Could Bryophagous Beetles (Coleoptera: Byrrhidae) Help Us Understand Bryophyte Taxonomy? Preferences within the Hypnum cupressiforme Hedw. Species Complex
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Statistical Analysis
3. Results
3.1. Preferences for Mosses When Structure Was Preserved
3.2. Preferences for Mosses When Structure Was Removed
3.3. Effects of Treatment
4. Discussion
4.1. Preferences for Mosses When Structure Was Preserved
4.2. Preferences for Mosses When Structure Was Removed
4.3. Effects of the Treatment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Compliance with Ethical Standards
References
- Basset, Y. Local Communities of Arboreal Herbivores in Papua New Guinea: Predictors of Insect Variables. Ecology 1996, 77, 1906–1919. [Google Scholar] [CrossRef]
- Videla, M.; Valladares, G.; Salvo, A. A Tritrophic Analysis of Host Preference and Performance in a Polyphagous Leafminer. Entomol. Exp. Appl. 2006, 121, 105–114. [Google Scholar] [CrossRef]
- Wiklund, C.; Friberg, M. The Evolutionary Ecology of Generalization: Among-Year Variation in Host Plant Use and Offspring Survival in a Butterfly. Ecology 2009, 90, 3406–3417. [Google Scholar] [CrossRef]
- Whitham, T.G.; Gehring, C.A.; Lamit, L.J.; Wojtowicz, T.; Evans, L.M.; Keith, A.R.; Smith, D.S. Community Specificity: Life and Afterlife Effects of Genes. Trends Plant Sci. 2012, 17, 271–281. [Google Scholar] [CrossRef]
- Maddox, G.D.; Root, R.B. Structure of the Encounter between Goldenrod (Solidago altissima) and Its Diverse Insect Fauna. Ecology 1990, 71, 2115–2124. [Google Scholar] [CrossRef]
- Agrawal, A.A. Plant Defense and Density Dependence in the Population Growth of Herbivores. Am. Nat. 2004, 164, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Utsumi, S.; Nakamura, M.; Ohgushi, T. Community Consequences of Herbivore-Induced Bottom–up Trophic Cascades: The Importance of Resource Heterogeneity. J. Anim. Ecol. 2009, 78, 953–963. [Google Scholar] [CrossRef]
- Meloni, F.; Lopes, N.P.; Varanda, E.M. The Relationship between Leaf Nitrogen, Nitrogen Metabolites and Herbivory in Two Species of Nyctaginaceae from the Brazilian Cerrado. Environ. Exp. Bot. 2012, 75, 268–276. [Google Scholar] [CrossRef]
- Sosnovsky, Y. Sucking Herbivore Assemblage Composition on Greenhouse Ficus Correlates with Host Plant Leaf Architecture. Arthropod Plant Interact. 2016, 10, 55–69. [Google Scholar] [CrossRef]
- Linhart, Y.B.; Grant, M.C. Evolutionary Significance of Local Genetic Differentiation in Plants. Annu. Rev. Ecol. Syst. 1996, 27, 237–277. [Google Scholar] [CrossRef]
- Parker, M.A. Disease Impact and Local Genetic Diversity in the Clonal Plant Podophyllum peltatum. Evolution 1989, 43, 540–547. [Google Scholar] [CrossRef]
- Fritz, R.S.; Simms, E.L. Plant Resistance to Herbivores and Pathogens: Ecology, Evolution, and Genetics; University of Chicago Press: Chicago, IL, USA, 1992; ISBN 978-0-226-26554-4. [Google Scholar]
- Michalakis, Y.; Sheppard, A.W.; Noel, V.; Olivieri, I. Population Structure of a Herbivorous Insect and Its Host Plant on a Microgeographic Scale. Evolution 1993, 47, 1611–1616. [Google Scholar] [CrossRef]
- De Vries, J.; Evers, J.B.; Poelman, E.H. Dynamic Plant–Plant–Herbivore Interactions Govern Plant Growth–Defence Integration. Trends Plant Sci. 2017, 22, 329–337. [Google Scholar] [CrossRef]
- Scriber, M.J. Latitudinal and Local Geographic Mosaics in Host Plant Preferences as Shaped by Thermal Units and Voltinism in Papilio spp. (Lepidoptera). Eur. J. Entomol. 2002, 99, 225. [Google Scholar] [CrossRef] [Green Version]
- Scriber, M.J.; Lederhouse, R.C. The Thermal Environment as a Resource Dictating Geographic Patterns of Feeding Specialization of Insect Herbivores. In Effects of Resource Distribution on Animal-Plant Interactions; Hunter, M.R., Ohgushi, T., Price, P.W., Eds.; Academic Press: New York, NY, USA, 1992; pp. 429–466. ISBN 978-1-4020-4443-4. [Google Scholar]
- Cronin, J.T.; Abrahamson, W.G.; Craig, T.P. Temporal Variation in Herbivore Host-Plant Preference and Performance: Constraints on Host-Plant Adaptation. Oikos 2001, 93, 312–320. [Google Scholar] [CrossRef]
- Frahm, J.P. A Preliminary Study of the Infraspecific Taxa of Hypnum cupressiforme in Europe. Arch. Bryol. 2009, 40, 1–10. [Google Scholar]
- Ando, H. Hypnum cupressiforme Hedw. and Its Close Allies in Europe. Abstr. Bot. 1985, 9, 11–18. [Google Scholar]
- Ando, H. Studies on the Genus Hypnum (VI). Hikobia 1989, 10, 269–291. [Google Scholar]
- Schlesak, S.; Hedenäs, L.; Nebel, M.; Quandt, D. Cleaning a Taxonomic Dustbin: Placing the European Hypnum Species in a Phylogenetic Context! Bryophyte Divers. Evol. 2018, 40, 37–54. [Google Scholar] [CrossRef]
- Kučera, J.; Kuznetsova, O.I.; Manukjanová, A.; Ignatov, M.S. A Phylogenetic Revision of the Genus Hypnum: Towards Completion. TAXON 2019, 68, 628–660. [Google Scholar] [CrossRef]
- Horning, D.S.; Schuster, R.O.; Grigarick, A.A. Tardigrada of New Zealand. N. Z. J. Zool. 1978, 5, 185–280. [Google Scholar] [CrossRef]
- Božanić, B.; Hradílek, Z.; Machač, O.; Pižl, V.; Št’áhlavskỳ, F.; Tufová, J.; Véle, A.; Tuf, I.H. Factors Affecting Invertebrate Assemblages in Bryophytes of the Litovelské Luhy National Nature Reserve, Czech Republic. Acta Zool. Bulg 2013, 65, 197–206. [Google Scholar]
- Lazarova, S.; Peneva, V.; Penev, L. Nematode Assemblages from the Moss Hypnum cupressiforme Hedw. Growing on Different Substrates in a Balkanic Durmast Oak Forest (Quercus dalechampii Ten.) on Mount Vitosha, Bulgaria. Nematology 2000, 2, 263–272. [Google Scholar]
- Varga, J. Analysis of the Bryofauna of Some Moss Species. Sci. Bull. Uzhhorod Univ. Ser. Biol. 2008, 23, 264–265. [Google Scholar]
- Hallas, T.E. Interstitial Water and Tardigrada in a Moss Cushion. Ann. Zool. Fenn. 1975, 12, 255–259. [Google Scholar]
- Degma, P.; Simurka, M.; Gulánová, S. Community Structure and Ecological Macrodistribution of Moss-Dwelling Water Bears (Tardigrada) in Central European Oak-Hornbeam Forests (SW Slovakia). Ekológia 2005, 24, 59. [Google Scholar]
- Degma, P.; Katina, S.; Sabatovičová, L. Horizontal Distribution of Moisture and Tardigrada in a Single Moss Cushion. J. Zool. Syst. Evol. Res. 2011, 49, 71–77. [Google Scholar] [CrossRef]
- Dunk, K. Lebensraum Moospolster. Mikrokosmos 1979, 68, 125–131. [Google Scholar]
- Traser, G.; Szűcs, P.; Winkler, D. Collembola Diversity of Moss Habitats in the Sopron Region, NW-Hungary. Acta Silv. Lignaria Hung. 2006, 2, 69–80. [Google Scholar]
- Hajer, J.; Malý, J.; Hrubá, L.; Řeháková, D. Egg Sac Silk of Theridiosoma gemmosum (Araneae: Theridiosomatidae). J. Morphol. 2009, 270, 1269–1283. [Google Scholar] [CrossRef]
- Lungu-Constantineanu, C.Ş.; Constantineanu, R. New Data on Ichneumonid Hibernation (Hymenoptera: Ichneumonidae) in the Bârnova Forest Massif (Iaşi County, Romania). Romanian J. Biol. 2014, 59, 11–16. [Google Scholar]
- Verdcourt, B. A Note on the Food of Acridium Geoff. (Orthopt.). Entomol. Mon. Mag. 1947, 83, 190. [Google Scholar]
- Konstantinov, A.; Chamorro, M.L.; Prathapan, K.D.; Ge, S.-Q.; Yang, X.-K. Moss-Inhabiting Flea Beetles (Coleoptera: Chrysomelidae: Galerucinae: Alticini) with Description of a New Genus from Cangshan, China. J. Nat. Hist. 2013, 47, 2459–2477. [Google Scholar] [CrossRef]
- Boukal, M. Brouci Čeledi Haliplidae (Plavčíkovití) Střední Evropy; Brouci Čeledi Byrrhidae (Vyklenulcovití) Střední Evropy; Academia: Prague, Czech, 2017; ISBN 978-80-200-2659-0. [Google Scholar]
- Pyszko, P.; Plášek, V.; Drozd, P. Don’t Eat Where You Sleep: Unexpected Diversity of Food Web for Beetles Feeding on Mosses. Insect Conserv. Divers. 2020. [Google Scholar] [CrossRef]
- Gerson, U. Moss-Arthropod Associations. The Bryologist 1969, 72, 495–500. [Google Scholar] [CrossRef]
- Rutten, A.L.M. The Genus Bryotropha in the Netherlands (Lepidoptera: Gelechiidae). Ned. Faun. Meded. 1999, 9, 79–102. [Google Scholar]
- Slamka, F. Pyraloidea (Lepidoptera) of Central Europe: Identification, Distribution, Habitat, Biology; František Slamka: Bratislava, Slovakia, 2010; ISBN 978-80-969052-7-0. [Google Scholar]
- Faber, J.; Ma, W.C. Observations on Seasonal Dynamics in Diet Composition of the Field Vole, Microtus agrestis, with Some Methodological Remarks. Acta Theriol. 1986, 31, 479–490. [Google Scholar] [CrossRef] [Green Version]
- Heinken, T.; Rohner, M.-S.; Hoppert, M. Red Wood Ants (Formica rufa Group) Disperse Bryophyte and Lichen Fragments on a Local Scale. Nova Hedw. 2007, 131, 147–163. [Google Scholar]
- Van Laar, V.; Dirkse, G.M. Bladmossen En Korstmossen Als Nestmateriaal van Kleine Zoogdiersoorten. Buxbaumiella 2010, 85, 36–41. [Google Scholar]
- Hříbek, M. The Use Species of Moss (Bryophyta Sp.) in the Building of Nests the Great Tits (Parus major L., 1758) and Blue Tit (Parus caeruleus L., 1758). Zprávy Morav. Ornitol. Sdruž. 1985, 43, 39–45. [Google Scholar]
- Wesolowski, T.; Wierzcholska, S. Tits as Bryologists: Patterns of Bryophyte Use in Nests of Three Species Cohabiting a Primeval Forest. J. Ornithol. 2018, 159, 733–745. [Google Scholar] [CrossRef] [Green Version]
- Alpert, P. Microtopography as Habitat Structure for Mosses on Rocks. In Habitat Structure: The Physical Arrangement of Objects in Space; Bell, S.S., McCoy, E.D., Mushinsky, H.R., Eds.; Population and Community Biology Series; Springer: Dordrecht, The Netherlands, 1991; pp. 120–140. ISBN 978-94-011-3076-9. [Google Scholar]
- Kinchin, I.M. An Introduction to the Invertebrate Microfauna Associated with Mosses and Lichens, with Observations from Maritime Lichens on the West Coast of the British Isles. Microscopy 1992, 36, 721–731. [Google Scholar]
- Brusven, M.A.; Meehan, W.R.; Biggam, R.C. The Role of Aquatic Moss on Community Composition and Drift of Fish-Food Organisms. Hydrobiologia 1990, 196, 39–50. [Google Scholar] [CrossRef]
- Smith, R.M.; Young, M.R.; Marquiss, M. Bryophyte Use by an Insect Herbivore: Does the Crane-Fly Tipula montana Select Food to Maximise Growth? Ecol. Entomol. 2001, 26, 83–90. [Google Scholar] [CrossRef]
- Hodgetts, N.G.; Söderström, L.; Blockeel, T.L.; Caspari, S.; Ignatov, M.S.; Konstantinova, N.A.; Lockhart, N.; Papp, B.; Schröck, C.; Sim-Sim, M.; et al. An Annotated Checklist of Bryophytes of Europe, Macaronesia and Cyprus. J. Bryol. 2020, 42, 1–116. [Google Scholar] [CrossRef]
- Yan, J. Geepack: Yet Another Package for Generalized Estimating Equations. R-News 2002, 2, 12–14. [Google Scholar]
- Yan, J.; Fine, J. Estimating Equations for Association Structures. Stat. Med. 2004, 23, 859–874. [Google Scholar] [CrossRef]
- Halekoh, U.; Højsgaard, S.; Yan, J. The R Package Geepack for Generalized Estimating Equations. J. Stat. Softw. 2006, 15, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Thall, P.F.; Vail, S.C. Some Covariance Models for Longitudinal Count Data with Overdispersion. Biometrics 1990, 657–671. [Google Scholar] [CrossRef] [Green Version]
- Pan, W. Akaike’s Information Criterion in Generalized Estimating Equations. Biometrics 2001, 57, 120–125. [Google Scholar] [CrossRef]
- Hin, L.-Y.; Wang, Y.-G. Working-Correlation-Structure Identification in Generalized Estimating Equations. Stat. Med. 2009, 28, 642–658. [Google Scholar] [CrossRef]
- Morales, M. Sciplot: Scientific Graphing Functions for Factorial Designs. 2020. R Package Version 1.2-0. Available online: https://CRAN.R-project.org/package=sciplot (accessed on 28 February 2021).
- Cleveland, W.S.; Grosse, E.; Shyu, W.M. Local Regression Models. Chapter 8 in Statistical Models in S; Chambers, J.M., Hastie, T.J., Eds.; Routledge: Boca Raton, FL, USA, 1992; p. 624. ISBN 9780203738535. [Google Scholar]
- Kočárek, P.; Grucmanová, Š.; Filipcová, Z.; Bradová, L.; Plášek, V.; Holuša, J. Bryophagy in the Groundhopper Tetrix ceperoi (Orthoptera: Tetrigidae): Analysis of Alimentary Tract Contents. Scripra Fac. Rerum Nat. Univ. Ostrav. 2008, 186, 348–352. [Google Scholar]
- Mattson, W.J.; Haack, R.A. The Role of Drought Stress in Provoking Outbreaks of Phytophagous Insects. Insect Outbreaks 1987, 365–407. [Google Scholar] [CrossRef]
- Larsson, S. Stressful Times for the Plant Stress: Insect Performance Hypothesis. Oikos 1989, 277–283. [Google Scholar] [CrossRef]
- Glime, J.M. Bryophytes as Homes for Stream Insects. Hikobia 1994, 11, 483–498. [Google Scholar]
- Haines, W.P.; Renwick, J.A.A. Bryophytes as Food: Comparative Consumption and Utilization of Mosses by a Generalist Insect Herbivore. Entomol. Exp. Appl. 2009, 133, 296–306. [Google Scholar] [CrossRef]
- Henrikson, B.-I. Sphagnum Mosses as a Microhabitat for Invertebrates in Acidified Lakes and the Colour Adaptation and Substrate Preference in Leucorrhinia dubia (Odonata, Anisoptera). Ecography 1993, 16, 143–153. [Google Scholar] [CrossRef]
- Merrifield, K.; Ingham, R.E. Nematodes and Other Aquatic Invertebrates in Eurhynchium oreganum from Mary’s Peak, Oregon Coast Range. Bryol. 1998, 101, 505–511. [Google Scholar] [CrossRef]
- Penny, N.D. A Systematic Study of the Family Boreidae (Mecoptera) [New Taxa, North America]. Univ. Kans. Sci. Bull. USA 1977, 51, 141–217. [Google Scholar]
- Rice, S.K.; Collins, D.; Anderson, A.M. Functional Significance of Variation in Bryophyte Canopy Structure. Am. J. Bot. 2001, 88, 1568–1576. [Google Scholar] [CrossRef]
- Caldwell, M.M.; Flint, S.D. Stratospheric Ozone Reduction, Solar UV-B Radiation and Terrestrial Ecosystems. Clim. Chang. 1994, 28, 375–394. [Google Scholar] [CrossRef] [Green Version]
- Filella, I.; Peñuelas, J. Altitudinal Differences in UV Absorbance, UV Reflectance and Related Morphological Traits of Quercus ilex and Rhododendron ferrugineum in the Mediterranean Region. Plant Ecol. 1999, 145, 157–165. [Google Scholar] [CrossRef]
- Hultine, K.R.; Marshall, J.D. Altitude Trends in Conifer Leaf Morphology and Stable Carbon Isotope Composition. Oecologia 2000, 123, 32–40. [Google Scholar] [CrossRef]
- Caldwell, M.M.; Bornman, J.F.; Ballaré, C.L.; Flint, S.D.; Kulandaivelu, G. Terrestrial Ecosystems, Increased Solar Ultraviolet Radiation, and Interactions with Other Climate Change Factors. Photochem. Photobiol. Sci. 2007, 6, 252–266. [Google Scholar] [CrossRef]
- Gehrke, C. Impacts of Enhanced Ultraviolet-B Radiation on Mosses in a Subarctic Heath Ecosystem. Ecology 1999, 80, 1844–1851. [Google Scholar] [CrossRef]
- Rozema, J.; Björn, L.O.; Bornman, J.F.; Gaberščik, A.; Häder, D.-P.; Trošt, T.; Germ, M.; Klisch, M.; Gröniger, A.; Sinha, R.P.; et al. The Role of UV-B Radiation in Aquatic and Terrestrial Ecosystems—an Experimental and Functional Analysis of the Evolution of UV-Absorbing Compounds. J. Photochem. Photobiol. B 2002, 66, 2–12. [Google Scholar] [CrossRef]
- Robinson, S.A.; Turnbull, J.D.; Lovelock, C.E. Impact of Changes in Natural Ultraviolet Radiation on Pigment Composition, Physiological and Morphological Characteristics of the Antarctic Moss, Grimmia antarctici. Glob. Chang. Biol. 2005, 11, 476–489. [Google Scholar] [CrossRef]
- Rozema, J.; Boelen, P.; Solheim, B.; Zielke, M.; Buskens, A.; Doorenbosch, M.; Fijn, R.; Herder, J.; Callaghan, T.; Björn, L.O.; et al. Stratospheric Ozone Depletion: High Arctic Tundra Plant Growth on Svalbard is Not Affected by Enhanced UV-B after 7 Years of UV-B Supplementation in the Field. In Plants and Climate Change; Rozema, J., Aerts, R., Cornelissen, H., Eds.; Tasks for Vegetation Science; Springer: Dordrecht, The Netherlands, 2006; pp. 121–136. ISBN 978-1-4020-4443-4. [Google Scholar]
- Hudaib, M.; Aburjai, T. Volatile Components of Thymus vulgaris L. from Wild-Growing and Cultivated Plants in Jordan. Flavour Fragr. J. 2007, 22, 322–327. [Google Scholar] [CrossRef]
- Bozoudi, D.; Claps, S.; Abraham, E.M.; Parissi, Z.M.; Litopoulou-Tzanetaki, E. Volatile Organic Compounds of Mountainous Plant Species and the Produced Milk as Affected by Altitude in Greece: A Preliminary Study. Int. J. Dairy Technol. 2019, 72, 159–164. [Google Scholar] [CrossRef] [Green Version]
- Üçüncü, O.; Cansu, T.B.; Özdemïr, T.; Karaoğlu, Ş.A.; Yayli, N. Chemical Composition and Antimicrobial Activity of the Essential Oils of Mosses (Tortula muralis Hedw., Homalothecium lutescens (Hedw.) H. Rob., Hypnum cupressiforme Hedw., and Pohlia nutans (Hedw.) Lindb.) from Turkey. Turk. J. Chem. 2010, 34, 825–834. [Google Scholar]
- Liu, X.; Zhang, G.; Jones, K.C.; Li, X.; Peng, X.; Qi, S. Compositional Fractionation of Polycyclic Aromatic Hydrocarbons (PAHs) in Mosses (Hypnum plumaeformae WILS.) from the Northern Slope of Nanling Mountains, South China. Atmos. Environ. 2005, 39, 5490–5499. [Google Scholar] [CrossRef]
- Zhang, C.; Feng, Y.; Liu, Y.; Chang, H.; Li, Z.; Xue, J. Uptake and Translocation of Organic Pollutants in Plants: A Review. J. Integr. Agric. 2017, 16, 1659–1668. [Google Scholar] [CrossRef] [Green Version]
- Russel, L.K. A New Genus and a New Species of Boreidae from Oregon (Mecoptera). Proc. Ent. Soc. Wash 1979, 82, 22–31. [Google Scholar]
- Spagnuolo, V.; Terracciano, S.; Cobianchi, R.C.; Giordano, S. Taxonomy of the Hypnum cupressiforme Complex in Italy Based on ITS and TrnL Sequences and ISSR Markers. J. Bryol. 2008, 30, 283–289. [Google Scholar] [CrossRef] [Green Version]
- Kuřavová, K.; Hajduková, L.; Kočárek, P. Age-Related Mandible Abrasion in the Groundhopper Tetrix tenuicornis (Tetrigidae, Orthoptera). Arthropod Struct. Dev. 2014, 43, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Schoonhoven, L.M.; Jermy, T.; Van Loon, J.J.A. Host-Plant Selection: How to Find a Host Plant. In Insect-Plant Biology; Springer: Berlin/Heidelberg, Germany, 1998; pp. 121–153. [Google Scholar]
- Sardans, J.; Peñuelas, J. Drought Changes Nutrient Sources, Content and Stoichiometry in the Bryophyte Hypnum cupressiforme Hedw. Growing in a Mediterranean Forest. J. Bryol. 2008, 30, 59–65. [Google Scholar] [CrossRef]
- Van Hoof, L.; Vanden Berghe, D.A.; Petit, E.; Vlietinck, A.J. Antimicrobial and Antiviral Screening of Bryophyta. Fitoterapia 1981, 52, 223–229. [Google Scholar]
- Abay, G.; Karakoç, Ö.C.; Tüfekçi, A.R.; Koldaş, S.; Demirtas, I. Insecticidal Activity of Hypnum cupressiforme (Bryophyta) against Sitophilus granarius (Coleoptera: Curculionidae). J. Stored Prod. Res. 2012, 51, 6–10. [Google Scholar] [CrossRef]
- Asakawa, Y. Biologically Active Compounds from Bryophytes. Pure Appl. Chem. 2007, 79, 557–580. [Google Scholar] [CrossRef]
- Acosta-Mercado, D.; Cancel-Morales, N.; Chinea, J.D.; Santos-Flores, C.J.; De Jesús, I.S. Could the Canopy Structure of Bryophytes Serve as an Indicator of Microbial Biodiversity? A Test for Testate Amoebae and Microcrustaceans from a Subtropical Cloud Forest in Dominican Republic. Microb. Ecol. 2012, 64, 200–213. [Google Scholar] [CrossRef]
- Pyszko, P.; Šigut, M.; Kostovčík, M.; Drozd, P.; Hulcr, J. High-Diversity Microbiomes in the Guts of Bryophagous Beetles (Coleoptera: Byrrhidae). Eur. J. Entomol. 2019, 116, 432–441. [Google Scholar] [CrossRef]
- Pyszko, P.; Višňovská, D.; Drgová, M.; Šigut, M.; Drozd, P. Effect of Bacterial and Fungal Microbiota Removal on the Survival and Development of Bryophagous Beetles. Environ. Entomol. 2020, 49, 902–911. [Google Scholar] [CrossRef] [PubMed]
- Alonso, C.; Ramos-Cruz, D.; Becker, C. The Role of Plant Epigenetics in Biotic Interactions. New Phytol. 2019, 221, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Pikaard, C.S.; Mittelsten Scheid, O. Epigenetic Regulation in Plants. Cold Spring Harb. Perspect. Biol. 2014, 6. [Google Scholar] [CrossRef] [PubMed]
Structure | Individual Morphotype (QICc) | Stem Length (QICc) | Branch Width (QICc) | Minimal Fsab 1 (QICc) | Maximal Fsab 1 (QICc) | Variance in Fsab 1 (QICc) | Propensity to Epiphytism (QICc) |
---|---|---|---|---|---|---|---|
Preserved | 6643.60 *** | 6649.24 * | 6654.36 | 6652.37 * | 6644.42 ** | 6645.96 * | 6655.56 |
Removed | 7599.20 *** | 7631.35 * | 7678.90 | 7753.61 | 7640.81 | 7711.45 * | 7742.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pyszko, P.; Drgová, M.; Ožana, S.; Dorňák, O.; Rožek, D.; Lee Číp, D.; Plášek, V.; Drozd, P. Could Bryophagous Beetles (Coleoptera: Byrrhidae) Help Us Understand Bryophyte Taxonomy? Preferences within the Hypnum cupressiforme Hedw. Species Complex. Plants 2021, 10, 469. https://doi.org/10.3390/plants10030469
Pyszko P, Drgová M, Ožana S, Dorňák O, Rožek D, Lee Číp D, Plášek V, Drozd P. Could Bryophagous Beetles (Coleoptera: Byrrhidae) Help Us Understand Bryophyte Taxonomy? Preferences within the Hypnum cupressiforme Hedw. Species Complex. Plants. 2021; 10(3):469. https://doi.org/10.3390/plants10030469
Chicago/Turabian StylePyszko, Petr, Michaela Drgová, Stanislav Ožana, Ondřej Dorňák, David Rožek, Daniel Lee Číp, Vítězslav Plášek, and Pavel Drozd. 2021. "Could Bryophagous Beetles (Coleoptera: Byrrhidae) Help Us Understand Bryophyte Taxonomy? Preferences within the Hypnum cupressiforme Hedw. Species Complex" Plants 10, no. 3: 469. https://doi.org/10.3390/plants10030469
APA StylePyszko, P., Drgová, M., Ožana, S., Dorňák, O., Rožek, D., Lee Číp, D., Plášek, V., & Drozd, P. (2021). Could Bryophagous Beetles (Coleoptera: Byrrhidae) Help Us Understand Bryophyte Taxonomy? Preferences within the Hypnum cupressiforme Hedw. Species Complex. Plants, 10(3), 469. https://doi.org/10.3390/plants10030469