Quantitative Trait Loci and Candidate Genes Associated with Cold-Acclimation and Microdochium nivale Tolerance/Susceptibility in Winter Triticale (x Triticosecale)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Degree of the Seedlings Damage Caused by M. nivale Infection (P Index) Evaluation
2.3. Analysis of Chlorophyll a Fluorescence
2.4. QTL Mapping and Statistical Analysis
2.5. The in Silico Location of Genes within the QTLs
3. Results
3.1. Phenotypic and QTLs Evaluation Associated with the Seedlings Susceptibility to M. nivale Infection (P Index) and Quantum Efficiency of Photosynthesis (Qy)
3.2. Phenotypic and QTLs Evaluation Associated with the Seedlings Tolerance to M. nivale Infection
3.3. Phenotypic and QTLs Evaluation Associated with Chlorophyll Fluorescence Parameters
3.4. Comparison of Identified QTL Regions
3.5. Candidate Genes within the Main QTLs
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lukaszewski, A.J. Registration of three germplasms of hexaploid triticale with introgressions of wheat storage protein loci from chromosome 1D of bread wheat. Crop. Sci. 2003, 43, 2316. [Google Scholar] [CrossRef]
- Tyrka, M.; Chelkowski, J. Enhancing the resistance of triticale by using genes from wheat and rye. J. Appl. Genet. 2004, 45, 283–296. [Google Scholar]
- Hura, T.; Dziurka, M.; Hura, K.; Ostrowska, A.; Dziurka, K. Different allocation of carbohydrates and phenolics in dehydrated leaves of triticale. J. Plant Physiol. 2016, 202, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mergoum, M.; Sapkota, S.; El Doliefy, A.E.A.; Naraghi, S.M.; Pirseyedi, S.; Alamri, M.S.; Abu Hammad, W. Triticale (x Triticosecale Wittmack) Breeding. In Advances in Plant Breeding Strategies: Cereals; Springer: Cham, Switzerland, 2019; pp. 405–451. [Google Scholar]
- Ammar, K.; Mergoum, M.; Rajaram, S. FAO Plant Production and Protection Series No. 179; Megoum, M., Gomez-Macpherson, H., Eds.; FAO: Rome, Italy; pp. 1–11.
- Niedziela, A.; Bednarek, P.T.; Cichy, H.; Budzianowski, G.; Kilian, A.; Anioł, A. Aluminum tolerance association mapping in triticale. BMC Genom. 2012, 13, 67. [Google Scholar] [CrossRef] [Green Version]
- Strang, E.J.P.; Eklund, M.; Rosenfelder, P.; Htoo, J.K.; Mosenthin, R. Protein value of eight triticale genotypes for pigs based on standardized ileal amino acid digestibility. J. Anim. Sci. 2016, 94, 457. [Google Scholar] [CrossRef]
- Badea, A.; Eudes, F.; Salmon, D.; Tuvesson, S.; Vrolijk, A.; Larsson, C.T.; Caig, V.; Huttner, E.; Kilian, A.; Laroche, A. Development and assessment of DArT markers in triticale. Appl Genet. 2011, 122, 1547–1560. [Google Scholar] [CrossRef] [PubMed]
- Machczyńska, J.; Zimny, J.; Bednarek, P.T. Tissue culture-induced genetic and epigenetic variation in triticale (× Triticosecale spp. Wittmack ex A. Camus 1927) regenerants. Plant Mol. 2015, 89, 279–292. [Google Scholar] [CrossRef] [Green Version]
- Tronsmo, A.M.; Hsiang, T.; Okuyama, H.; Nakajima, T. Low temperature diseases caused by Microdochiumnivale. In Low Temperature Plant Microbe Interactions Under Snow; Iriki, N., Gaudet, D.A., Tronsmo, A.M., Matsumoto, N., Yoshida, M., Nishimune, A., Eds.; Hokkaido National Agricultural Experimental Station: Sapporo, Japan, 2001; pp. 75–86. [Google Scholar]
- Hudec, K.; Bokor, P. Field patogenicity of Fusarium culmorum, Fusarium equiseti and Microdochiumnivale on triticale. Physiol Plant. 2002, 115, 101–110. [Google Scholar]
- Sliesaravičius, A.; Pekarskas, J.; Rutkovienė, V.; Baranauskis, K. Grain yield and disease resistance of winter cereal varieties and application of biological agent in organic agriculture. Agronomyresearch 2006, 4, 371–378. [Google Scholar]
- Dubas, E.; Golebiowska, G.; Zur, I.; Wedzony, M. Microdochiumnivale (Fr., Samuels & Hallett): Cytological analysis of the infection process in triticale (× Triticosecale Wittm.). Acta Physiol. 2011, 33, 529–537. [Google Scholar]
- Dyda, M.; Wąsek, I.; Tyrka, M.; Wędzony, M. Szechyńska-Hebda, M. Local and systemic regulation of PSII efficiency in triticale infected by the hemibiotrophic pathogen Microdochiumnivale. Physiologiaplantarum 2019, 165, 711–727. [Google Scholar]
- Zhukovsky, A.; Ilyuk, A. Snow mould harmfulness in winter triticale and the efficiency of seed dressing products in the Republic of Belarus. Prog. Plant Prot. 2010, 50, 1841–1846. [Google Scholar]
- Ponomareva, M.L.; Gorshkov, V.Y.; Ponomarev, S.N.; Korzun, V.; Miedaner, T. Snow mold of winter cereals: A complex disease and a challenge for resistance breeding. Theor. Appl. Genet. 2020, 134, 419–433. [Google Scholar] [CrossRef] [PubMed]
- Szechyńska-Hebda, M.; Wędzony, M.; Tyrka, M.; Gołębiowska, G.; Chrupek, M.; Czyczyło-Mysza, I.; Dubas, E.; Żur, I.; Golemiec, E. Identifying QTLs for cold-induced resistance to Microdochiumnivale in winter triticale. Plant Genet. 2011, 9, 296–299. [Google Scholar] [CrossRef]
- Szechyńska-Hebda, M.; Hebda, M.; Mierzwiński, D.; Kuczyńska, P.; Mirek, M.; Wędzony, M.; Van Lammeren, A.; Karpiński, S. Effect of cold-induced changes in physical and chemical leaf properties on the resistance of winter triticale (× Triticosecale) to the fungal pathogen Microdochium nivale. Plant Pathol. 2013, 62, 867–878. [Google Scholar] [CrossRef]
- Nielsen, A.V.; Tetens, I.; Meyer, A.S. Potential of phytase-mediated iron release from cereal-based foods: A quantitative view. Nutrients 2013, 5, 3074–3098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gołębiowska, G.; Wędzony, M. Cold-hardening of winter triticale (x Triticosecale Wittm.) results in increased resistance to pink snow mould Microdochium nivale (Fr., Samuels & Hallett) and genotype-dependent chlorophyll fluorescence modulations. Acta Physiol. 2009, 31, 1219. [Google Scholar]
- Gołębiowska, G.; Wędzony, M.; Płażek, A. The responses of pro-and antioxidative systems to cold-hardening and pathogenesis differ in triticale (x Triticosecale Wittm.) seedlings susceptible or resistant to pink snow mould (Microdochiumnivale Fr., Samuels & Hallett). J. Phytopathol. 2011, 159, 19–27. [Google Scholar]
- Leroux, P.; Walker, A.S.; Albertini, C.; Gredt, M. Resistance to fungicides in French populations of Septoria tritici, the causal agent of wheat leaf blotch. Asp. Appl. Biol. 2006, 78, 153. [Google Scholar]
- Bateman, G.L.; Gutteridge, R.J.; Jenkyn, J.F.; Self, M.M. Effects of fluquinconazole and silthiofam, applied as seed treatments to single or consecutive crops of wheat, on take-all epidemic development and grain yields. Ann. Appl. Biol. 2008, 152, 243–254. [Google Scholar] [CrossRef]
- Berger, S.; Sinha, A.K.; Roitsch, T. Plant physiology meets phytopathology: Plant primary metabolism and plant–pathogen interactions. J. Exp. Bot. 2007, 58, 4019–4026. [Google Scholar] [CrossRef] [PubMed]
- Karpiński, S.; Szechyńska-Hebda, M. Secret life of plants: From memory to intelligence. Plant Signal. Behav. 2010, 5, 1391–1394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szechyńska-Hebda, M.; Wąsek, I.; Gołębiowska-Pikania, G.; Dubas, E.; Żur, I.; Wędzony, M. Photosynthesis-dependent physiological and genetic crosstalk between cold acclimation and cold-induced resistance to fungal pathogens in triticale (Triticosecale Wittm.). J. Plant Physiol. 2015, 177, 30–43. [Google Scholar] [CrossRef]
- Schreiber, U.; Bilger, W. Progress in chlorophyll fluorescence research: Major developments during the past years in retrospect. In Progress in Botany/Fortschritte der Botanik; Springer: Berlin/Heidelberg, Germany, 1993; pp. 151–173. [Google Scholar]
- Rapacz, M.; Sasal, M.; Gut, M. Chlorophyll fluorescence-based studies of frost damage and the tolerance for cold-induced photoinhibition in freezing tolerance analysis of Triticale (× Triticosecale Wittmack). J. Agron. Crop. Sci. 2011, 197, 378–389. [Google Scholar] [CrossRef]
- Iori, V.; Pietrini, F.; Bianconi, D.; Mughini, G.; Massacci, A.; Zacchini, M. Analysis of biometric, physiological, and biochemical traits to evaluate the cadmium phytoremediation ability of eucalypt plants under hydroponics. IForest-Biogeosciences For. 2017, 10, 416–421. [Google Scholar] [CrossRef] [Green Version]
- Strasser, R.J.; Tsimilli-Michael, M.; Srivastava, A. Analysis of the chlorophyll a fluorescence transient. In Chlorophyllafluorescence; Springer: Dordrecht, The Netherland, 2004; pp. 321–362. [Google Scholar]
- Ferrante, A.; Maggiore, T. Chlorophyll a fluorescence measurements to evaluate storage time and temperature of Valeriana leafy vegetables. Postharvest Biol. Technol. 2007, 45, 73–80. [Google Scholar] [CrossRef]
- Rapacz, M.; Sasal, M.; Kalaji, H.M.; Kościelniak, J. Is the OJIP test a reliable indicator of winter hardiness and freezing tolerance of common wheat and triticale under variable winter environments? PLoS ONE 2015, 10, e013482. [Google Scholar] [CrossRef] [Green Version]
- Żur, I.; Gołębiowska, G.; Dubas, E.; Golemiec, E.; Matušíková, I.; Libantová, J.; Moravčíková, J. β-1, 3-glucanase and chitinase activities in winter triticales during cold hardening and subsequent infection by Microdochiumnivale. Biologia 2013, 68, 241–248. [Google Scholar] [CrossRef]
- Gawronska, K.; Gołębiowska-Pikania, G. The effects of cold-hardening and Microdochium nivale infection on oxidative stress and antioxidative protection of the two contrasting genotypes of winter triticale. Eur. Food Res. Technol. 2016, 242, 1267–1276. [Google Scholar] [CrossRef] [Green Version]
- Gołębiowska, G.J.; Bonar, E.; Emami, K.; Wędzony, M. Cold-modulated small proteins abundance in winter triticale (x Triticosecale, Wittm.) seedlings tolerant to the pink snow mold (Microdochium nivale, Samuels and Hallett) infection. Acta Biochim. Pol. 2019, 66, 343–350. [Google Scholar] [PubMed]
- Wędzony, M. Protocol for anther culture in hexaploid triticale (x Triticosecale Wittm.). In Doubled Haploid Production in Crop Plants; Springer: Dordrecht, The Netherland, 2003; pp. 123–128. [Google Scholar]
- Gaudet, D.A.; Wang, Y.; Frick, M.; Puchalski, B.; Penniket, C.; Ouellet, T.; Robert, L.; Singh, J.; Laroche, A. Low temperature induced defence gene expression in winter wheat in relation to resistance to snow moulds and other wheat diseases. Plant Sci. 2011, 180, 99–110. [Google Scholar] [CrossRef]
- Miedaner, T.; Höxter, H.; Geiger, H.H. Development of a resistance test for winter rye to snow mold (Microdochium nivale) under controlled environment conditions in regard to field inoculations. Can. J. Bot. 2011, 71, 136–144. [Google Scholar] [CrossRef]
- Nakajima, T.; Abe, J. Environmental factors affecting expression of resistance to pink snow mold caused by Microdochium nivale in winter wheat. Can. J. Bot. 2011, 74, 1783–1788. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.I. Growing Plants Without Soil By The Water-Culture Method. Cal. Agri. Exp. Station Circula 1938, 347, 1–39. [Google Scholar]
- Pronczuk, M.; Madej, L.J. Evaluation of Microdochium nivale infection on rye genotypes using different methods. Vortraegefuer Pflanz. Ger. 1996, 35, 190–192. [Google Scholar]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C.; Rinderle, U.; Schmuck, G. Application of chlorophyll fluorescence in ecophysiology. Radiat. Environ. 1986, 25, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Genty, B.; Briantais, J.M.; Baker, N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Et Biophys. Acta (BBA) Gen. Subj. 1989, 990, 87–92. [Google Scholar] [CrossRef]
- Tyrka, M.; Tyrka, D.; Wędzony, M. Genetic map of triticale integrating microsatellite, DArT and SNP markers. PLoS ONE 2015, 10, e0145714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Basten, C.J.; Zeng, Z.B. Windows QTL Cartographer 2.5; Department of Statistics, North CarolinaState University: Raleigh, NC, USA, 2012. [Google Scholar]
- Mangin, B.; Goffinet, B.; Rebai, A. Constructing confidence intervals for QTL location. Genetics 1994, 138, 1301–1308. [Google Scholar] [CrossRef] [PubMed]
- Li, H. A quick method to calculate QTL confidence interval. J. Genet. 2011, 90, 355–360. [Google Scholar] [CrossRef]
- Guo, P.; Baum, M.; Varshney, R.K.; Graner, A.; Grando, S.; Ceccarelli, S. QTLs for chlorophyll and chlorophyll fluorescence parameters in barley under post-flowering drought. Euphytica 2008, 163, 203–214. [Google Scholar] [CrossRef]
- Gautam, A.; Agrawal, D.; SaiPrasad, S.V.; Jajoo, A. A quick method to screen high and low yielding wheat cultivars exposed to high temperature. Physiol. Mol. Plants 2014, 20, 533–537. [Google Scholar] [CrossRef] [Green Version]
- Gururani, M.A.; Venkatesh, J.; Ganesan, M.; Strasser, R.J.; Han, Y.; Kim, J.I.; Lee, H.Y.; Song, P.S. In vivo assessment of cold tolerance through chlorophyll-a fluorescence in transgenic zoysiagrass expressing mutant phytochrome A. PLoS ONE 2015, 10, e0127200. [Google Scholar] [CrossRef] [Green Version]
- Hura, T.; Tyrka, M.; Hura, K.; Ostrowska, A.; Dziurka, K. QTLs for cell wall-bound phenolics in relation to the photosynthetic apparatus activity and leaf water status under drought stress at different growth stages of triticale. Mol. Genom. 2017, 292, 415–433. [Google Scholar] [CrossRef]
- Rossi, S.; Burgess, P.; Jespersen, D.; Huang, B. Heat-Induced Leaf Senescence Associated with Chlorophyll Metabolism in Bentgrass Lines Differing in Heat Tolerance. Crop. Sci. 2017, 57, 169–178. [Google Scholar] [CrossRef]
- Spanic, V.; ViljevacVuletic, M.; Drezner, G.; Zdunic, Z.; Horvat, D. Performance indices in wheat chlorophyll a fluorescence and protein quality influenced by FHB. Pathogens 2017, 6, 59. [Google Scholar] [CrossRef] [Green Version]
- Baghbani, F.; Lotfi, R.; Moharramnejad, S.; Bandehagh, A.; Roostaei, M.; Rastogi, A.; Kalaji, H.M. Impact of Fusarium verticillioides on chlorophyll fluorescence parameters of two maize lines. Eur. Plant Pathol. 2019, 154, 337–346. [Google Scholar] [CrossRef] [Green Version]
- Rapacz, M.; Wójcik-Jagła, M.; Fiust, A.; Kalaji, H.M.; Kościelniak, J. Genome-wide associations of chlorophyll fluorescence OJIP transient parameters connected with soil drought response in barley. Front. Plant Sci. 2019, 10, 78. [Google Scholar] [CrossRef] [Green Version]
- Czyczyło-Mysza, I.; Tyrka, M.; Marcińska, I.; Skrzypek, E.; Karbarz, M.; Dziurka, M.; Hura, T.; Dziurka, K.; Quarrie, S.A. Quantitative trait loci for leaf chlorophyll fluorescence parameters, chlorophyll and carotenoid contents in relation to biomass and yield in bread wheat and their chromosome deletion bin assignments. Mol. Breed. 2013, 32, 189–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quarrie, S.A.; Steed, A.; Calestani, C.; Semikhodskii, A.; Lebreton, C.; Chinoy, C.; Steele, N.; Pljevljakusic, D.; Waterman, E.; Weyen, J.; et al. A high density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor. Appl. Genet. 2005, 110, 865–880. [Google Scholar] [CrossRef]
- Habash, D.Z.; Bernard, S.; Schondelmaier, J.; Weyen, J.; Quarrie, S.A. The genetics of nitrogen use in hexaploid wheat: N utilisation, development and yield. Theor. Appl. Genet. 2007, 114, 403–419. [Google Scholar] [CrossRef]
- Li, H.; Lin, F.; Wang, G.; Jing, R.; Zheng, Q.; Li, B.; Li, Z. Quantitative trait loci mapping of dark-induced senescence in winter wheat (Triticum aestivum). J. Integr. Plant Biol. 2012, 54, 33–44. [Google Scholar] [CrossRef]
- Milczarski, P.; Masojć, P. The mapping of QTLS for chlorophyll content and responsiveness to gibberellic (GA3) and abscisic (ABA) acids in rye. Cell. Mol. 2002, 7, 449–456. [Google Scholar]
- Molik, K.; Pawlowska, E.; Kantarek, Z.; Milczarski, P. QTL analysis of chlorophyll content and chlorophyll fluorescence parameter in mapping population of rye. Folia Pomeranae Universitatis Technologiae Stetinensis. Agric. Aliment. Piscaria Et Zootech 2014, 312, 105–116. [Google Scholar]
- Li, G.; Wang, L.; Yang, J.; He, H.; Jin, H.; Li, X.; Wang, D. A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes. Nat. Genet. 2021, 53, 574–584. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.L.; Jing, R.L.; Chang, X.P.; Li, W. Quantitative trait loci mapping for chlorophyll fluorescence and associated traits in wheat (Triticum aestivum). J. Integr. Plant Biol. 2007, 49, 646–654. [Google Scholar] [CrossRef]
- Ilyas, M.; Ilyas, N.; Arshad, M.; Kazi, A.G.; Kazi, A.M.; Waheed, A. QTL mapping of wheat doubled haploids for chlorophyll content and chlorophyll fluorescence kinetics under drought stress imposed at anthesis stage. Pak. J. Bot. 2014, 46, 1889–1897. [Google Scholar]
- Zhang, Z.B.; Xu, P.; Jia, J.Z.; Zhou, R.H. Quantitative trait loci for leaf chlorophyll fluorescence traits in wheat. Aust. Crop. Sci. 2010, 4, 571–579. [Google Scholar]
- Crossa, J.; Burgueño, J.; Dreisigacker, S.; Vargas, M.; Herrera-Foessel, S.A.; Lillemo, M.; Singh, R.P.; Trethowan, R.; Warburton, M.; Franco, J.; et al. Association Analysis of Historical Bread Wheat Germplasm Using Additive Genetic Covariance of Relatives and Population Structure. Genetics 2007, 177, 1889–1913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arraiano, L.S.; Brown, J.K.M. Sources of resistance and susceptibility to Septoria tritici blotch of wheat. Mol. Plant Pathol. 2017, 18, 276–292. [Google Scholar] [CrossRef] [Green Version]
- Shankar, M.; Jorgensen, D.; Taylor, J.; Chalmers, K.J.; Fox, R.; Hollaway, G.J.; Mather, D.E. Loci on chromosomes 1A and 2A affect resistance to tan (yellow) spot in wheat populations not segregating for tsn1. Theor. Appl. Genet. 2017, 130, 2637–2654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ergon, Å.; Klemsdal, S.S.; Tronsmo, A.M. Interactions between cold hardening and Microdochium nivale infection on expression of pathogenesis-related genes in winter wheat. Physiol. Mol. Plant Pathol. 1998, 53, 301–310. [Google Scholar] [CrossRef]
QTL Name | Trait | Flanking Markers a (Position in cm) | LOD | LOD Max. Position | Marker Closest to the LOD Peak | R2 (%) b | Add c | Favorable Allele |
---|---|---|---|---|---|---|---|---|
Unhardened seedlings | ||||||||
QUH_tHM_1B-1 | PI | 3619131–wPt-5899-1B (144.1–150.0) | 5.7 | 146.7 | 3604249 | 19.67 | 0.29 | H (+) |
4371570–4345821 (154.1–160.8) | 4.2 | 155.5 | 4372036 | 16.82 | 0.27 | |||
PIABS | 3619131–wPt-5899-1B (144.1–150.0) | 5.7 | 146.7 | 3604249 | 19.67 | 0.29 | ||
4371570–4345821 (154.1–160.8) | 4.2 | 155.5 | 4372036 | 16.82 | 0.27 | |||
QUH_tHM_7B-1 | ABS/CSm | 4342266–4204248 (230.8–238.1) | 3.7 | 236.1 | 4347086 | 12.77 | −60.81 | M (−) |
3618369–wPt-7887-7B (252.5–258.3) | 3.5 | 258.3 | wPt-7887-7B | 12.31 | −59.79 | |||
TRo/CS | 4371643–4342266 (227.7–230.8) | 4.5 | 227.7 | 4371643 | 19.59 | 12.26 | H (+) | |
Cold-hardened seedlings | ||||||||
QH_tHM_1B-2 | P2013 | wPt-2725-1B–3619131 (133.1–144.1) | 4.4 | 139.2 | 4340874 | 11.12 | −3.55 | M (−) |
TRo/CS | 4340874–4345821 (139.2–160.8) | 3.0 | 146.7 | 3604249 | 10.91 | −5.55 | ||
4340874–4345821 (139.2–160.8) | 3.1 | 155.5 | 4372036 | 10.22 | −5.65 | |||
T2013 | 4203983–3619131 (128.6–144.1) | 3.1 | 139.2 | 4340874 | 7.13 | 2.91 | H (+) | |
QH_tHM_2B-1 | T2012 | 4341334–4200529 (9.3–37.5) | 3.2 | 25.2 | 4360063 | 11.42 | −2.71 | M (−) |
PI | 4341334–4350667 (9.3–22.9) | 3.5 | 16.1 | 4344975 | 10.65 | −0.16 | ||
P2012 | 4341334–4344975 (9.3–16.1) | 3.1 | 11.6 | 4349576 | 10.43 | 2.49 | H (+) | |
Qy2012 | 4344975–4342979 (16.1–34.2) | 3.1 | 25.2 | 4360063 | 11.18 | 2.69 | ||
QH_tHM_6B-1 | T2012 | 3620975–3619273 (96.9–110.6) | 3.0 | 96.9 | 3620975 | 10.71 | −2.72 | M (−) |
P2011 | 4357005–3040595-6B (93.9–128.3) | 3.6 | 115.3 | 4204618 | 11.34 | −2.93 | ||
P2012 | 3620975–3619273 (96.9–110.6) | 3.8 | 96.9 | 3620975 | 10.94 | 2.74 | H (+) | |
Qy2012 | 3620975–3619273 (96.9–110.6) | 3.1 | 96.9 | 3620975 | 12.06 | 2.88 | ||
QH_tHM_6B-2 | T2013 | wPt-5480-6B–3609814 (248.7–254.8) | 4.2 | 252.8 | 4204529 | 11.63 | −3.72 | M (−) |
QH_tHM_7A-1 | T2013 | 4366013–4364182-7A (270.1–284.8) | 5.5 | 273.9 | 4345861 | 15.81 | 4.23 | H (+) |
QH_tHM_7B-1 | T2012 | 4360568–4342014 (17.6–42.2) | 3.0 | 29.6 | 4350658 | 9.31 | 2.52 | H (+) |
QH_tHM_7B-2 | ABS/CS | 4343332–3618369 (242.1–252.5) | 3.8 | 248.2 | 4205202 | 13.28 | 32.96 | |
QH_tHM_3R-1 | T2011 | 3603712–4373226 (6.8–22.7) | 4.5 | 17.4 | 4202139 | 14.12 | 3.80 | H (+) |
QH_tHM_5R-1 | T2013 | 3611246–rPt-390144-5R (155.1–161.3) | 5.1 | 158.5 | 4343941 | 14.33 | −4.40 | M (−) |
QH_tHM_5R-2 | ABS/RC | 4356596–4373163 (82.5–97.1) | 4.5 | 90.7 | 3624321 | 15.45 | 0.21 | H (+) |
QH_tHM_6R-1 | T2013 | 3621767–3618196 (213.2–225.2) | 3.1 | 220.4 | 3044945 | 5.60 | −2.62 | M (−) |
QTL (Trait) | Marker/ Position | Gene Name | Position | Predicted Protein | Reference Organism | NCBI ID | Predicted Function |
---|---|---|---|---|---|---|---|
Unhardened seedlings | |||||||
QUH__tHM_7B-1 (ABS/Csm, TRO/CS) | 4204248 (flanking) Chr7B:672350251..672350320 | TraesCS7B03G1075200 | Chr7B:672349662..672350761 (+ strand) | Protein DMP3-like (LOC119342110) | T. dicoccoides | XM_037613949.1 | Endomembrane system organization (GO: 0010256) |
4371643 (flanking/LOD) Chr7B:663773050..663773080 | TraesCS7B03G1051500LC * | Chr7B:663772662..663773372 (− strand) | Uncharacterized LOC123162005 | T. aestivum | XM_044579811.1 | Unknown | |
Cold-hardened seedlings | |||||||
QH_tHM_2B-1 (PI, Qy2012, P2012, T2012) | 4344975 (LOD) Chr2B:9347050..9347062 | TraesCS2B03G0035600LC * | Chr2B:9347033..9351375 (− strand) | Sterol 3-beta-glucosyltransferase UGT80A2-like (LOC123043096) | T. aestivum | XM_044465446.1 | Lipid glycosylation (GO: 0030259); UDP-glycosyltransferase activity (GO: 0008194); carbohydrate metabolic process (GO: 0005975) |
QH_tHM_5R-1 (ABS/RC) | 4356596 (flanking) Chr5R:835874349..835874381 | SECCE5Rv1G0369560 | Chr5R:835868920..835875125 (− strand) | Transcription factor NAI1-like (LOC123094224) | T. aestivum | XR_006445773.1 | Protein dimerization activity (GO: 0046983); metal ion binding (GO: 0046872) |
Trait | Candidate Gene/Protein | Seedling Damage Caused by the M. nivale Infection | Tolerance to the M. nivale Infection | ||||||
---|---|---|---|---|---|---|---|---|---|
P2011 | P2012 | P2013 | P2011–2013 | T2011 | T2012 | T2013 | T2011–2013 | ||
P2011 | 0.51 | −0.51 | |||||||
P2012 | Sterol 3-beta-glucosyltransferase UGT80A2-like | 0.32 | 0.57 | −0.32 | −0.57 | ||||
P2013 | 0.78 | −0.78 | |||||||
T2011 | −0.51 | 0.51 | |||||||
T2012 | Sterol 3-beta-glucosyltransferase UGT80A2-like | −0.32 | −0.57 | 0.32 | 0.57 | ||||
T2013 | −0.78 | 0.78 | |||||||
ABS/CS | 0.28 | 0.2 | 0.26 | −0.28 | −0.2 | −0.26 | |||
ABS/RC | Transcription factor NAI1-like, Flavonol3-sulfotransferase-like | 0.23 | 0.22 | −0.23 | −0.22 | ||||
PI | Sterol 3-beta-glucosyltransferase UGT80A2-like | −0.2 | −0.24 | −0.24 | 0.2 | 0.24 | 0.24 | ||
Tro/CS | 0.32 | −0.32 | |||||||
Qy2012 | Sterol 3-beta-glucosyltransferase UGT80A2-like | 0.97 | 1.00 | 0.32 | 0.57 | −0.97 | −1.00 | −0.32 | −0.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gołębiowska, G.; Dyda, M.; Wajdzik, K. Quantitative Trait Loci and Candidate Genes Associated with Cold-Acclimation and Microdochium nivale Tolerance/Susceptibility in Winter Triticale (x Triticosecale). Plants 2021, 10, 2678. https://doi.org/10.3390/plants10122678
Gołębiowska G, Dyda M, Wajdzik K. Quantitative Trait Loci and Candidate Genes Associated with Cold-Acclimation and Microdochium nivale Tolerance/Susceptibility in Winter Triticale (x Triticosecale). Plants. 2021; 10(12):2678. https://doi.org/10.3390/plants10122678
Chicago/Turabian StyleGołębiowska, Gabriela, Mateusz Dyda, and Katarzyna Wajdzik. 2021. "Quantitative Trait Loci and Candidate Genes Associated with Cold-Acclimation and Microdochium nivale Tolerance/Susceptibility in Winter Triticale (x Triticosecale)" Plants 10, no. 12: 2678. https://doi.org/10.3390/plants10122678
APA StyleGołębiowska, G., Dyda, M., & Wajdzik, K. (2021). Quantitative Trait Loci and Candidate Genes Associated with Cold-Acclimation and Microdochium nivale Tolerance/Susceptibility in Winter Triticale (x Triticosecale). Plants, 10(12), 2678. https://doi.org/10.3390/plants10122678