Comparative Analysis of Phenology Algorithms of the Spring Barley Model in APSIM 7.9 and APSIM Next Generation: A Case Study for High Latitudes
Abstract
:1. Introduction
2. Results
2.1. Crop Phenology Overview
2.2. Calibration and Evaluation of APSIM 7.9
2.3. Calibration and Evaluation of APSIM-NG
3. Discussion
3.1. Performance of Phenology Simulation Algorithms in the Calibration and Evaluation of APSIM 7.9 and APSIM-NG
3.2. Differences between APSIM 7.9 and APSIM-NG Algorithms for Simulating Phenology
3.3. Equifinality and Selection of the Parameters and Their Influence On Phenology
3.4. Further Development of APSIM Barley Models for Northern Regions
4. Materials and Methods
4.1. Location and Agronomic Management
4.2. Phenological Data Collection
4.3. Soil Characteristics
4.4. Climate
4.5. Description of Phenology Modules of APSIM 7.9 and APSIM-NG
4.6. Model Ccalibration: Using APSIM’s In-Built Factorial-Based Approach
4.7. Description of the Selection of Best Parameter Combinations
4.8. Statistical Determinants to Assess the Model Calibration and Evaluation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Makowski, D.; Naud, C.; Jeuffroy, M.-H.; Barbottin, A.; Monod, H. Global sensitivity analysis for calculating the contribution of genetic parameters to the variance of crop model prediction. Reliab. Eng. Syst. Saf. 2006, 91, 1142–1147. [Google Scholar] [CrossRef]
- Confalonieri, R.; Bregaglio, S.; Acutis, M. Quantifying uncertainty in crop model predictions due to the uncertainty in the observations used for calibration. Ecol. Model. 2016, 328, 72–77. [Google Scholar] [CrossRef]
- Seidel, S.J.; Palosuo, T.; Thorburn, P.; Wallach, D. Towards improved calibration of crop models—Where are we now and where should we go? Eur. J. Agron. 2018, 94, 25–35. [Google Scholar] [CrossRef]
- Asseng, S.; Martre, P.; Maiorano, A.; Rötter, R.P.; O’Leary, G.J.; Fitzgerald, G.J.; Girousse, C.; Motzo, R.; Giunta, F.; Babar, M.A.; et al. Climate change impact and adaptation for wheat protein. Glob. Chang. Biol. 2019, 25, 155–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunt, L.; Ash, A.; MacLeod, N.; McDonald, C.; Scanlan, J.; Bell, L.; Cowley, R.; Watson, I.; McIvor, J. Research Opportunities for Sustainable Productivity Improvement in the Northern Beef Industry: A Scoping Study; Meat & Livestock Australia: Sydney, Australia, 2019; pp. 157–210. [Google Scholar]
- Oliver, D.M.; Fish, R.D.; Winter, M.; Hodgson, C.J.; Heathwaite, A.L.; Chadwick, D.R. Valuing local knowledge as a source of expert data: Farmer engagement and the design of decision support systems. Environ. Model. Softw. 2012, 36, 76–85. [Google Scholar] [CrossRef]
- Parsons, D.; Nicholson, C.; Blake, R.W.; Ketterings, Q.; Ramírez-Aviles, L.; Fox, D.G.; Tedeschi, L.O.; Cherney, J.H. Development and evaluation of an integrated simulation model for assessing smallholder crop–livestock production in Yucatán, Mexico. Agric. Syst. 2011, 104, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Phelan, D.C.; Harrison, M.T.; McLean, G.; Cox, H.; Pembleton, K.G.; Dean, G.J.; Parsons, D.; Richter, M.E.A.; Pengilley, G.; Hinton, S.J.; et al. Advancing a farmer decision support tool for agronomic decisions on rainfed and irrigated wheat cropping in Tasmania. Agric. Syst. 2018, 167, 113–124. [Google Scholar] [CrossRef]
- Masuya, Y.; Shimono, H. Mining a yield-trial database to identify high-yielding cultivars by simulation modeling: A case study for rice. J. Agric. Meteorol. 2017, 73, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Kumar, U.; Laza, M.R.; Soulié, J.-C.; Pasco, R.; Mendez, K.V.S.; Dingkuhn, M. Compensatory phenotypic plasticity in irrigated rice: Sequential formation of yield components and simulation with SAMARA model. Field Crops Res. 2016, 193, 164–177. [Google Scholar] [CrossRef]
- Kumar, U.; Laza, M.R.; Soulié, J.C.; Pasco, R.; Mendez, K.V.S.; Dingkuhn, M. Analysis and simulation of phenotypic plasticity for traits contributing to yield potential in twelve rice genotypes. Field Crops Res. 2017, 202, 94–107. [Google Scholar] [CrossRef]
- Dingkuhn, M.; Pasco, R.; Pasuquin, J.M.; Damo, J.; Soulié, J.C.; Raboin, L.M.; Dusserre, J.; Sow, A.; Manneh, B.; Shrestha, S.; et al. Crop-model assisted phenomics and genome-wide association study for climate adaptation of indica rice. 1. Phenology. J. Exp. Bot. 2017, 68, 4369–4388. [Google Scholar] [CrossRef] [Green Version]
- Dingkuhn, M.; Pasco, R.; Pasuquin, J.M.; Damo, J.; Soulié, J.C.; Raboin, L.M.; Dusserre, J.; Sow, A.; Manneh, B.; Shrestha, S.; et al. Crop-model assisted phenomics and genome-wide association study for climate adaptation of indica rice. 2. Thermal stress and spikelet sterility. J. Exp. Bot. 2017, 68, 4389–4406. [Google Scholar] [CrossRef] [PubMed]
- Hammer, G.L.; Van Oosterom, E.; McLean, G.; Chapman, S.C.; Broad, I.; Harland, P.; Muchow, R.C. Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops. J. Exp. Bot. 2010, 61, 2185–2202. [Google Scholar] [CrossRef] [Green Version]
- Messina, C.D.; Podlich, D.; Dong, Z.; Samples, M.; Cooper, M. Yield-trait performance landscapes: From theory to application in breeding maize for drought tolerance. J. Exp. Bot. 2011, 62, 855–868. [Google Scholar] [CrossRef] [PubMed]
- Angulo, C.; Rötter, R.; Lock, R.; Enders, A.; Fronzek, S.; Ewert, F. Implication of crop model calibration strategies for assessing regional impacts of climate change in Europe. Agric. For. Meteorol. 2013, 170, 32–46. [Google Scholar] [CrossRef]
- Lobell, D.B.; Sibley, A.; Ivan Ortiz-Monasterio, J. Extreme heat effects on wheat senescence in India. Nat. Clim. Chang. 2012, 2, 186–189. [Google Scholar] [CrossRef]
- Rötter, R.P.; Carter, T.R.; Olesen, J.E.; Porter, J.R. Crop–climate models need an overhaul. Nat. Clim. Chang. 2011, 1, 175–177. [Google Scholar] [CrossRef]
- Martre, P.; Wallach, D.; Asseng, S.; Ewert, F.; Jones, J.W.; Rötter, R.P.; Boote, K.J.; Ruane, A.C.; Thorburn, P.J.; Cammarano, D.; et al. Multimodel ensembles of wheat growth: Many models are better than one. Glob. Chang. Biol. 2015, 21, 911–925. [Google Scholar] [CrossRef]
- Palosuo, T.; Kersebaum, K.C.; Angulo, C.; Hlavinka, P.; Moriondo, M.; Olesen, J.E.; Patil, R.H.; Ruget, F.; Rumbaur, C.; Takáč, J.; et al. Simulation of winter wheat yield and its variability in different climates of Europe: A comparison of eight crop growth models. Eur. J. Agron. 2011, 35, 103–114. [Google Scholar] [CrossRef] [Green Version]
- Tao, F.; Rötter, R.P.; Palosuo, T.; Gregorio Hernández Díaz-Ambrona, C.; Mínguez, M.I.; Semenov, M.A.; Kersebaum, K.C.; Nendel, C.; Specka, X.; Hoffmann, H.; et al. Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments. Glob. Chang. Biol. 2018, 24, 1291–1307. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Jones, J.W.; Hatfield, J.L.; Ruane, A.C.; Boote, K.J.; Thorburn, P.; Antle, J.M.; Nelson, G.C.; Porter, C.; Janssen, S.; et al. The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and pilot studies. Agric. For. Meteorol. 2013, 170, 166–182. [Google Scholar] [CrossRef] [Green Version]
- Ewert, F.; Rötter, R.P.; Bindi, M.; Webber, H.; Trnka, M.; Kersebaum, K.C.; Olesen, J.E.; van Ittersum, M.K.; Janssen, S.; Rivington, M.; et al. Crop modelling for integrated assessment of risk to food production from climate change. Environ. Model. Softw. 2015, 72, 287–303. [Google Scholar] [CrossRef]
- Van Oort, P.A.J.; Zhang, T.; de Vries, M.E.; Heinemann, A.B.; Meinke, H. Correlation between temperature and phenology prediction error in rice (Oryza sativa L.). Agric. For. Meteorol. 2011, 151, 1545–1555. [Google Scholar] [CrossRef]
- White, M.A.; Thornton, P.E.; Running, S.W. A continental phenology model for monitoring vegetation responses to interannual climatic variability. Glob. Biogeochem. Cycles 1997, 11, 217–234. [Google Scholar] [CrossRef]
- Peake, A.S.; Das, B.T.; Bell, K.L.; Gardner, M.; Poole, N. Effect of variable crop duration on grain yield of irrigated spring-wheat when flowering is synchronised. Field Crops Res. 2018, 228, 183–194. [Google Scholar] [CrossRef]
- Stapper, M.; Fischer, R.A. Genotype, sowing date and plant spacing influence on high-yielding irrigated wheat in southern New South Wales. III. Potential yields and optimum flowering dates. Aust. J. Agric. Res. 1990, 41, 1043. [Google Scholar] [CrossRef]
- Baldocchi, D.; Falge, E.; Wilson, K. A spectral analysis of biosphere–atmosphere trace gas flux densities and meteorological variables across hour to multi-year time scales. Agric. For. Meteorol. 2001, 107, 1–27. [Google Scholar] [CrossRef]
- Zhang, S.; Tao, F. Modeling the response of rice phenology to climate change and variability in different climatic zones: Comparisons of five models. Eur. J. Agron. 2013, 45, 165–176. [Google Scholar] [CrossRef]
- Cao, W.; Moss, D.N. Modelling phasic development in wheat: A conceptual integration of physiological components. J. Agric. Sci. 1997, 129, 163–172. [Google Scholar] [CrossRef]
- Rötter, R.P.; Palosuo, T.; Kersebaum, K.C.; Angulo, C.; Bindi, M.; Ewert, F.; Ferrise, R.; Hlavinka, P.; Moriondo, M.; Nendel, C.; et al. Simulation of spring barley yield in different climatic zones of Northern and Central Europe: A comparison of nine crop models. Field Crops Res. 2012, 133, 23–36. [Google Scholar] [CrossRef]
- Morel, J.; Parsons, D.; Halling, M.A.; Kumar, U.; Peake, A.; Bergkvist, G.; Brown, H.; Hetta, M. Challenges for Simulating Growth and Phenology of Silage Maize in a Nordic Climate with APSIM. Agronomy 2020, 10, 645. [Google Scholar] [CrossRef]
- Holzworth, D.; Huth, N.I.; Fainges, J.; Brown, H.; Zurcher, E.; Cichota, R.; Verrall, S.; Herrmann, N.I.; Zheng, B.; Snow, V. APSIM Next Generation: Overcoming challenges in modernising a farming systems model. Environ. Model. Soft. 2018, 103, 43–51. [Google Scholar] [CrossRef]
- Saldivar, S.O.S. Cereals: Types and Composition. In Encyclopedia of Food and Health, 1st ed.; Benjamin, C., Finglas, P.M., Toldra, F., Eds.; Acedemic Press: Cambridge, MA, USA; Elsevier Ltd.: Oxford, UK, 2015; Volume 1, p. 703. [Google Scholar]
- Olesen, J.E.; Trnka, M.; Kersebaum, K.C.; Skjelvåg, A.O.; Seguin, B.; Peltonen-Sainio, P.; Rossi, F.; Kozyra, J.; Micale, F. Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron. 2011, 34, 96–112. [Google Scholar] [CrossRef]
- Ruosteenoja, K.; Räisänen, J.; Venäläinen, A.; Kämäräinen, M. Projections for the duration and degree days of the thermal growing season in Europe derived from CMIP5 model output. Int. J. Climatol. 2015, 36, 3039–3055. [Google Scholar] [CrossRef]
- Beven, K.; Freer, J. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J. Hydrol. 2001, 249, 11–29. [Google Scholar] [CrossRef]
- Jagtap, S.S.; Jones, J.W. Adaptation and evaluation of the CROPGRO-soybean model to predict regional yield and production. Agric. Ecosyst. Environ. 2002, 93, 73–85. [Google Scholar] [CrossRef]
- Challinor, A.J.; Ewert, F.; Arnold, S.; Simelton, E.; Fraser, E. Crops and climate change: Progress, trends, and challenges in simulating impacts and informing adaptation. J. Exp. Bot. 2009, 60, 2775–2789. [Google Scholar] [CrossRef]
- Ahmed, M.; Ahmad, S.; Raza, M.A.; Kumar, U.; Ansar, M.; Shah, G.A.; Parsons, D.; Hoogenboom, G.; Palosuo, T.; Seidel, S. Models Calibration and Evaluation. In Systems Modeling; Ahmed, M., Ed.; Springer: Singapore, 2020; pp. 149–176. [Google Scholar]
- Wolf, J. Comparison of two potato simulation models under climate change. I. Model calibration and sensitivity analyses. Clim. Res. 1996, 7, 253–270. [Google Scholar] [CrossRef] [Green Version]
- Kirby, E.J.M. Analysis of leaf, stem and ear growth in wheat from terminal spikelet stage to anthesis. Field Crops Res. 1988, 18, 127–140. [Google Scholar] [CrossRef]
- Kirby, E.J.M. Co-ordination of leaf emergence and leaf and spikelet primordium initiation in wheat. Field Crops Res. 1990, 25, 253–264. [Google Scholar] [CrossRef]
- Boote, K.J.; Prasad, V.; Allen, L.H.; Singh, P.; Jones, J.W. Modeling sensitivity of grain yield to elevated temperature in the DSSAT crop models for peanut, soybean, dry bean, chickpea, sorghum, and millet. Eur. J. Agron. 2018, 100, 99–109. [Google Scholar] [CrossRef]
- Brisson, N.; Ruget, F.; Gate, P.; Lorgeou, J.; Nicoullaud, B.; Tayot, X.; Plenet, D.; Jeuffroy, M.-H.; Bouthier, A.; Ripoche, D.; et al. STICS: A generic model for simulating crops and their water and nitrogen balances. II. Model validation for wheat and maize. Agronomie 2002, 22, 69–92. [Google Scholar] [CrossRef]
- Challinor, A.J.; Wheeler, T.R.; Craufurd, P.Q.; Slingo, J.M.; Grimes, D.I.F. Design and optimisation of a large-area process-based model for annual crops. Agric. For. Meteorol. 2004, 124, 99–120. [Google Scholar] [CrossRef]
- Supit, I.; Hooijer, A.A.; van Diepen, C.A. System Description of the WOFOST 6.0 Crop Simulation Model Implemented in CGMS; CGMS Publication EUR 15956 EN; Office for Official Publications of the E.U.: Luxembourg, 1994; p. 150. [Google Scholar]
- Abrahamsen, P.; Hansen, S. Daisy: An open soil–crop–atmosphere system model. Environ. Model. Softw. 2000, 15, 313–330. [Google Scholar] [CrossRef]
- Sadras, V.O.; Monzon, J.P. Modelled wheat phenology captures rising temperature trends: Shortened time to flowering and maturity in Australia and Argentina. Field Crops Res. 2006, 99, 136–146. [Google Scholar] [CrossRef]
- Challinor, A.J.; Wheeler, T.R. Crop yield reduction in the tropics under climate change: Processes and uncertainties. Agric. For. Meteorol. 2008, 148, 343–356. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Zhu, J.; Yang, X. Non-stationary thermal time accumulation reduces the predictability of climate change effects on agriculture. Agric. For. Meteorol. 2008, 148, 1412–1418. [Google Scholar] [CrossRef]
- McMaster, G.S.; White, J.W.; Hunt, L.A.; Jamieson, P.D.; Dhillon, S.S.; Ortiz-Monasterio, J.I. Simulating the influence of vernalization, photoperiod and optimum temperature on wheat developmental rates. Ann. Bot. 2008, 102, 561–569. [Google Scholar] [CrossRef]
- White, J.W.; Kimball, B.A.; Wall, G.W.; Ottman, M.J.; Hunt, L.A. Responses of time of anthesis and maturity to sowing dates and infrared warming in spring wheat. Field Crops Res. 2011, 124, 213–222. [Google Scholar] [CrossRef]
- Hammer, G.L.; Carberry, P.S.; Muchow, R.C. Modelling genotypic and environmental control of leaf area dynamics in grain sorghum. I. Whole plant level. Field Crops Res. 1993, 33, 293–310. [Google Scholar] [CrossRef]
- Tao, F.; Rötter, R.P.; Palosuo, T.; Díaz-Ambrona, C.G.H.; Mínguez, M.I.; Semenov, M.A.; Kersebaum, K.C.; Nendel, C.; Cammarano, D.; Hoffmann, H.; et al. Designing future barley ideotypes using a crop model ensemble. Eur. J. Agron. 2017, 82, 144–162. [Google Scholar] [CrossRef]
- Jones, C.A.; Kiniry, J.R. CERES-Maize: A simulation model of Maize Growth and Development; Texas A&M University Press: College Station, TX, USA, 1986; p. 194. [Google Scholar]
- Porter, J.R.; Semenov, M.A. Crop responses to climatic variation. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 2021–2035. [Google Scholar] [CrossRef] [PubMed]
- Swedish Board of Agriculture. Production of Cereal Crops, Dried Pulses and Oilseed Crops in 2018 Preliminary Results for the Whole Country; Report Jo 19 SM 1801; Swedish Board of Agriculture: Örebro, Sweden, 2018.
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Juskiw, P.E.; Jame, Y.-W.; Kryzanowski, L. Phenological development of spring barley in a short-season growing area. Agron. J. 2001, 93, 370–379. [Google Scholar] [CrossRef] [Green Version]
- Morel, J.; Kumar, U.; Parsons, D. Laboratory Measured Characteristics of 6 Swedish Soil Profiles; Mendeley Data, V1; Mendeley Data: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Andersso, S.; Wiklert, P. Studier av markprofiler i svenska åkerjordar. Del II.; Norrbottens, Västerbottens-, Västernorrlands- och Jämtlands län; Report 104; Institutionen För Markvetenskap, Sveriges Lantbruksuniversitet: Uppsala, Sweden, 1977; p. 72. [Google Scholar]
- Ericson, L. Soil physical properties, organic carbon and trends in barley yield in four different crop rotations. In Proceedings of the 1st Circumpolar Agricultural Conference, Whitehorse, YT, Canada, 26 September–2 October 1992; Scott Smith, C.A., Ed.; pp. 189–193. [Google Scholar]
- Palmborg, C. Kol och Kväve i Mark och Grödor i försök med Monokulturer och Växtföljder; En delstudie inom projektet Climate CAFE; Institutionen För Markvetenskap, Sveriges Lantbruksuniversitet: Umeå, Sweden, 2019; p. 12. [Google Scholar]
- Saarela, I.; Järvi, A.; Hakkola, H.; Rinne, K. Phosphorus status of diverse soils in Finland as influenced by long-term P fertilisation I. Native and previously applied P at 24 experimental sites. Agric. Food Sci. Finl. 2003, 12, 117–132. [Google Scholar] [CrossRef]
- Muchow, R.C.; Carberry, P.S. Phenology and leaf-area development in a tropical grain sorghum. Field Crops Res. 1990, 23, 221–237. [Google Scholar] [CrossRef]
- Hammer, G.L.; Muchow, R.C. Assessing climatic risk to sorghum production in water-limited subtropical environments II. Effects of planting date, soil water at planting, and cultivar phenology. Field Crops Res. 1994, 36, 235–246. [Google Scholar] [CrossRef]
- Hammer, G.L.; Vanderlip, R.L.; Gibson, G.; Wade, L.J.; Henzell, R.G.; Younger, D.R.; And, J.W.; Dale, A.B. Genotype-by-Environment Interaction in Grain Sorghum. II. Effects of Temperature and Photoperiod on Ontogeny. Crop Sci. 1989, 29, 376–384. [Google Scholar] [CrossRef]
- Ravi Kumar, S.; Hammer, G.L.; Broad, I.; Harland, P.; McLean, G. Modelling environmental effects on phenology and canopy development of diverse sorghum genotypes. Field Crops Res. 2009, 111, 157–165. [Google Scholar] [CrossRef]
- Manschadi, A.M.; Hochman, Z.; McLean, G.; DeVoil, P.; Holzworth, D.; Meinke, H. APSIM-Barley model e adaptation of a wheat model to simulate barley growth and development. In Proceedings of the 13th Australian Agronomy Conference, Perth, Australia, 10–14 September 2006; Turner, N.C., Acuna, T., Eds.; 2006. [Google Scholar]
- Brown, H.E.; Huth, N.I.; Holzworth, D. Crop model improvement in APSIM: Using wheat as a case study. Eur. J. Agron. 2018, 100, 141–150. [Google Scholar] [CrossRef]
- Brown, H.E.; Huth, N.I.; Holzworth, D.; Teixeira, E.I.; Zyskowski, R.F.; Hargreaves, J.N.G.; Moot, D.J. Plant Modelling Framework: Software for building and running crop models on the APSIM platform. Environ. Model. Soft. 2014, 62, 385–398. [Google Scholar] [CrossRef] [Green Version]
- Jamieson, P.D.; Brooking, I.R.; Porter, J.R.; Wilson, D.R. Prediction of leaf appearance in wheat: A question of temperature. Field Crops Res. 1995, 41, 35–44. [Google Scholar] [CrossRef]
- Haun, J.R. Visual Quantification of Wheat Development. Agron. J. 1973, 65, 116–119. [Google Scholar] [CrossRef]
- He, D.; Wang, E.; Wang, J.; Robertson, M.J. Data requirement for effective calibration of process-based crop models. Agric. For. Meteorol. 2017, 234–235, 136–148. [Google Scholar] [CrossRef]
- Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
Varieties | Röbäcksdalen | Öjebyn | Offer | Ås | Ruukki | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2014 | 2015 | 2016 | 2017 | 2018 | 2014 | 2015 | 2016 | 2017 | 2018 | 2014 | 2015 | 2016 | 2017 | 2018 | 2014 | 2015 | 2017 | 2018 | 2014 | 2015 | 2016 | 2017 | 2018 | |||
PM | PM | PM | AN | PM | AN | PM | PM | PM | PM | PM | PM | PM | PM | PM | PM | PM | PM | PM | PM | PM | PM | PM | PM | PM | PM | |
Alvari (6R) | 59 | 116 | 53 | 84 | 110 | 85 | 99 | 75 | 131 | 84 | ||||||||||||||||
Anneli (2R) | 100 | 59 | 116 | 54 | 87 | 104 | 108 | 87 | 107 | 103 | 77 | 136 | 83 | |||||||||||||
Aukusti (6R) | 84 | 105 | 87 | 54 | 109 | 51 | 84 | 74 | 100 | 99 | 105 | 81 | 71 | 100 | 89 | 98 | 74 | 81 | 92 | 125 | 78 | 100 | 87 | 104 | 78 | |
GN10063 (6R) | 98 | 52 | 122 | 51 | 84 | 100 | 108 | 79 | 103 | 74 | 141 | |||||||||||||||
Judit (6R) | 76 | 108 | 93 | 54 | 108 | 51 | 83 | 73 | 98 | 97 | 105 | 78 | 70 | 98 | 89 | 93 | 74 | 80 | 83 | 126 | ||||||
Kaarle (6R) | 117 | 100 | 59 | 130 | 54 | 87 | 112 | 126 | 112 | 109 | 116 | 109 | 105 | 146 | 80 | |||||||||||
Kannas (2R) | 88 | 111 | 105 | 57 | 124 | 54 | 84 | 84 | 110 | 107 | 108 | 86 | 79 | 108 | 104 | 75 | 97 | 98 | 142 | 83 | ||||||
Rödhette (6R) | 59 | 132 | 54 | 89 | 116 | 92 | 109 | 77 | 144 | 82 | ||||||||||||||||
Severi (6R) | 81 | 116 | 91 | 59 | 118 | 51 | 87 | 76 | 106 | 102 | 109 | 80 | 72 | 106 | 95 | 102 | 74 | 88 | 97 | 130 | ||||||
Vertti (6R) | 98 | 91 | 52 | 117 | 51 | 81 | 103 | 91 | 107 | 101 | 84 | 94 | 88 | 124 | 78 | |||||||||||
Vilde (6R) | 83 | 103 | 90 | 57 | 120 | 54 | 85 | 75 | 104 | 97 | 108 | 82 | 72 | 103 | 88 | 101 | 75 | 86 | 96 | 126 | 80 | 101 | 89 | 104 | ||
Vilgott (2R) | 96 | 121 | 104 | 59 | 118 | 55 | 88 | 87 | 114 | 112 | 112 | 90 | 81 | 112 | 99 | 110 | 77 | 103 | 109 | 139 | 89 | |||||
Mean | 84 | 110 | 96 | 57 | 119 | 53 | 85 | 78 | 106 | 104 | 109 | 84 | 74 | 105 | 96 | 102 | 75 | 89 | 96 | 134 | 84 | 80 | 101 | 88 | 104 | 79 |
SD | 7 | 8 | 6 | 3 | 7 | 2 | 2 | 6 | 6 | 10 | 3 | 5 | 5 | 5 | 11 | 6 | 1 | 9 | 9 | 8 | 3 | 3 | 1 | 1 | 0 | 1 |
Sowing date | 28 May | 9 Jun | 2 Jun | 3 Jun | 23 May | 23 May | 18 Jun | 7 Jun | 10 Jun | 12 Jun | 28 May | 27 May | 30 May | 1 Jun | 19 May | 30 May | 28 May | 25 May | 20 May | 20 May | 22 May | 9 May | 30 May | 16 May |
Variety | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameter | Alvari | Anneli | Aukusti | GN10063 | Judit | Kaarle | Kannas | Rodhette | Severi | Vertti | Vilde | Vilgot |
Calibration 1_ AN | ||||||||||||
photop_sens | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |
vern_sens | 0 | 0 | 1 | 0.5 | 1 | 0 | 0 | 0 | 0 | 0.5 | 0 | 0.5 |
tt_end_of_juvenile (oCd) | 300 | 300 | 200 | 200 | 200 | 300 | 300 | 300 | 300 | 200 | 300 | 300 |
tt_floral_initiation (oCd) | 320 | 320 | 300 | 320 | 300 | 320 | 320 | 320 | 300 | 320 | 320 | 300 |
tt_start_grain_fill (oCd) | ||||||||||||
RMSE (d) | 1.3 | 0.7 | 0 | 1 | 0.4 | 0.7 | 0 | 0.7 | 2 | 0.8 | 0 | 0 |
Calibration 2_PM | ||||||||||||
photop_sens | 6 | 1 | 0 | 3 | 1 | 3 | 1 | 6 | 0 | 6 | 0 | 0 |
vern_sens | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0 | 0.5 | 0.5 |
tt_end_of_juvenile (oCd) | 250 | 300 | 200 | 200 | 200 | 350 | 300 | 300 | 250 | 250 | 300 | 250 |
tt_floral_initiation (oCd) | 300 | 320 | 300 | 320 | 300 | 300 | 320 | 320 | 300 | 300 | 320 | 300 |
tt_start_grain_fill (oCd) | 525 | 525 | 575 | 625 | 575 | 550 | 575 | 550 | 575 | 525 | 500 | 575 |
RMSE (d) | 4.5 | 3 | 2.2 | 7.5 | 2.5 | 8.6 | 8.2 | 8.5 | 4 | 6.7 | 6 | 3.5 |
Calibration 3_PM | ||||||||||||
photop_sens | 1 | 1 | 3 | 3 | 1 | 3 | 1 | 3 | 0 | 1 | 1 | 3 |
vern_sens | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
tt_end_of_juvenile (oCd) | 450 | 400 | 250 | 450 | 400 | 450 | 400 | 450 | 450 | 450 | 450 | 450 |
tt_floral_initiation (oCd) | 260 | 320 | 300 | 240 | 280 | 240 | 320 | 240 | 240 | 240 | 240 | 260 |
tt_start_grain_fill (oCd) | 400 | 400 | 450 | 400 | 350 | 450 | 400 | 450 | 400 | 350 | 350 | 400 |
RMSE (d) | 8.3 | 7.8 | 7.5 | 10.4 | 8.7 | 11 | 10.1 | 11 | 9.9 | 8.7 | 8.5 | 7.6 |
Intercept | APSIM 7.9 | APSIM-NG | ||
---|---|---|---|---|
Evaluation 2_PM * | Evaluation 3_PM | Evaluation 2_PM ¤ | Evaluation 3_PM | |
−32.7 | −2.2 | 2.3 | 18 | |
Slope | 1.2 | 0.99 | 0.87 | 0.81 |
RMSE | 11.4 | 4.73 | 13.6 | 5.8 |
RMSEsys | 10.17 | 3.1 | 10.19 | 2 |
RMSEnos | 20.64 | 7.15 | 22.63 | 5.81 |
r2 | 0.74 | 0.81 | 0.78 | 0.63 |
Variety | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameter | Alvari | Anneli | Aukusti | GN10063 | Judit | Kaarle | Kannas | Rodhette | Severi | Vertti | Vilde | Vilgot |
Calibration 1_AN | ||||||||||||
PpSensitivity | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
VrnSensitivity | 1.5 | 1.5 | 0.5 | 0.5 | 1 | 1.5 | 1.5 | 1.5 | 0.5 | 0.5 | 1.5 | 1.5 |
BasePhyllo (oCd) | 60 | 60 | 60 | 60 | 55 | 60 | 60 | 60 | 60 | 55 | 60 | 60 |
MinimumLeafNumber | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
GrainFill (oCd) | ||||||||||||
EarlyReproductivePpSensitivity | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
RMSE (d) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Calibration 2_PM | ||||||||||||
PpSensitivity | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
VrnSensitivity | 1.5 | 1.5 | 1.5 | 1 | 1 | 1 | 0.5 | 0.5 | 1.5 | 1.5 | 0.5 | 1.5 |
BasePhyllo (oCd) | 50 | 55 | 50 | 50 | 60 | 50 | 50 | 50 | 50 | 50 | 50 | 60 |
MinimumLeafNumber | 5 | 5 | 6.5 | 5 | 5 | 5 | 5 | 5 | 6 | 6 | 5 | 5 |
GrainFill (oCd) | 525 | 525 | 450 | 550 | 450 | 600 | 600 | 625 | 500 | 500 | 575 | 500 |
EarlyReproductivePpSensitivity | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
RMSE (d) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Calibration 3_PM | ||||||||||||
PpSensitivity | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
VrnSensitivity | 0.5 | 0 | 0 | 0 | 0.5 | 3 | 0.5 | 0.5 | 3 | 0.5 | 0.5 | 0 |
BasePhyllo (oCd) | 65 | 60 | 50 | 65 | 65 | 55 | 60 | 50 | 55 | 60 | 60 | 50 |
MinimumLeafNumber | 5 | 6 | 6.5 | 6.5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 6.5 |
GrainFill (oCd) | 450 | 450 | 450 | 400 | 400 | 450 | 500 | 575 | 400 | 450 | 450 | 525 |
EarlyReproductivePpSensitivity | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
RMSE (d) | 4.6 | 4.1 | 5.5 | 6.2 | 7.0 | 6.6 | 7.0 | 7.5 | 7.2 | 6.8 | 6.7 | 4.9 |
Factorial-Based Calibration | |||||
---|---|---|---|---|---|
APSIM 7.9 | APSIM-NG | ||||
Parameter | Default Value | Level | Parameter | Default Value | Level |
tt_emergence (°Cd) | 1 | 40 | BasePhyllo (oCd) * | 50 | 50, 55, 60, 65, 70, 75 |
tt_end_of_juvenile (°Cd) * | 400 | 150, 200, 250, 300, 350, 400, 450 | MinimumLeafNumber * | 9 | 5, 5.5, 6, 6.5, 7 |
tt_floral_initiation (°Cd) * | 230 | 180, 200, 220, 240, 260, 280, 300, 320 | GrainFill (oCd)¤ | 540 | 350, 400, 450, 500, 525, 550, 575, 600, 625, 650, 675, 700 |
tt_start_grain_fill (°Cd)¤ | 545 | 350, 400, 450, 500, 525, 550, 575, 600, 625, 650, 675, 700, 750 | VrnSesnsitivity* | 0 | 0, 0.5, 1, 1.5, 3 |
vern_sens * | 1.5 | 0, 0.5, 1, 1.5, 3 | PpSesnsitivity * | 3 | 0, 1, 3, 6 |
photop_sens * | 3 | 0, 1, 3, 6 | EarlyReproductivePpSesnsitivity * | 0 | 0, 1, 2 |
Growth Stage | Location | Calibration Dataset | Evaluation Dataset | ||||
---|---|---|---|---|---|---|---|
Calibration 1_AN | Calibration 2_PM | Calibration 3_PM | Evaluation 2_PM | Evaluation 3_PM | |||
Season | Season | Season | Location | Season | Season | ||
Days to anthesis | Röbäcksdalen | 2017–2018 | |||||
Days to physiological maturity | Röbäcksdalen | 2017–2018 | Röbäcksdalen | 2014–2016 | |||
Days to physiological maturity | Röbäcksdalen | 2014–2018 | |||||
Ås | 2014, 2016–2018 | Ås | 2014, 2016–2018 | ||||
Öjebyn | 2014–2018 | Öjebyn | 2014–2018 | ||||
Offer | 2014, 2017–2018 | Offer | 2014–2018 | 2015–2016 | |||
Ruukki | 2014, 2017–2018 | Ruukki | 2014–2018 | 2015–2016 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, U.; Morel, J.; Bergkvist, G.; Palosuo, T.; Gustavsson, A.-M.; Peake, A.; Brown, H.; Ahmed, M.; Parsons, D. Comparative Analysis of Phenology Algorithms of the Spring Barley Model in APSIM 7.9 and APSIM Next Generation: A Case Study for High Latitudes. Plants 2021, 10, 443. https://doi.org/10.3390/plants10030443
Kumar U, Morel J, Bergkvist G, Palosuo T, Gustavsson A-M, Peake A, Brown H, Ahmed M, Parsons D. Comparative Analysis of Phenology Algorithms of the Spring Barley Model in APSIM 7.9 and APSIM Next Generation: A Case Study for High Latitudes. Plants. 2021; 10(3):443. https://doi.org/10.3390/plants10030443
Chicago/Turabian StyleKumar, Uttam, Julien Morel, Göran Bergkvist, Taru Palosuo, Anne-Maj Gustavsson, Allan Peake, Hamish Brown, Mukhtar Ahmed, and David Parsons. 2021. "Comparative Analysis of Phenology Algorithms of the Spring Barley Model in APSIM 7.9 and APSIM Next Generation: A Case Study for High Latitudes" Plants 10, no. 3: 443. https://doi.org/10.3390/plants10030443
APA StyleKumar, U., Morel, J., Bergkvist, G., Palosuo, T., Gustavsson, A. -M., Peake, A., Brown, H., Ahmed, M., & Parsons, D. (2021). Comparative Analysis of Phenology Algorithms of the Spring Barley Model in APSIM 7.9 and APSIM Next Generation: A Case Study for High Latitudes. Plants, 10(3), 443. https://doi.org/10.3390/plants10030443