.2.4. Molecular Weight
3.3. Biological Activities
3.3.1. Inhibition of BSA Denaturation
3.3.2. Antihyperglycemic Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aswad, M.; Rayan, M.; Abu-Lafi, S.; Falah, M.; Raiyn, J.; Abdallah, Z.; Rayan, A. Nature is the best source of anti-inflammatory drugs: Indexing natural products for their anti-inflammatory bioactivity. Inflamm. Res. 2018, 67, 67–75. [Google Scholar] [CrossRef]
- Chakrabarti, R.; Singh, B.; Vanchhawng, L.; Thirumurugan, K. Screening of nine herbal plants for in vitro a-amylase inhibition. Screening 2014, 7, 84–89. [Google Scholar]
- Liyanagamage, D.S.N.K.; Jayasinghe, S.; Attanayake, A.P.; Karunaratne, V. Medicinal plants in management of diabetes mellitus: An overview. Ceylon J. Sci. 2020, 49, 3–11. [Google Scholar] [CrossRef]
- Sukalingam, K.; Ganesan, K.; Ponnusamy, K. Evaluation of antidiabetic activity of polyherbal formulations on type 2 diabetic patients: A single blinded randomized study. Int. J. Intg. Med. Sci. 2015, 2, 90–98. [Google Scholar] [CrossRef]
- Ma, L.; Liu, T.W.; Wallig, M.A.; Dobrucki, I.T.; Dobrucki, L.W.; Nelson, E.R.; Swanson, K.S.; Smith, A.M. Efficient targeting of adipose tissue macrophages in obesity with polysaccharide nanocarriers. ACS Nano 2016, 10, 6952–6962. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, G.; Yan, J.; Li, K.; Bai, Z.; Cheng, W.; Huang, K. Rehmannia glutinosa (Gaertn.) DC. polysaccharide ameliorates hyperglycemia, hyperlipemia and vascular inflammation in streptozotocin-induced diabetic mice. J. Ethnopharm. 2015, 164, 229–238. [Google Scholar] [CrossRef]
- Ma, H.T.; Hsieh, J.F.; Chen, S.T. Anti-diabetic effects of Ganoderma lucidum. Phytochemistry 2015, 114, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.M.; Yang, Z.M.; Chen, W.Q.; Yuan, Q.F.; Chen, S.Y.; Li, H.Z. Astragalus polysaccharide improves type 2 diabetes mellitus in rats by protecting islet β cells. Acad. J. Second Mil. Med. Univ. 2017, 38, 482–487. [Google Scholar]
- Wang, Y.H.; Zeng, K.W. Natural products as a crucial source of anti-inflammatory drugs: Recent trends and advancements. Tradit. Med. Res. 2019, 4, 257–268. [Google Scholar] [CrossRef]
- Li, Y.G.; Ji, D.F.; Zhong, S.; Lv, Z.Q.; Lin, T.B.; Chen, S.; Hu, G.Y. Hybrid of 1-deoxynojirimycin and polysaccharide from mulberry leaves treat diabetes mellitus by activating PDX-1/insulin-1 signaling pathway and regulating the expression of glucokinase, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in alloxan-induced diabetic mice. J. Ethnopharmacol. 2011, 134, 961–970. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, C.; Lu, G.; Mu, Z.; Cui, W.; Gao, H.; Wang, Y. Anti-diabetic effect of mulberry leaf polysaccharide by inhibiting pancreatic islet cell apoptosis and ameliorating insulin secretory capacity in diabetic rats. Int. Immunopharmacol. 2014, 22, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Chung, W.S.F.; Meijerink, M.; Zeuner, B.; Holck, J.; Louis, P.; Meyer, A.S.; Wells, J.M.; Flint, H.J.; Duncan, S.H. Prebiotic potential of pectin and pectic oligosaccharides to promote antiinflammatory commensal bacteria in the human colon. FEMS Microbiol. Ecol. 2017, 93, 127. [Google Scholar] [CrossRef]
- Hu, J.L.; Nie, S.P.; Xie, M.Y. Antidiabetic mechanism of dietary polysaccharides based on their gastrointestinal functions. J. Agric. Food Chem. 2018, 66, 4781–4786. [Google Scholar] [CrossRef]
- Kameyama, K.; Itoh, K. Intestinal colonization by a Lachnospiraceae bacterium contributes to the development of diabetes in obese mice. Microbes Environ. 2014, 29, 427–430. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Kong, F.; Ni, H.; Mo, Z.; Wan, J.B.; Hua, D.; Yan, C. Structural characterization, α-glucosidase inhibitory and DPPH scavenging activities of polysaccharides from guava. Carbohydr. Polym. 2016, 144, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.Y.; Luo, Y.; Dong, G.L.; Ren, Y.Y.; Chen, L.J.; Guo, M.Z.; Wang, X.T.; Yang, X.Y.; Zhang, Y. Effects of the ultra-high pressure on structure and α-glucosidase inhibition of polysaccharide from Astragalus. Int. J. Biol. Macromol. 2016, 87, 570–576. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, X.Z. Inhibition of α-glucosidase by polysaccharides from the fruit hull of Camellia oleifera Abel. Carbohydr. Polym. 2015, 115, 38–43. [Google Scholar] [CrossRef]
- Hou, C.; Chen, L.; Yang, L.; Ji, X. An insight into anti-inflammatory effects of natural polysaccharides. Int. J. Biol. Macromol. 2020, 153, 248–255. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, N.; Kan, J.; Zhang, X.; Wu, X.; Sun, R.; Tang, S.; Liu, J.; Qian, C.; Jin, C. Structural characterization of water-soluble polysaccharide from Arctium lappa and its effects on colitis mice. Carbohydr. Polym. 2019, 213, 89–99. [Google Scholar] [CrossRef]
- Cuia, C.; Chen, S.; Wang, X.; Yuan, G.W.; Jiang, F.; Chen, X.Y.; Wang, L. Characterization of Moringa oleifera roots polysaccharide MRP-1 with anti-inflammatory effect. Int. J. Biol. Macromol. 2019, 32, 844–851. [Google Scholar] [CrossRef]
- Suthar, P.; Mathur, K.; Goyal, M.; Yadav, S.K. Traditional uses, phytochemistry, pharmacological properties of plant Alhagi maurorum (Medik.). Rev. World J. Pharm. Pharmac. Sci. 2016, 5, 682–692. [Google Scholar]
- International Union for Conservation of Nature and Natural Resources. A Guide to Medicinal Plants in North Africa; IUCN Publications Services Unit: Malaga, Spain, 2005; p. 91.
- Al-Snafi, A.E. Alhagi maurorum as a potential medicinal herb: An Overview. Int. J. Pharm. Rev. Res. 2015, 5, 130–136. [Google Scholar]
- Marashdah, M.S.; Farraj, A.I. Pharmacological activity of 2% aqueous acetic acid extract of Alhagi maurorum roots. J. Saudi Chem. Soc. 2010, 14, 247–250. [Google Scholar] [CrossRef] [Green Version]
- Al-Snafi, A.E.; Al-Kamel, M.L.; Esmael, M.E. Antifungal effect of Alhagi maurorum phenolic extract. IOSR J. Pharm. 2019, 9, 7–14. [Google Scholar]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.T.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Monsigny, M.; Petit, C.; Roche, A.C. Colorimetric determination of neutral sugars by a resorcinol sulfuric acid micromethod. Anal. Biochem. 1988, 175, 525–530. [Google Scholar] [CrossRef]
- Blumenkrantz, N.; Asboe-Hansen, G. New method for quantitative determination of uronic acids. Anal. Biochem. 1973, 54, 484–489. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Pierre, G.; Graber, M.; Rafiliposon, B.A.; Dupuy, C.; Orvain, F.; de Crignis, M.; Maugard, T. Biochemical composition and changes of extracellular polysaccharides (ECPS) produced during microphytobenthic biofilm development (Marennes-Oléron, France). Microb. Ecol. 2012, 63, 157–169. [Google Scholar] [CrossRef] [Green Version]
- Pierre, G.; Zhao, J.M.; Orvain, F.; Dupuy, C.; Klein, G.L.; Graber, M.; Maugard, T. Seasonal dynamics of extracellular polymeric substances (EPS) in surface sediments of a diatom-dominated intertidal mudflat (Marennes-Oléron, France). J. Sea Res. 2014, 92, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Osman, N.I.; Sidik, N.J.; Awal, A.; Adam, N.A.M.; Rezali, N.I. In vitro xanthine oxidase and albumin denaturation inhibition assay of Barringtonia racemosa L. and total phenolic content analysis for potential anti-inflammatory use in gouty arthritis. J. Intercult. Ethnopharmacol. 2016, 5, 344–345. [Google Scholar] [CrossRef] [PubMed]
- Bakka, C.; Smara, O.; Hadjadj, M.; Dendougui, H.; Mahdjar, S.; Benzid, A. In vitro Anti-inflammatory activity of Pistacia atlantica Desf. extracts. Asian J. Res. Chem. 2019, 12, 322–325. [Google Scholar] [CrossRef]
- Wang, L.; Liu, F.; Wang, A.; Yu, Z.; Xu, Y.; Yang, Y. Purification, characterization and bioactivity determination of a novel polysaccharide from pumpkin (Cucurbita moschata) seeds. Food Hydrocol. 2017, 66, 357–364. [Google Scholar] [CrossRef]
- Chen, C.; You, L.J.; Abbasi, A.M.; Fu, X.; Liu, R.H.; Li, C. Characterization of polysaccharide fractions in mulberry fruit and assessment of their antioxidant and hypoglycemic activities in vitro. Food Funct. 2016, 7, 530–539. [Google Scholar] [CrossRef]
- Kumar, A.; Lakshman, K.; Jayaveera, K.; Shekar, S.; Swamy, N.; Khan, S.; Velumurga, C. In vitro α-amylase inhibition and antioxidant activities of methanolic extract of Amaranthus caudatus Linn. Oman Med. J. 2011, 26, 166–170. [Google Scholar] [CrossRef]
- Kajaria, D.; Tripathi, J.; Tripathi, Y.B.; Tiwari, S. In-vitro α-amylase and glycosidase inhibitory effect of ethanolic extract of antiasthmatic drug-Shirishadi. J. Adv. Pharm. Technol. Res. 2013, 4, 206–209. [Google Scholar] [CrossRef]
- Kodiralieva, F.A.; Rakhmanberdyeva, R.K. Polysaccharides from seeds of plants of the family Fabaceae. Chem. Nat. Compd. 2011, 47, 268–269. [Google Scholar] [CrossRef]
- Rakhimov, D.A.; Dzhumamuratova, A. Polysaccharides of Alhagi persarum. Chem. Nat. Compd. 1993, 29, 674–675. [Google Scholar] [CrossRef]
- Rjeibi, I.; Hentati, F.; Feriani, A.; Hfaiedh, N.; Delattre, C.; Michaud, P.; Pierre, G. Novel antioxidant, anti-α-amylase, anti-inflammatory and antinociceptive water-soluble polysaccharides from the aerial part of Nitraria retusa. Foods 2020, 9, 28. [Google Scholar] [CrossRef] [Green Version]
- Lukova, P.; Nikolova, M.; Petit, E.; Elboutachfaiti, R.; Vasileva, T.; Katsarov, P.; Manev, H.; Gardarin, C.; Pierre, G.; Michaud, P.; et al. Prebiotic activity of poly-and oligosaccharides obtained from Plantago major L. leaves. Appl. Sci. 2020, 10, 2648. [Google Scholar] [CrossRef] [Green Version]
- Chouana, T. Caractérisation Structurale et Activités Biologiques Des Polysaccharides D’Astragalus Gombo Bunge. Ph.D. Thesis, Université Clermont Auvergne, Clermont Ferrand, France, 2017. [Google Scholar]
- Patel, M.K.; Tanna, B.; Mishra, A.; Jha, B. Physicochemical characterization, antioxidant and anti-proliferative activities of polysaccharide extracted from psyllium (P. ovata) leaves. Int. J. Biol. Macromol. 2018, 118, 976–987. [Google Scholar] [CrossRef]
- Ren, Y.Y.; Zhu, Z.Y.; Sun, H.Q.; Chen, L.J. Structural characterization and inhibition on α-glucosidase activity of acidic polysaccharide from Annona squamosa. Carbohydr. Polym. 2017, 174, 1–12. [Google Scholar] [CrossRef]
- Shabani, H.; Askari, G.; Jahanbin, K.; Khodaeian, F. Evaluation of physicochemical characteristics and antioxidant property of Prunus avium gum exudates. Int. J. Biol. Macromol. 2016, 93, 436–441. [Google Scholar] [CrossRef]
- Tamaki, Y.; Teruya, T.; Tako, M. The Chemical Structure of Galactomannan Isolated from Seeds of Delonix regia. Biosci. Biotechnol. Biochem. 2010, 74, 1110–1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, P.J.; Henry, R.J.; Blakeney, A.B.; Stone, B.A. An improved procedure for the methylation analysis of oligosaccharides and polysaccharides. Carbohydr. Res. 1984, 127, 59–73. [Google Scholar] [CrossRef]
- Bento, J.F.; Mazzaro, I.; de Almeida Silva, L.M.; de Azevedo Moreira, R.; Ferreira, M.L.C.; Reicher, F.; de Oliveira Petkowicz, C.L. Diverse patterns of cell wall mannan/galactomannan occurrence in seeds of the Leguminosae. Carbohydr. Polym. 2013, 92, 192–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueroa, D.B.; López, M.Q.; Durazo, A.R.; Lerma, M.S. Hydrothermal technique for isolation of galactomannan from seeds of Sonoran mezquite (Prosopis spp.). Rev. Mex. Ing. Química 2017, 16, 457–465. [Google Scholar] [CrossRef]
- Chouana, T.; Pierre, G.; Vial, C.; Gardarin, C.; Wadouachi, A.; Cailleu, D.; Le Cerf, D.; Boual, Z.; El Hadj, M.O.; Michaud, P.; et al. Structural characterization and rheological properties of a galactomannan from Astragalus gombo Bunge seeds harvested in Algerian Sahara. Carbohydr. Polym. 2017, 175, 387–394. [Google Scholar] [CrossRef]
- Muschin, T.; Yoshida, T. Structural analysis of galactomannans by NMR spectroscopy. Carbohydr. Polym. 2012, 87, 1893–1898. [Google Scholar] [CrossRef]
- Srivastava, M.; Kapoor, V.P. Seed galactomannans: An overview. Chem. Biodivers. 2005, 2, 295–317. [Google Scholar] [CrossRef]
- Chaubey, M.; Kapoor, V.P. Structure of a galactomannan from the seeds of Cassia angustifolia Vahl. Carbohydr. Res. 2001, 332, 439–444. [Google Scholar] [CrossRef]
- Nwokocha, L.M.; Williams, P.A.; Yadav, M.P. Physicochemical characterization of the galactomannan from Delonix regia seed. Food Hydrocoll. 2018, 78, 132–139. [Google Scholar] [CrossRef]
- Abdel-Megeed, R.M.; Hamed, A.R.; Matloub, A.A.; Kadry, M.O.; Abdel-Hamid, A.H.Z. Regulation of apoptotic and inflammatory signaling pathways in hepatocellular carcinoma via Caesalpinia gilliesii galactomannan. Mol. Cell. Biochem. 2019, 451, 173–184. [Google Scholar] [CrossRef]
- Mathur, N.K. Industrial Galactomannan Polysaccharides; Taylor & Francis Group; CRC Press: Boca Raton, FL, USA, 2012; p. 187. [Google Scholar]
- Fidan, H.; Stankov, S.; Petkova, N.; Petkova, Z.; Iliev, A.; Stoyanova, M.; Ivanova, T.; Zhelyazkov, N.; Ibrahim, S.; Stoyanova, A.; et al. Evaluation of chemical composition, antioxidant potential and functional properties of carob (Ceratonia siliqua L.) seeds. J. Food Sci. Technol. 2020, 57, 2404–2413. [Google Scholar] [CrossRef]
- Boual, Z.; Pierre, G.; Delattre, C.; Benaoun, F.; Petit, E.; Gardarin, C.; Michaud, P.; Ould El Hadj, M.D. Mediterranean semi-arid plant Astragalus armatus as a source of bioactive galactomannan. Bioact. Carbohydr. Diet. Fibre 2015, 5, 10–18. [Google Scholar] [CrossRef]
- Rani, A.A.; Punitha, S.M.J.; Rema, M. Anti-inflammatory activity of flower extract of Cassia auriculata–an in-vitro study. Int. Res. J. Pharm. Appl. Sci. 2014, 4, 57–60. [Google Scholar]
- Anoop, M.V.; Bindu, A.R. In-vitro anti-inflammatory activity studies on Syzygium zeylanicum (L) DC leaves. Int. J. Pharma. Res. Rev. 2015, 4, 18–27. [Google Scholar]
- Ibanoglu, E. Effect of hydrocolloids on the thermal denaturation of proteins. Food Chem. 2005, 90, 621–626. [Google Scholar] [CrossRef]
- Yang, L.Q.; Zhang, L.M. Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources. Carbohydr. Polym. 2009, 76, 349–361. [Google Scholar] [CrossRef]
- Kabat, E.A.; Bezer, A.E. The effect of variation in molecular weight on the antigenicity of dextran in man. Biochem. Biophys. 1958, 78, 306–318. [Google Scholar] [CrossRef]
- Benjamin, S.; Vieira, I.P.; Mendes, F.P.; Da Silva, S.; Paim, R.T.; Da Silva, B.; Florean, E.O.T.; Guedes, M.F. Antidiabetic effects of galactomannans from Adenanthera pavonina L. in streptozotocin-induced diabetic mice. Asian Pac. J. Trop. Med. 2018, 11, 116. [Google Scholar] [CrossRef]
- Tarigan, J.B.; Dalimunthe, A.; Perangin-angin, S. Polysaccharide Extract on Blood Glucose Level. In The Effect of Arenga Pinnata Merr, Proceedings of the International Conference of Science, Technology, Engineering, Environmental and Ramification Researches (ICOSTEERR); Science and Technology Publications: Medan, Indonesia, 2020; pp. 964–968. [Google Scholar]
- Srichamroen, A.; Thomson, A.B.R.; Field, C.J.; Basu, T.K. In vitro intestinal glucose uptake is inhibited by galactomannan from Canadian fenugreek seed (Trigonella foenum graecum L.) in genetically lean and obese rats. Nutr. Res. 2009, 29, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.; Wolever, T.M.; Nineham, R.; Taylor, R.; Metz, G.L.; Bacon, S.; Hockaday, T.D. Guar crispbread in the diabetic diet. Br. Med. J. 1978, 2, 1744–1746. [Google Scholar] [CrossRef] [Green Version]
Carbohydrate Composition (w/w %) | Phenolic Compounds (w/w %) | Proteins (w/w %) | |||
---|---|---|---|---|---|
Total | Neutral | Uronic Acids | |||
WSPAM1 | 49.21 ± 0.037 | 58.98 ± 0.02 | 12.76 ± 0.029 | 7.57 ± 2 × 10−5 | 2.32 ± 10−3 |
WSPAM2 | 43.95 ± 0.026 | 53.1 ± 0.009 | 13.75 ± 0.005 | 9.21 ± 0.5 × 10−5 | 1.6 ± 5 × 10−4 |
Chemical Shifts (ppm) | ||||||
---|---|---|---|---|---|---|
Type of Unit | H/C-1 | H/C-2 | H/C-3 | H/C-4 | H/C-5 | H/C-6 |
α-d-galactopyranosyl (G) | 5.51/99.51 | 4.32/69.15 | 4.41/70.17 | 4.50/70.01 | 4.39/71.87 | 4.25/61.85 |
β-d-mannopyranosyl unsubstituted (M) | 5.23/100.67 | 4.61/70.66 | 4.30/72.16 | 4.31/77.34 | 4.03/75.73 | 4.38/61.29 |
β-d-mannopyranosyl substituted (M’) | 5.23/100.77 | 4.61/70.66 | 4.30/72.16 | 4.36/77.50 | 4.22/74.08 | 4.31/67.27 |
Mw (g/mol) | Mn (g/mol) | Polydispersity Index (Đ) | Intrinsic Viscosity [η] (mL/g) | Rh (nm) |
---|---|---|---|---|
1.40 × 106 | 2.7 × 105 | 5.2 | 970 | 57.3 |
WSPAM1 | WSPAM2 | HPAM | Acarbose | |
---|---|---|---|---|
IC50 (mg/mL) | 9.28 | 6.81 | 5.43 | 6.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chakou, F.Z.; Boual, Z.; Hadj, M.D.O.E.; Belkhalfa, H.; Bachari, K.; El Alaoui-Talibi, Z.; El Modafar, C.; Hadjkacem, F.; Fendri, I.; Abdelkafi, S.; et al. Pharmacological Investigations in Traditional Utilization of Alhagi maurorum Medik. in Saharan Algeria: In Vitro Study of Anti-Inflammatory and Antihyperglycemic Activities of Water-Soluble Polysaccharides Extracted from the Seeds. Plants 2021, 10, 2658. https://doi.org/10.3390/plants10122658
Chakou FZ, Boual Z, Hadj MDOE, Belkhalfa H, Bachari K, El Alaoui-Talibi Z, El Modafar C, Hadjkacem F, Fendri I, Abdelkafi S, et al. Pharmacological Investigations in Traditional Utilization of Alhagi maurorum Medik. in Saharan Algeria: In Vitro Study of Anti-Inflammatory and Antihyperglycemic Activities of Water-Soluble Polysaccharides Extracted from the Seeds. Plants. 2021; 10(12):2658. https://doi.org/10.3390/plants10122658
Chicago/Turabian StyleChakou, Fatma Zohra, Zakaria Boual, Mohamed Didi Ould El Hadj, Hakim Belkhalfa, Khaldoun Bachari, Zainab El Alaoui-Talibi, Cherkaoui El Modafar, Farah Hadjkacem, Imen Fendri, Slim Abdelkafi, and et al. 2021. "Pharmacological Investigations in Traditional Utilization of Alhagi maurorum Medik. in Saharan Algeria: In Vitro Study of Anti-Inflammatory and Antihyperglycemic Activities of Water-Soluble Polysaccharides Extracted from the Seeds" Plants 10, no. 12: 2658. https://doi.org/10.3390/plants10122658
APA StyleChakou, F. Z., Boual, Z., Hadj, M. D. O. E., Belkhalfa, H., Bachari, K., El Alaoui-Talibi, Z., El Modafar, C., Hadjkacem, F., Fendri, I., Abdelkafi, S., Traïkia, M., Cerf, D. L., Dubessay, P., Delattre, C., Pierre, G., & Michaud, P. (2021). Pharmacological Investigations in Traditional Utilization of Alhagi maurorum Medik. in Saharan Algeria: In Vitro Study of Anti-Inflammatory and Antihyperglycemic Activities of Water-Soluble Polysaccharides Extracted from the Seeds. Plants, 10(12), 2658. https://doi.org/10.3390/plants10122658