Resistance against Orobanche crenata in Bitter Vetch (Vicia ervilia) Germplasm Based on Reduced Induction of Orobanche Germination
Abstract
:1. Introduction
2. Results
2.1. Rhizotron Screening
2.2. Field Screening
2.3. In Vitro Germination Bioassay in Different Broomrape Species
3. Discussion
4. Materials and Methods
4.1. Rhizotron Screening
4.2. Field Screening
4.3. In Vitro Germination Bioassays
4.3.1. Identification of Germination-Stimulatory Activity
4.3.2. Identification of Germination-Inhibitory Activity
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Zohary, D.; Hopf, M. Domestication of Plants in the Old World, 3rd ed.; Oxford University Press Inc.: New York, NY, USA, 2000. [Google Scholar]
- Ladizinsky, G. Plant Evolution under Domestication; Kluwer Academic Publishers: London, UK, 1998. [Google Scholar]
- Kaplan, M.; Kokten, K.; Uzun, S. Fatty acid and metal composition of the seeds of Vicia ervilia varieties from Turkey. Chem. Nat. Compd. 2014, 50, 117–119. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Fisheries and Food. Agri-Food Statistics Yearbook. 2019; Crop Areas and Yields. Grain Legumes. Bitter Vetch. Available online: https://www.mapa.gob.es/es/estadistica/temas/publicaciones/anuario-de-estadistica/2019/default.aspx?parte=3&capitulo=07&grupo=2&seccion=8 (accessed on 22 January 2021).
- Enneking, D.; Lahlou, A.; Noutfia, A.; Bounejmate, M. A note on Vicia ervilia cultivation utilisation and toxicity in Morocco. Al Awamia 1995, 89, 141–148. [Google Scholar]
- Karadavut, U.; Bakoglu, A.; Tutar, H.; Kokten, K.; Yilmaz, H.S. Prediction of dry matter accumulation in bitter vetch. Legume Res. 2017, 40, 1038–1045. [Google Scholar] [CrossRef] [Green Version]
- González-Verdejo, C.I.; Fernández-Aparicio, M.; Córdoba, E.M.; Nadal, S. Identification of Vicia ervilia germplasm resistant to Orobanche crenata. Plants 2020, 9, 1568. [Google Scholar] [CrossRef] [PubMed]
- Parker, C. The parasitic weeds of the Orobanchaceae. In Parasitic Orobanchaceae; Joel, D.M., Gressel, J., Musselman, L.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 313–344. [Google Scholar]
- Rubiales, D.; Fernández-Aparicio, M. Innovations in parasitic weeds management in legume crops. Agron. Sustain. Dev. 2012, 32, 433–449. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Flores, F.; Rubiales, D. The effect of Orobanche crenata infection severity in faba bean, field pea and grass pea productivity. Front. Plant Sci. 2016, 7, 1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Aparicio, M.; Sillero, J.C.; Rubiales, D. Resistance to broomrape in wild lentils (Lens spp.). Plant Breeding 2009, 128, 266–270. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Delavault, P.; Timko, M. Management of infection by parasitic weeds: A review. Plants 2020, 9, 1184. [Google Scholar] [CrossRef]
- Xie, X.; Yoneyama, K.; Yoneyama, K. The strigolactone story. Annu. Rev. Phytopathol. 2010, 48, 93–117. [Google Scholar] [CrossRef] [Green Version]
- Joel, D.M.; Chaudhuri, S.K.; Plakhine, D.; Ziadna, H.; Steffens, J.C. Dehydrocostus lactone is exuded from sunflower roots and stimulates germination of the root parasite Orobanche cumana. Phytochemistry 2011, 72, 624–634. [Google Scholar] [CrossRef]
- Chang, M.; Netzly, D.G.; Butler, L.G.; Lynn, D.G. Chemical regulation of distance: Characterization of the first natural host germination stimulant for Striga asiatica. J. Am. Chem. Soc. 1986, 108, 7858–7860. [Google Scholar] [CrossRef] [PubMed]
- Evidente, A.; Fernández-Aparicio, M.; Cimmino, A.; Rubiales, D.; Andolfi, A.; Motta, A. Peagol and peagoldione, two new strigolactone-like metabolites isolated from pea root exudates. Tetrahedron Lett. 2009, 50, 6955–6958. [Google Scholar] [CrossRef]
- Evidente, A.; Cimmino, A.; Fernández-Aparicio, M.; Rubiales, D.; Andolfi, A.; Melck, D. Soyasapogenol B and trans-22-dehydrocampesterol from common vetch (Vicia sativa L.) root exudates stimulate broomrape seed germination. Pest Manag. Sci. 2011, 67, 1015–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evidente, A.; Cimmino, A.; Fernández-Aparicio, M.; Andolfi, A.; Rubiales, D.; Motta, A. Polyphenols, including the new peapolyphenols A− C, from pea root exudates stimulate Orobanche foetida seed germination. J. Agric. Food Chem. 2010, 58, 2902–2907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auger, B.; Pouvreau, J.B.; Pouponneau, K.; Yoneyama, K.; Montiel, G.; Le Bizec, B.; Yoneyama, K.; Delavault, P.; Delourme, R.; Simier, P. Germination stimulants of Phelipanche ramosa in the rhizosphere of Brassica napus are derived from the glucosinolate pathway. Mol. Plant- Microbe Interact. 2012, 25, 993–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoder, J.I.; Scholes, J.D. Host plant resistance to parasitic weeds; recent progress and bottlenecks. Curr. Opin. Plant Biol. 2010, 13, 478–484. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Westwood, J.H.; Rubiales, D. Agronomic, breeding and biotechnological approaches for parasitic plant management by manipulating strigolactone levels in agricultural soils. Botany 2011, 89, 813–826. [Google Scholar] [CrossRef]
- Abbes, Z.; Kharrat, M.; Simier, P.; Chaıbi, W. Characterisation of resistance to crenate broomrape (Orobanche crenata) in a new small seeded line of Tunisian faba beans. Phytoprotection 2007, 88, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Aparicio, M.; Moral, A.; Kharrat, M.; Rubiales, D. Resistance against broomrapes (Orobanche and Phelipanche spp.) in faba bean (Vicia faba) based in low induction of broomrape seed germination. Euphytica 2012, 186, 897–905. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Kisugi, T.; Xie, X.; Rubiales, D.; Yoneyama, K. Low strigolactone root exudation: A novel mechanism of broomrape (Orobanche and Phelipanche spp.) resistance available for faba bean breeding. J. Agric. Food Chem. 2014, 62, 7063–7071. [Google Scholar] [CrossRef] [PubMed]
- El-Halmouch, Y.; Benharrat, H.; Thalouarn, P. Effect of root exudates from different tomato genotypes on broomrape (O. aegyptiaca) seed germination and tubercle development. Crop Prot. 2006, 25, 501–507. [Google Scholar] [CrossRef]
- Dor, E.; Alperin, B.; Wininger, S.; Ben-Dor, B.; Somvanshi, V.S.; Koltai, H.; Kapulnik, Y.; Hershenhorn, J. Characterization of a novel tomato mutant resistant to Orobanche and Phelipanche spp. weedy parasites. Euphytica 2010, 171, 371–380. [Google Scholar] [CrossRef]
- Pavan, S.; Schiavulli, A.; Marcotrigiano, A.R.; Bardaro, N.; Bracuto, V.; Ricciardi, F.; Charnikova, T.; Lotti, C.; Bouwmeester, H.; Ricciardi, L. Characterization of low-strigolactone germplasm in pea (Pisum sativum L.) resistant to crenate broomrape (Orobanche crenata Forsk.). Mol. Plant Microbe Interact. 2016, 29, 743–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamil, M.; Charnikhova, T.; Houshyani, B.; van Ast, A.; Bouwmeester, H.J. Genetic variation in strigolactone production and tillering in rice and its effect on Striga hermonthica infection. Planta 2012, 235, 473–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gobena, D.; Shimels, M.; Rich, P.J.; Ruyter-Spira, C.; Bouwmeester, H.; Kanuganti, S.; Mengiste, T.; Ejeta, G. Mutation in sorghum low germination stimulant 1 alters strigolactones and causes Striga resistance. Proc. Natl. Acad. Sci. USA 2017, 114, 4471–4476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labrousse, P.; Arnaud, M.C.; Serieys, H.; Bervillé, A.; Thalouan, P. Several mechanisms are involved in resistance of Helianthus to Orobanche cumana Wallr. Ann. Bot. 2001, 88, 859–868. [Google Scholar] [CrossRef] [Green Version]
- Serghini, K.; Pérez-de-Luque, A.; Castejón-Muñoz, M.; García-Torres, L.; Jorrín, J.V. Sunflower (Helianthus annuus L.) response to broomrape (Orobanche cernua Loefl.) parasitism: Induced synthesis and excretion of 7-hydroxilated simple coumarins. J. Exp. Bot. 2001, 52, 2227–2234. [Google Scholar] [CrossRef] [PubMed]
- Aliche, E.B.; Screpanti, C.; De Mesmaeker, A.; Munnik, T.; Bouwmeester, H.J. Science and application of strigolactones. New Phytol. 2020, 227, 1001–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Aparicio, M.; Flores, F.; Rubiales, D. Recognition of root exudates by seeds of broomrape (Orobanche and Phelipanche) species. Ann. Bot. 2009, 103, 423–431. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Aparicio, M.; Yoneyama, K.; Rubiales, D. The role of strigolactones in host specificity of Orobanche and Phelipanche seed germination. Seed Sci. Res. 2011, 21, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Conn, C.E.; Bythell-Douglas, R.; Neumann, D.; Yoshida, S.; Whittington, B.; Westwood, J.H.; Shirasu, K.; Bond, C.S.; Dyer, K.A.; Nelson, D.C. Convergent evolution of strigolactone perception enabled host detection in parasitic plants. Science 2015, 349, 540–543. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Aparicio, M.; Rubiales, D. Differential response of pea (Pisum sativum) to Orobanche crenata, O. foetida and Phelipanche aegyptiaca. Crop Prot. 2012, 31, 27–30. [Google Scholar] [CrossRef]
- Ramaiah, K.V.; Chidley, V.L.; House, L.R. Inheritance of Striga seed-germination stimulant in sorghum. Euphytica 1990, 45, 33–38. [Google Scholar]
- Vogler, R.K.; Ejeta, G.; Butler, L.G. Inheritance of low production of Striga germination stimulant in sorghum. Crop Sci. 1996, 36, 1185. [Google Scholar] [CrossRef]
- Pérez-de-Luque, A.; Jorrín, J.; Cubero, J.I.; Rubiales, D. Orobanche crenata resistance and avoidance in pea (Pisum spp.) operate at different developmental stages of the parasite. Weed Res. 2005, 45, 379–387. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Flores, F.; Rubiales, D. Escape and true resistance to crenate broomrape (Orobanche crenata Forsk.) in grass pea (Lathyrus sativus L.) germplasm. Field Crop. Res. 2012, 125, 92–97. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.I. The Water-culture Method for Growing Plants without Soil; Circular No. 347; Californian Agricultural Experimental Statio: Berkeley, CA, US; University of California: Berkeley, CA, USA, 1950. [Google Scholar]
- Tennant, D. A test of a modified line intersect method of estimating root length. J. Ecol. 1975, 63, 995–1001. [Google Scholar] [CrossRef]
- Rubiales, D.; Pérez-de-Luque, A.; Cubero, J.I.; Sillero, J.C. Crenate broomrape (Orobanche crenata) infection in field pea cultivars. Crop Prot. 2003, 22, 865–872. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Andolfi, A.; Evidente, A.; Pérez-de-Luque, A.; Rubiales, D. Fenugreek root exudates show species-specific stimulation of Orobanche seed germination. Weed Res. 2008, 48, 163–168. [Google Scholar] [CrossRef]
- Cimmino, A.; Fernández-Aparicio, M.; Andolfi, A.; Basso, S.; Rubiales, D.; Evidente, A. Effect of fungal and plant metabolites on broomrapes (Orobanche and Phelipanche spp.) seed germination and radicle growth. J. Agric. Food Chem. 2014, 62, 10485–10492. [Google Scholar] [CrossRef] [PubMed]
Accession | Code ICARDA | Origin | Broomrape Seed Germination (%) | N.º of Broomrape Tubercles per Plant | Host Root Length (cm) |
---|---|---|---|---|---|
BGLI-Ve.005 | IFVE 2842 | Unknown | 0.32 ± 0.20 ab | 0.57 ± 0.30 ab | 535 ± 36.86 fghijk |
BGLI-Ve.006 | IFVE 2847 | Unknown | 1.68 ± 0.41 bcdefg | 2.29 ± 0.68 abcd | 468 ± 46.56 bcdefghij |
BGLI-Ve.009 | IFVE 2943 | Unknown | 1.25 ± 0.29 abcdef | 2.50 ± 0.50 abcde | 267 ± 47.07 abc |
BGLI-Ve.010 | IFVE 3030 | Unknown | 2.00 ± 0.43 bcdefghi | 2.57 ± 1.17 abcde | 523 ± 81.69 defghijk |
BGLI-Ve.011 | IFVE 2849 | Unknown | 1.64 ± 0.76 abcde | 3.29 ± 1.17 abcde | 437 ± 25.11 abcdefghij |
BGLI-Ve.012 | IFVE 2542 | Unknown | 4.75 ± 1.28 efghi | 4.17 ± 1.85 abcdef | 412 ± 56.94 abcdefghij |
BGLI-Ve.013 | IFVE4654 | Unknown | 3.34 ± 0.46 defghi | 1.88 ± 0.48 abcd | 585 ± 52.26 jk |
BGLI-Ve.014 | IFVE 4657 | Unknown | 4.43 ± 0.78 efghi | 1.86 ± 0.94 abc | 408 ± 33.17 abcdefghij |
BGLI-Ve.015 | IFVE 4658 | Unknown | 1.35 ± 0.69 abcde | 1.20 ± 0.97 abc | 551 ± 46.82 hijk |
BGLI-Ve.016 | Unknown | 2.88 ± 0.71 cdefghi | 5.75 ± 1.41 abcdefg | 442 ± 39.35 abcdefghij | |
BGLI-Ve.017 | SEL 2510 | Chipre | 1.32 ± 0.44 abcde | 0.86 ± 0.55 abc | 720 ± 63.02 k |
BGLI-Ve.018 | SEL 2511 | Chipre | 0.06 ± 0.0 a | 0.25 ± 0.16 a | 570 ± 47.98 ijk |
BGLI-Ve.019 | SEL 2512 | Chipre | 0.71 ± 0.34 abc | 1.00 ± 0.85 abc | 340 ± 28.95 abcdefghi |
BGLI-Ve.020 | SEL 2513 | Chipre | 1.94 ± 0.36 bcdefghi | 3.50 ± 0.80 abcde | 541 ± 28.57 ghijk |
BGLI-Ve.021 | SEL 2515 | Chipre | 1.19 ± 0.53 abcd | 1.75 ± 0.75 abc | 346 ± 69.34 abcdefghij |
BGLI-Ve.022 | SEL 2516 | Chipre | 2.56 ± 0.62 cdefghi | 2.63 ± 0.71 abcde | 393 ± 40.40 abcdefghij |
BGLI-Ve.023 | SEL 2517 | Chipre | 0.78 ± 0.15 abcd | 1.63 ± 0.46 abc | 436 ± 29.27 abcdefghij |
BGLI-Ve.024 | SEL 2518 | Siria | 1.56 ± 0.59 abcde | 1.25 ±0.45 abc | 527 ± 40.35 efghijk |
BGLI-Ve.025 | SEL 2519 | Siria | 1.25 ± 0.72 abcd | 1.88 ± 0.90 abcd | 216 ± 16.95 a |
BGLI-Ve.026 | SEL 2520 | Siria | 1.65 ± 0.34 bcdefgh | 2.75 ± 1.06 abcde | 284 ± 18.07 abcd |
BGLI-Ve.027 | SEL 2522 | Chipre | 2.00 ± 0.24 bcdefghi | 4.43 ± 0.65 abcdefg | 504 ± 67.73 cdefghijk |
BGLI-Ve.028 | SEL 2563 | Siria | 3.09 ± 0.45 defghi | 3.00 ± 0.63 abcde | 240 ± 18.94 ab |
BGLI-Ve.029 | SEL 2644 | Bulgaria | 2.06 ± 0.43 bcdefghi | 2.63 ± 1.21 abcde | 301 ± 20.91 abcdef |
BGLI-Ve.030 | SEL 2647 | Bulgaria | 2.72 ± 1.10 bcdefghi | 3.13 ± 1.64 abcde | 390 ± 34.94 abcdefghij |
BGLI-Ve.031 | SEL 2648 | Bulgaria | 2.44 ± 0.28 cdefghi | 2.00 ± 0.93 abcd | 402 ± 50.40 abcdefghij |
BGLI-Ve.032 | Bulgaria | 4.63 ± 0.56 fghi | 6.00 ± 1.15 abcdefg | 236 ± 14.63 ab | |
BGLI-Ve.033 | Unknown | 4.04 ± 0.36 efghi | 4.86 ± 0.51 abcdefg | 233 ± 15.21 ab | |
BGLI-Ve.034 | Spain | 5.66 ± 0.79 i | 10.63 ± 2.46 g | 248 ± 19.98 ab | |
BGLI-Ve.035 | Spain | 5.06 ± 0.59 ghi | 6.63 ± 1.03 bcdefg | 559 ± 83.52 ijk | |
BGLI-Ve.036 | Spain | 4.50 ± 1.36 efghi | 6.40 ± 1.57 abcdefg | 293 ± 25.79 abcde | |
BGLI-Ve.037 | Spain | 5.25 ± 0.47 ghi | 8.71 ± 1.46 efg | 257 ± 5.78 ab | |
BGLI-Ve.038 | Unknown | 4.66 ± 0.54 fghi | 8.13 ± 1.09 defg | 316 ± 41.95 abcdefgh | |
BGLI-Ve.039 | Spain | 5.28 ± 0.42 hi | 10.25 ± 1.81 fg | 232 ± 46.06 ab | |
BGLI-Ve.040 | Unknown | 5.10 ± 0.62 ghi | 6.40 ± 0.98 abcdefg | 367 ± 60.25 abcdefghij | |
BGLI-Ve.041 | Spain | 2.09 ± 0.47 bcdefghi | 1.75 ± 0.70 abc | 342 ± 27.03 abcdefghi | |
BGLI-Ve.042 | Unknown | 5.13 ± 0.71 ghi | 5.75 ± 1.26 abcdefg | 306 ± 31.02 abcdefg | |
BGLI-Ve.043 | Unknown | 3.28 ± 0.69 cdefghi | 6.25 ± 1.73 abcdefg | 291 ± 53.58 abcde | |
BGLI-Ve.044 | Unknown | 4.94 ± 0.87 ghi | 6.88 ± 0.69 cdefg | 224 ± 23.09 a | |
BGLI-Ve.045 | Spain | 4.84 ± 0.76 ghi | 6.25 ± 1.29 abcdefg | 238 ± 14.98 ab |
Accession | Number of O. crenata per Bitter Vetch Plant | O. crenata Emergence in Bitter Vetch Referred to the Faba Bean Check (%) |
---|---|---|
BGLI-Ve.5 | 1.17 ± 0.56 ab | 37.33 ± 2.03 ab |
BGLI-Ve.12 | 1.48 ± 0.62 ab | 32.33 ± 8.33 a |
BGLI-Ve.16 | 2.28 ± 0.49 ab | 76.33 ± 8.95 abcd |
BGLI-Ve.18 | 1.25 ± 0.14 ab | 153.00 ± 17.32 e |
BGLI-Ve.19 | 0.50 ± 0.27 a | 19.33 ± 1.45 a |
BGLI-Ve.20 | 1.74 ± 0.46 ab | 101.33 ± 3.18 bcde |
BGLI-Ve.24 | 0.56 ± 0.18 a | 15.00 ± 5.00 a |
BGLI-Ve.25 | 0.98 ± 0.51 ab | 20.33 ± 4.33 a |
BGLI-Ve.26 | 0.73 ± 0.15 a | 28.67 ± 2.73 a |
BGLI-Ve.30 | 1.20 ± 0.67 ab | 125.33 ± 20.50 cde |
BGLI-Ve.34 | 0.84 ± 0.37 a | 48.67 ± 19.33 ab |
BGLI-Ve.35 | 1.64 ± 0.34 ab | 61.67 ± 3.76 abc |
BGLI-Ve.36 | 0.73 ± 0.45 a | 48.33 ± 11.84 ab |
BGLI-Ve.38 | 3.26 ± 0.54 b | 129.33 ± 21.07 de |
BGLI-Ve.39 | 1.27 ± 0.70 ab | 47.67 ± 19.23 ab |
BGLI-Ve.43 | 0.83 ± 0.27 a | 37.33 ± 3.18 ab |
BGLI-Ve.44 | 1.72 ± 0.34 ab | 58.00 ± 14.73 ab |
Jabegote | 0.84 ± 0.46 a | 16.33 ± 0.33 a |
Accession | Number of O. crenata per Plant | O. crenata Emergence Referred to the Faba Bean Check (%) | Total O. crenata Emerged Dry Matter per Bitter Vetch Plant (g) | Average Individual O. crenata Dry Matter (g) | Relative Emerged Parasitic Weight | Total Host Dry Matter (g) | Host Reproductive Index |
---|---|---|---|---|---|---|---|
BGLI-Ve.5 | 1.10 ± 0.01 c | 11.87 ± 0.06 ab | 1.56 ± 0.78 a | 0.10 ± 0.06 a | 0.23 ± 0.12 a | 4.43 ± 0.54 ab | 0.48 ± 0.05 d |
BGLI-Ve.19 | 0.56 ± 0.07 a | 7.90 ± 0.01 ab | 1.52 ± 0.43 a | 0.13 ± 0.01 a | 0.22 ± 0.01 a | 7.75 ± 0.93 b | 0.35 ± 0.01 cd |
BGLI-Ve.24 | 0.59 ± 0.15 ab | 6.13 ± 0.01 a | 1.57 ± 0.80 a | 0.42 ± 0.32 a | 0.22 ± 0.04 a | 2.08 ± 1.29 a | 0.23 ± 0.01 abc |
BGLI-Ve.25 | 0.84 ± 0.02 abc | 15.44 ± 0.03 bc | 2.98 ± 1.31 a | 0.30 ± 0.18 a | 0.24 ± 0.02 a | 3.40 ± 1.98 ab | 0.41 ± 0.09 cd |
BGLI-Ve.26 | 0.88 ± 0.10 abc | 12.88 ± 0.03 abc | 2.08 ± 0.56 a | 0.19 ± 0.07 a | 0.31 ± 0.05 a | 4.45 ± 0.39 ab | 0.27 ± 0.01 bcd |
BGLI-Ve.38 | 1.08 ± 0.08 bc | 15.05 ± 0.01 abc | 1.28 ± 0.47 a | 0.09 ± 0.01a | 0.43 ± 0.07 a | 1.67 ± 0.60 a | 0.00 ± 0.00 a |
BGLI-Ve.43 | 1.72 ± 0.16 d | 20.91 ± 0.03 c | 1.64 ± 0.70 a | 0.18 ± 0.06 a | 0.36 ± 0.02 a | 3.59 ± 0.68 ab | 0.04 ± 0.04 ab |
Jabegote | 1.11 ± 0.11 c | 8.17 ± 0.00 ab | 1.54 ± 0.54 a | 0.15 ± 0.03 a | 0.34 ± 0.04 a | 4.34 ± 1.48 ab | 0.37 ± 0.08 cd |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Verdejo, C.I.; Fernández-Aparicio, M.; Córdoba, E.M.; López-Ráez, J.A.; Nadal, S. Resistance against Orobanche crenata in Bitter Vetch (Vicia ervilia) Germplasm Based on Reduced Induction of Orobanche Germination. Plants 2021, 10, 348. https://doi.org/10.3390/plants10020348
González-Verdejo CI, Fernández-Aparicio M, Córdoba EM, López-Ráez JA, Nadal S. Resistance against Orobanche crenata in Bitter Vetch (Vicia ervilia) Germplasm Based on Reduced Induction of Orobanche Germination. Plants. 2021; 10(2):348. https://doi.org/10.3390/plants10020348
Chicago/Turabian StyleGonzález-Verdejo, Clara Isabel, Mónica Fernández-Aparicio, Eva María Córdoba, Juan Antonio López-Ráez, and Salvador Nadal. 2021. "Resistance against Orobanche crenata in Bitter Vetch (Vicia ervilia) Germplasm Based on Reduced Induction of Orobanche Germination" Plants 10, no. 2: 348. https://doi.org/10.3390/plants10020348
APA StyleGonzález-Verdejo, C. I., Fernández-Aparicio, M., Córdoba, E. M., López-Ráez, J. A., & Nadal, S. (2021). Resistance against Orobanche crenata in Bitter Vetch (Vicia ervilia) Germplasm Based on Reduced Induction of Orobanche Germination. Plants, 10(2), 348. https://doi.org/10.3390/plants10020348