Rapid and Specific Detection of the Poplar Black Spot Disease Caused by Marssonina brunnea Using Loop-Mediated Isothermal Amplification Assay
Abstract
:1. Introduction
2. Results
2.1. Primers Required for LAMP Reaction
2.2. Optimization of LAMP Assay Conditions
2.3. Specificity of the LAMP Assay
2.4. Sensitivity of the LAMP and PCR Assays
2.5. Direct Detection of M. brunnea in Artificially Inoculated Poplar Samples
2.6. Direct Detection of M. brunnea in Diseased Poplar Leaves from the Field
3. Discussion
4. Materials and Methods
4.1. Design of LAMP Primers
4.2. Fungal Materials and DNA Extraction
4.3. LAMP Reaction
4.4. Conventional PCR Detection of M. brunnea
4.5. Assay of Specificity and Sensitivity in LAMP and PCR Methods
4.6. LAMP and PCR Assays on the Artificially Inoculated Samples
4.7. Detection of Poplar Black Spot Pathogen in the Field Samples by the LAMP and PCR Assays
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Call, A.C.; Clair, S.B.S.; Ryan, M. Outbreak of Drepanopeziza fungus in aspen forests and variation in stand susceptibility: Leaf functional traits, compensatory growth and phenology. Tree Physiol. 2017, 37, 1–10. [Google Scholar] [CrossRef]
- Erickson, J.E.; Stanosz, G.R.; Krüger, E.L. Photosynthetic consequences of Marssonina leaf spot differ between two poplar hybrids. N. Phytol. 2004, 161, 577–583. [Google Scholar] [CrossRef]
- Ren, F.; Yan, D.H.; Wu, G.; Sun, X.; Song, X.; Li, R. Distinctive gene expression profiles and effectors consistent with host specificity in two formae speciales of Marssonina brunnea. Front. Microbiol. 2020, 11, 276. [Google Scholar] [CrossRef]
- Simpson, B.; Hayes, A. Growth of Marssonina brunnea. Trans. Br. Mycol. Soc. 1978, 70, 249–255. [Google Scholar] [CrossRef]
- Zhang, Y.; He, W.; Yan, D.H. Histopathologic characterization of the process of Marssonina brunnea infection in poplar leaves. Can. J. For. Res. 2018, 48, 1302–1310. [Google Scholar] [CrossRef]
- Zhu, S.; Cao, Y.Z.; Jiang, C.; Tan, B.Y.; Wang, Z.; Feng, S.; Zhang, L.; Su, X.; Brejová, B.; Vinař, T.; et al. Sequencing the genome of Marssonina brunnea reveals fungus-poplar co-evolution. BMC Genom. 2012, 13, 382. [Google Scholar] [CrossRef] [Green Version]
- Spiers, A.G. Comparative studies of host specificity and symptoms exhibited by poplars infected with Marssonina brunnea, Marssonina castagnei and Marssonina populi. For. Pathol. 1984, 14, 202–218. [Google Scholar] [CrossRef]
- Yuan, K.; Zhang, B.; Zhang, Y.; Cheng, Q.; Wang, M.; Huang, M. Identification of differentially expressed proteins in poplar leaves induced by Marssonina brunnea f. sp. multigermtubi. J. Genet. Genom. 2008, 35, 49–60. [Google Scholar] [CrossRef]
- Han, Z.; Li, C.; Huang, M. Comparative studies of isolates of Marssonina brunnea in China. Sci. Silvae Sin. 1998, 34, 59–65. [Google Scholar]
- Spiers, A.G.; Hopcroft, D.H. Ultrastructural study of the pathogenesis of Marssonina species to poplars. For. Pathol. 1983, 13, 414–427. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Chen, Y.; Wang, Q.; Wang, M.; Huang, M. Function and chromosomal localization of differentially expressed genes induced by Marssonina brunnea f. sp. multigermtubi in Populus deltoides. J. Genet. Genom. 2007, 34, 641–648. [Google Scholar] [CrossRef]
- Han, Z.M.; Yin, T.M.; Li, C.D.; Huang, M.R.; Wu, R.L. Host effect on genetic variation of Marssonina brunnea pathogenic to poplars. Theor. Appl. Genet. 2000, 100, 614–620. [Google Scholar] [CrossRef]
- Pscheidt, J.W.; Ocamb, C.M. Pacific Northwest Plant Disease Management Handbook; Oregon State University: Corvallis, OR, USA, 2017. [Google Scholar]
- Zhao, L.; Xiao, H.; Ma, X.; Cheng, Q.; Qiang, C. Elsinoë australis causing spot anthracnose on poplar in China. Plant Dis. 2020, 104, 2202–2209. [Google Scholar] [CrossRef]
- Huda, A.A.S.M.; Koubaa, A.; Cloutier, A.; Hernández, R.E.; Fortin, Y. Variation of the physical and mechanical properties of hybrid poplar clones. BioResources 2013, 9, 1456–1471. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Dong, Y.; Chen, Z.; Liao, W.; Lei, B.; Gao, K.; Li, S.; An, X.-M. Variation in the growth traits and wood properties of hybrid white poplar clones. Forests 2015, 6, 1107–1120. [Google Scholar] [CrossRef] [Green Version]
- Bertolini, E.; Olmos, A.; Caruso, P.; Llop, P.; Cambra, M. Innovative tools for detection of plant pathogenic viruses and bacteria. Int. Microbiol. 2003, 6, 233–243. [Google Scholar] [CrossRef]
- Donoso, A.; Valenzuela, S. In-field molecular diagnosis of plant pathogens: Recent trends and future perspectives. Plant Pathol. 2018, 67, 1451–1461. [Google Scholar] [CrossRef]
- McCartney, H.A.; Foster, S.J.; A Fraaije, B.; Ward, E. Molecular diagnostics for fungal plant pathogens. Pest Manag. Sci. 2003, 59, 129–142. [Google Scholar] [CrossRef]
- Notomi, T.; Okayama, H.; Masubuchai, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, E63. [Google Scholar] [CrossRef] [Green Version]
- Notomi, T.; Mori, Y.; Tomita, N.; Kanda, H. Loop-mediated isothermal amplification (LAMP): Principle, features and future prospects (2015). J. Microbiol. 2015, 53, 1–5. [Google Scholar] [CrossRef]
- Tomlinson, J.A.; Dickinson, M.J.; Boonham, N. Rapid detection of Phytophthora ramorum and P. kernoviae by two-minute DNA extraction followed by isothermal amplification and amplicon detection by generic lateral flow device. Phytopathology 2010, 100, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Dhama, K.; Karthik, K.; Chakraborty, S.; Tiwari, R.; Kapoor, S.; Kumar, A.; Thomas, P. Loop-mediated isothermal amplification of DNA (LAMP): A new diagnostic tool lights the world of diagnosis of animal and human pathogens: A review. Pak. J. Biol. Sci. 2014, 17, 151–166. [Google Scholar] [CrossRef] [Green Version]
- Goto, M.; Honda, E.; Ogura, A.; Nomoto, A.; Hanaki, K.I. Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue. BioTechniques 2009, 46, 167–172. [Google Scholar] [CrossRef]
- Li, Y.; Fan, P.; Zhou, S.; Zhang, L. Loop-mediated isothermal amplification (LAMP): A novel rapid detection platform for pathogens. Microb. Pathog. 2017, 107, 54–61. [Google Scholar] [CrossRef]
- Parida, M.; Posadas, G.; Inoue, S.; Hasebe, F.; Morita, K. Real-time reverse transcription loop-mediated isothermal amplification for rapid detection of West Nile virus. J. Clin. Microbiol. 2004, 42, 257–263. [Google Scholar] [CrossRef] [Green Version]
- Rong, Z.; Yuan, Y.; Ye, W.; Wang, X.; Wang, S. Rapid diagnosis of rice bakanae caused by Fusarium fujikuroi and F. proliferatum using loop-mediated isothermal amplification assays. J. Phytopathol. 2018, 166, 283–290. [Google Scholar] [CrossRef]
- Yang, X.; Al-Attala, M.N.; Zhang, Y.; Zhang, A.F.; Zang, H.Y.; Gu, C.Y.; Gao, T.C.; Chen, Y.; Ali, F.; Li, Y.F.; et al. Rapid detection of the rice false smut disease caused by Ustilaginoidea virens (teleomorph: Villosiclava virens) from rice using loop mediated Isothermal amplification assay. Plant Dis. 2018, 102, 1741–1747. [Google Scholar] [CrossRef] [Green Version]
- Yasuhara-Bell, J.; Pedley, K.F.; Farman, M.L.; Valent, B.; Stack, J.P. Specific detection of the wheat blast pathogen (Magnaporthe oryzae Triticum) by loop-mediated isothermal amplification. Plant Dis. 2018, 102, 2550–2559. [Google Scholar] [CrossRef] [Green Version]
- Dias, V.D.; Fernandez, E.; Cunha, M.G.; Pieretti, I.; Hincapié, M.; Roumagnac, P.; Comstock, J.C.; Rott, P. Comparison of loop-mediated isothermal amplification, polymerase chain reaction, and selective isolation assays for detection of Xanthomonas albilineans from sugarcane. Trop. Plant Pathol. 2018, 43, 351–359. [Google Scholar] [CrossRef]
- Maeda, H.; Kokeguchi, S.; Fujimoto, C.; Tanimoto, I.; Yoshizumi, W.; Nishimura, F.; Takashiba, S. Detection of periodontal pathogen Porphyromonas gingivalis by loop-mediated isothermal amplification method. FEMS Immunol. Med Microbiol. 2005, 43, 233–239. [Google Scholar] [CrossRef] [Green Version]
- Dai, T.T.; Lu, C.C.; Lu, J.; Dong, S.; Ye, W.; Wang, Y.; Wang, S. Development of a loop-mediated isothermal amplification assay for detection of Phytophthora sojae. FEMS Microbiol. Lett. 2012, 334, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Fukuta, S.; Takahashi, R.; Kuroyanagi, S.; Ishiguro, Y.; Miyake, N.; Nagai, H.; Suzuki, H.; Tsuji, T.; Hashizume, F.; Watanabe, H.; et al. Development of loop-mediated isothermal amplification assay for the detection of Pythium myriotylum. Lett. Appl. Microbiol. 2014, 59, 49–57. [Google Scholar] [CrossRef]
- Takahashi, R.; Fukuta, S.; Kuroyanagi, S.; Miyake, N.; Nagai, H.; Kageyama, K.; Ishiguro, Y. Development and application of a loop-mediated isothermal amplification assay for rapid detection of Pythium helicoides. FEMS Microbiol. Lett. 2014, 355, 28–35. [Google Scholar] [CrossRef]
- Tomlinson, J.A.; Barker, I.; Boonham, N. Faster, simpler, more-specific methods for improved molecular detection of Phytophthora ramorum in the field. Appl. Environ. Microbiol. 2007, 73, 4040–4047. [Google Scholar] [CrossRef] [Green Version]
- Poon, L.L.; Wong, B.W.Y.; Ma, E.H.T.; Chan, K.H.; Chow, L.M.C.; Abeyewickreme, W.; Tangpukdee, N.; Yuen, K.Y.; Guan, Y.; Looareesuwan, S.; et al. Sensitive and inexpensive molecular test for falciparum malaria: Detecting Plasmodium falciparum DNA directly from heat-treated blood by loop-mediated isothermal amplification. Clin. Chem. 2006, 52, 303–306. [Google Scholar] [CrossRef] [Green Version]
- Dai, T.; Yang, X.; Hu, T.; Li, Z.; Xu, Y.; Lu, C. A novel LAMP assay for the detection of Phytophthora cinnamomi utilizing a new target gene identified from genome sequences. Plant Dis. 2019, 103, 3101–3107. [Google Scholar] [CrossRef]
- Sillo, F.; Giordano, L.; Gonthier, P. Fast and specific detection of the invasive forest pathogen Heterobasidion irregulare through a Loop-mediated isothermal AMP lification (LAMP) assay. For. Pathol. 2017, 48, e12396. [Google Scholar] [CrossRef]
- Sung, C.H.; Lu, J.K. Reverse transcription loop-mediated isothermal amplification for rapid and sensitive detection of nervous necrosis virus in groupers. J. Virol. Methods 2009, 159, 206–210. [Google Scholar] [CrossRef]
- Lee, C.H.; Lee, S.Y.; Jung, H.Y.; Kim, J.H. The application of optical coherence tomography in the diagnosis of Marssonina blotch in apple leaves. J. Opt. Soc. Korea 2012, 16, 133–140. [Google Scholar] [CrossRef]
- Lee, J.; Lee, S.Y.; Wijesinghe, R.E.; Ravichandran, N.K.; Han, S.; Kim, P.; Jeon, M.; Jung, H.-Y.; Kim, J. On-Field In Situ inspection for Marssonina Coronaria infected apple blotch based on non-invasive bio-photonic imaging module. IEEE Access 2019, 7, 148684–148691. [Google Scholar] [CrossRef]
- Oberhänsli, T.; Vorley, T.; Tamm, L.; Schärer, H.J. Development of a quantitative PCR for improved detection of Marssonina coronaria in field samples. Ecofruit Short Contrib. 2014, 187–190. [Google Scholar]
- Ren, W.; Liu, N.; Li, B. Development and application of a LAMP method for rapid detection of apple blotch caused by Marssonina coronaria. Crop. Prot. 2021, 141, 105452. [Google Scholar] [CrossRef]
- Shuaibu, M.; Lee, W.S.; Hong, Y.K.; Kim, S. Detection of apple marssonina blotch disease using hyperspectral imaging. In 2015 ASABE Annual International Meeting (p. 1). Am. Soc. Agric. Biol. Eng. 2015. [Google Scholar] [CrossRef]
- Kimura, Y.; De Hoon, M.J.L.; Aoki, S.; Ishizu, Y.; Kawai, Y.; Kogo, Y.; O Daub, C.; Lezhava, A.; Arner, E.; Hayashizaki, Y. Optimization of turn-back primers in isothermal amplification. Nucleic Acids Res. 2011, 39, e59. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Lan, R.; Xu, H.; Ma, A.; Li, D.; Dai, H.; Yuan, X.; Xu, J.; Ye, C. Multiple endonuclease restriction real-time loop-mediated isothermal amplification: A novel analytically rapid, sensitive, multiplex loop-mediated isothermal amplification detection technique. J. Mol. Diagn. 2015, 17, 392–401. [Google Scholar] [CrossRef]
- Ortega, S.F.; Tomlinson, J.; Hodgetts, J.; Spadaro, D.; Gullino, M.L.; Boonham, N. Development of loop-mediated isothermal amplification assays for the detection of seedborne fungal pathogens, Fusarium fujikuroi and Magnaporthe oryzae, in rice seeds. Plant Dis. 2018, 102, 1549–1558. [Google Scholar] [CrossRef] [Green Version]
- Parida, M.; Sannarangaiah, S.; Dash, P.K.; Rao, P.V.L.; Morita, K. Loop mediated isothermal amplification (LAMP): A new generation of innovative gene amplification technique; perspectives in clinical diagnosis of infectious diseases. Rev. Med Virol. 2008, 18, 407–421. [Google Scholar] [CrossRef]
- Nzelu, C.O.; Gomez, E.A.; Cáceres, A.G.; Sakurai, T.; Martini-Robles, L.; Uezato, H.; Mimori, T.; Katakura, K.; Hashiguchi, Y.; Kato, H. Development of a loop-mediated isothermal amplification method for rapid mass-screening of sand flies for Leishmania infection. Acta Trop. 2014, 132, 1–6. [Google Scholar] [CrossRef]
- Ward, L.I.; Harper, S.J. Loop-mediated isothermal amplification for the detection of plant pathogens. Methods Mol. Biol. 2012, 862, 161–170. [Google Scholar] [CrossRef]
- Wassermann, M.; Mackenstedt, U.; Romig, T. A loop-mediated isothermal amplification (LAMP) method for the identification of species within the Echinococcus granulosus complex. Veter Parasitol. 2014, 200, 97–103. [Google Scholar] [CrossRef]
- Mwendwa, F.; Mbae, C.; Kinyua, J.; Mulinge, E.; Mburugu, G.N.; Njiru, Z.K. Stem loop-mediated isothermal amplification test: Comparative analysis with classical LAMP and PCR in detection of Entamoeba histolytica in Kenya. BMC Res. Notes 2017, 10, 142. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Baek, Y.H.; Kim, Y.H.; Choi, Y.K.; Song, M.S.; Ahn, J.Y. One-pot reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) for detecting MERS-CoV. Front. Microbiol. 2017, 7, 2166. [Google Scholar] [CrossRef] [Green Version]
- Wu, R.; Liu, X.; Guo, B.; Chen, F.; Wang, X. Development of double loop-mediated isothermal amplification to detect Listeria monocytogenes in food. Curr. Microbiol. 2014, 69, 839–845. [Google Scholar] [CrossRef]
- Fischbach, J.; Xander, N.C.; Frohme, M.; Glökler, J.F. Shining a light on LAMP assays—A comparison of LAMP visualization methods including the novel use of berberine. BioTechniques 2015, 58, 189–194. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Guo, J.; Xu, L.; Gao, S.; Lin, Q.; Wu, Q.; Wu, L.; Que, Y. Establishment and application of a loop-mediated isothermal amplification (LAMP) system for detection of cry1Ac transgenic sugarcane. Sci. Rep. 2015, 4, 4912. [Google Scholar] [CrossRef]
- Salant, H.; Hamburger, J.; Abbasi, I. The development of a loop-mediated isothermal amplification method (LAMP) for Echinococcus granulosis coprodetection. Am. J. Trop. Med. Hyg. 2012, 87, 883–887. [Google Scholar] [CrossRef] [Green Version]
- Alzohairy, A.M. BioEdit: An important software for molecular biology. Gerf Bull. Biosci. 2011, 2, 60–61. [Google Scholar]
- Cheng, Q.; Wang, H.; Xu, B.; Zhu, S.; Hu, L.; Huang, M. Discovery of a novel small secreted protein family with conserved N-terminal IGY motif in Dikarya fungi. BMC Genom. 2014, 15, 1151. [Google Scholar] [CrossRef] [Green Version]
Primer Name | Primer Sequence (5′-3′) | Length/nt |
---|---|---|
F3 (forward outer primer) | CGCCAGAGGACCACAA | 16 |
B3 (backward outer primer) | CCTTCGGAATGCCAAAGG | 18 |
FIP (forward inner primer) (F1c + F2) | CCAGAACCAAGAGATCCGTTGTCCCGTGCCATGTCAGT | 38 |
BIP (backward inner primer) (B1c + B2) | TGAAGAACGCAGCGAAATGCCGCAATGTGCGTTCAAAG | 38 |
LF (forward loop primer) | ACTATTATATAGTACTCAGACGAC | 24 |
LB (backward loop primer) | TGCAGAATTCAGTGAATCATCGA | 23 |
Species | Isolate ID | Host | Origin | Order |
---|---|---|---|---|
Marssonina brunnea f. sp. monogermtubi | QC2 | Populus tomentosa Carr. | Nanjing, Jiangsu | 1 |
Marssonina brunnea f. sp. monogermtubi | QM2 | Populus tomentosa Carr. | Nanjing, Jiangsu | 2 |
Marssonina brunnea f. sp. monogermtubi | QM3 | Populus tomentosa Carr. | Nanjing, Jiangsu | 3 |
Marssonina brunnea f. sp. monogermtubi | QM6 | Populus tomentosa Carr. | Nanjing, Jiangsu | 4 |
Marssonina brunnea f. sp. monogermtubi | QM8 | Populus tomentosa Carr. | Nanjing, Jiangsu | 5 |
Marssonina brunnea f. sp. monogermtubi | QM15 | Populus tomentosa Carr. | Nanjing, Jiangsu | 6 |
Marssonina brunnea f. sp. multigermtubi | J1 | Populus × canadensis Moench | Nanjing, Jiangsu | 7 |
Marssonina brunnea f. sp. multigermtubi | J3 | Populus × canadensis Moench | Nanjing, Jiangsu | 8 |
Marssonina brunnea f. sp. multigermtubi | 214-2 | Populus × euramericana “I-214” | Nanjing, Jiangsu | 9 |
Marssonina brunnea f. sp. multigermtubi | 214-4 | Populus × euramericana “I-214” | Nanjing, Jiangsu | 10 |
Marssonina brunnea f. sp. multigermtubi | XY-1 | Populus simonii Carr. | Xinmin, Liaoning | 11 |
Marssonina brunnea f. sp. multigermtubi | XY-3 | Populus simonii Carr. | Xinmin, Liaoning | 12 |
Marssonina coronaria (Ell. & Davis) Davis | Mp-1 | Malus pumila Mill. | Nanjing, Jiangsu | 13 |
Marssonina rosae (Lib.) Fr. | Ms-3 | Rosa chinensis Jacq. | Nanjing, Jiangsu | 14 |
Melampsora larici-populina Kleb. | YL-1 | Populus × euramericana | NJFU * | 15 |
Venturia populina (Vuill.) Fabr. | T4 | Populus × euramericana “I-214” | NJFU * | 16 |
Elsinoë australis | NL-1 | Populus tomentosa Carr. Populus deltoides | NJFU * | 17 |
Alternaria sp. | As-1 | Populus × euramericana “I-214” Populus simonii Carr. Populus tomentosa Carr. | NJFU * | 18 |
Botryosphaeria sp. | Bs-1 | Populus × euramericana “I-214” Populus simonii Carr. Populus tomentosa Carr. | NJFU * | 19 |
Pseudocercospora sp. | Ps-1 | Populus × euramericana “I-214” Populus simonii Carr. Populus tomentosa Carr. | NJFU * | 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, Q.; Zhang, L.; Zheng, X.; Qian, Y.; Zhang, Y.; Zhao, L.; Cheng, Q. Rapid and Specific Detection of the Poplar Black Spot Disease Caused by Marssonina brunnea Using Loop-Mediated Isothermal Amplification Assay. Plants 2021, 10, 253. https://doi.org/10.3390/plants10020253
Xiong Q, Zhang L, Zheng X, Qian Y, Zhang Y, Zhao L, Cheng Q. Rapid and Specific Detection of the Poplar Black Spot Disease Caused by Marssonina brunnea Using Loop-Mediated Isothermal Amplification Assay. Plants. 2021; 10(2):253. https://doi.org/10.3390/plants10020253
Chicago/Turabian StyleXiong, Qin, Linlin Zhang, Xinyue Zheng, Yulin Qian, Yaxin Zhang, Lijuan Zhao, and Qiang Cheng. 2021. "Rapid and Specific Detection of the Poplar Black Spot Disease Caused by Marssonina brunnea Using Loop-Mediated Isothermal Amplification Assay" Plants 10, no. 2: 253. https://doi.org/10.3390/plants10020253
APA StyleXiong, Q., Zhang, L., Zheng, X., Qian, Y., Zhang, Y., Zhao, L., & Cheng, Q. (2021). Rapid and Specific Detection of the Poplar Black Spot Disease Caused by Marssonina brunnea Using Loop-Mediated Isothermal Amplification Assay. Plants, 10(2), 253. https://doi.org/10.3390/plants10020253