Chemical Screening of Metabolites Profile from Romanian Tuber spp.
Abstract
:1. Introduction
2. Results and Discussion
2.1. Mass Spectrometry Analysis of Tuber magnatum pico and Tuber brumale
2.2. Screening and Classification of Metabolites
3. Materials and Methods
3.1. Reagents
3.2. GC-MS Analysis
3.3. GC-MS Separation Conditions
3.4. Mass Spectrometry
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patel, S. Food, Health and Agricultural Importance of Truffles: A Review of Current Scientific Literature. Importance of Truffles. Curr. Trends Biotechnol. Pharm. 2012, 6, 2230–7303. [Google Scholar]
- Gajos, M.; Hilszczańska, D. Research on truffles: Scientific journals analysis. Sci. Res. Essays 2013, 8, 1837–1847. [Google Scholar]
- Splivallo, R. Biological Significance of Truffle Secondary Metabolites. In Secondary Metabolites in Soil Ecology; Soil Biology 14; Karlovsky, P., Ed.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Trappe, J.M.; Molina, R.; Luoma, D.L.; Cázares, E.; Pilz, D.; Smith, J.E.; Castellano, M.A.; Miller, S.L.; Trappe, M.J. Diversity, Ecology, and Conservation of Truffle Fungi in Forests of the Pacific Northwest; General Technical Report, PNW-GTR-772; Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2009; pp. 158–164.
- Hospodar, M. Aphrodisiac Foods: Bringing Heaven to Earth. Gastron. J. Crit. Food Stud. 2004, 4, 82–93. [Google Scholar] [CrossRef]
- Üstün, N.Ş.; Bulam, S.; Pekşen, A. Biochemical Properties, Biological Activities and Usage of Truffles. In Proceedings of the International Congress on Engineering and Life Science (ICELIS 2018), Kastamonu, Turkey, 26–29 April 2018; Republic of Turkey Kastamonu University: Kastamonu, Turkey, Proceeding Book; 2018; pp. 772–778. ISBN 978-605-4697-20-5. [Google Scholar]
- Li, X.; Zhang, X.; Ye, L.; Kang, Z.; Jia, D.; Yang, L.; Zhang, B. LC-MS-Based Metabolomic Approach Revealed the Significantly Different Metabolic Profiles of Five Commercial Truffle Species. Front. Microbiol. 2019, 10, 2227. [Google Scholar] [CrossRef] [PubMed]
- Khojasteh, S.M.B.; Amiri, L.; Sheikhzadeh, F. Effect of the Alcoholic Extract of Terfezia Boudieri on Reproductive Hormones in Male Rats. Int. J. Pharm. Biol. Sci. 2013, 3, 517–522. [Google Scholar]
- Bone, E. Buried Treasure that Is Filled with Mystery, Dining & Wine. The New York Times, 24 December 2012. [Google Scholar]
- Vita, F.; Taiti, C.; Pompeiano, A.; Bazihizina, N.; Lucarotti, V.; Mancuso, S.; Alpi, A. Volatile organic compounds in truffle (Tuber magnatum Pico): Comparison of samples from different regions of Italy and from different seasons. Sci. Rep. 2015, 5, 12629. [Google Scholar] [CrossRef] [Green Version]
- Al-Ruqaie, I.M. Effect of Treatment Process and Preservation Methods on Shelf Life of Truffles: II. Non-Conventional Methods (Radiation). Int. J. Biol. Chem. 2009, 3, 126–131. [Google Scholar] [CrossRef] [Green Version]
- Shavit, E. Medicinal Mushrooms, Truffles Roasting in the Evening Fires. Fungi 2008, 1, 18–23. [Google Scholar]
- Dincă, M.; Dincă, L.C. Truffles and soil. Res. J. Agric. Sci. 2015, 47, 44–50. [Google Scholar]
- Zambonelli, A.; Iotti, M.; Murat, C. True Truffle (Tuber spp.) in the World: Soil Ecology, Systematics, and Biochemistry; Springer—Soil Biology; Springer: Cham, Swizerland, 2016; ISBN 978-2-3-19-31434-1. ISSN 1613-3382. [Google Scholar]
- Al-Laith, A.A.A. Antioxidant components and antioxidant/antiradical activities of desert truffle (Tirmania nivea) from various Middle Eastern origins. J. Food Compos. Anal. 2010, 23, 15–22. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, G.; Song, D.; Liu, J.H.; Zhou, Y.; Ou, J.; Sun, S. Fourier transform infrared spectroscopic study of truffles. In Proceedings of the SPIE, ICO20: Biomedical Optics, Changchun, China, 21–26 August 2006; Volume 6026, p. 60260H. [Google Scholar]
- Bouatia, M.; Touré, H.A.; Cheikh, A.; Eljaoudi, R.; Rahali, Y.; Oulad Bouyahya Idrissi, M.; Khabar, L.; Draoui, M. Analysis of nutrient and antinutrient content of the truffle (Tirmania pinoyi) from Morocco. Int. Food Res. J. 2018, 25, 174–178. [Google Scholar]
- El Enshasy, H.; Elsayed, E.A.; Aziz, R.; Wadaan, M.A. Mushrooms and Truffles: Historical Biofactories for Complementary Medicine in Africa and in the Middle East. Evid.-Based Complement. Altern. Med. 2013, 2013, 620451. [Google Scholar] [CrossRef]
- Patel, S.; Rauf, A.; Khan, H.; Khalid, S.; Mubarak, M.S. Potential health benefits of natural products derived from truffles: A review. Trends Food Sci. Technol. 2017, 70, 1–8. [Google Scholar] [CrossRef]
- Gao, J.M.; Zhanga, A.L.; Chena, H.; Liu, J.K. Molecular species of ceramides from the ascomycete truffle Tuber indicum. Chem. Phys. Lipids 2004, 131, 205–213. [Google Scholar] [CrossRef]
- Hamza, A.; Zouari, N.; Zouari, S.; Jdir, H.; Zaidi, S.; Gtari, M.; Neffati, M. Nutraceutical potential, antioxidant and antibacterial activities of Terfezia boudieri Chatin, a wild edible desert truffle from Tunisia arid zone. Arab. J. Chem. 2016, 9, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Wang, Y.; Sang, X.; Fan, L. Nutritional value, chemical composition and antioxidant activity of three Tuber species from China. AMB Express 2017, 7, 136. [Google Scholar] [CrossRef]
- Dahham, S.S.; Al-Rawi, S.S.; Ibrahim, A.H.; Majid, A.S.A.; Majid, A.M.S.A. Antioxidant, anticancer, apoptosis properties and chemical composition of black truffle Terfezia claveryi. Saudi J. Biol. Sci. 2018, 25, 1524–1534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.K. Secondary metabolites from higher fungi in China and their biological activity. Drug Discov. Ther. 2007, 1, 94–103. [Google Scholar] [PubMed]
- Kivrak, Ş.; Kivrak, İ. Investigation of Chemical Composition and Nutritional Value of Truffle Mushroom (Tuber nitidum Vittad.). J. Nat. Appl. Sci. 2018, 22, 339–344. [Google Scholar] [CrossRef]
- Nagy, M.; Socaci, S.; Tofană, M.; Biris-Dorhoi, E.S.; Țibulcă, D.; Salanta, L.; Petrut, G. Chemical Composition and Bioactive Compounds of Some Wild Edible Mushrooms. Bull. UASVM Food Sci. Technol. 2017, 74. [Google Scholar] [CrossRef] [Green Version]
- Saddiq, A.A.; Yousef, J.M.; Mohame, A.M. The Potential Antibacterial Role of Terfezia Claveryi Extract Against Immune-Inflammatory Disorder and Oxidative Damage Induced by Pseudomonas Aeruginosa in Rat Corneas. Rom. Biotechnol. Lett. 2016, 21, 11781–11801. [Google Scholar]
- Tejedor-Calvo, E.; Morales, D.; Marco, P.; Sánchez, S.; Garcia-Barreda, S.; Ribeiro, S.; Iacominic, M.; Villalva, M.; Santoyo, S.; Soler-Rivasa, C. Screening of bioactive compounds in truffles and evaluation of pressurized liquid extractions (PLE) to obtain fractions with biological activities. Food Res. Int. 2020, 132, 109054. [Google Scholar] [CrossRef] [PubMed]
- Allen, F.; Greiner, R.; Wishart, D. Competitive fragmentation modelling of ESI-MS/MS spectra for putative metabolite identification. Metabolomics 2015, 11, 98–110. [Google Scholar] [CrossRef] [Green Version]
- Segneanu, A.E.; Sfirloaga, P.; David, I.; Balcu, I.; Grozescu, I. Characterisation of truffles using electrochemical and analytical methods. Dig. J. Nanomater. Biostruct. 2012, 7, 199–205. [Google Scholar]
- Zhang, A.; Sun, H.; Wang, P.; Han, Y.; Wang, X. Modern analytical techniques in metabolomics analysis. Analyst 2012, 137, 293–300. [Google Scholar] [CrossRef]
- Clish, C.B. Metabolomics: An emerging but powerful tool for precision medicine. Cold Spring Harb. Mol. Case Stud. 2015, 1, a000588. [Google Scholar] [CrossRef] [Green Version]
- Stewart, D.; McDougall, G.J.; Sungurtas, J.; Verrall, S.; Graham, J.; Martinussen, I. Metabolomic approach to identifying bioactive compounds in berries: Advances toward fruit nutritional enhancement. Mol. Nutr. Food Res. 2007, 51, 645–651. [Google Scholar] [CrossRef]
- Sinem, N. Metabolomics: Basic Principles and Strategies. In Molecular Medicine; Nalbantoglu, S., Amri, H., Eds.; IntechOpen: Rijeka, Croatia, 2019. [Google Scholar]
- Piasecka, A.; Kachlicki, P.; Stobiecki, M. Analytical Methods for Detection of Plant Metabolomes Changes in Response to Biotic and Abiotic Stresses. Int. J. Mol. Sci. 2019, 20, 379. [Google Scholar] [CrossRef] [Green Version]
- Hill, C.B.; Roessner, U. Metabolic Profiling of Plants by GC–MS. In The Handbook of Plant Metabolomics, 1st ed.; Weckwerth, W., Kahl, G., Eds.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2013. [Google Scholar]
- Aprea, E.; Biasioli, F.; Carlin, S.; Versini, G.; Märk, T.D.; Gasperi, F. Rapid white truffle headspace analysis by proton transfer reaction mass spectrometry and comparison with solid-phase microextraction coupled with gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 2007, 21, 2564–2572. [Google Scholar] [CrossRef]
- Torregiani, E.; Lorier, S.; Sagratini, G.; Maggi, F.; Vittori, S.; Capriol, G. Comparative Analysis of the Volatile Profile of 20 Commercial Samples of Truffles, Truffle Sauces, and Truffle-Flavored Oils by Using HS-SPME-GC-MS. Food Anal. Methods 2017, 10, 1857–1869. [Google Scholar] [CrossRef]
- Sawaya, W.N.; Al-Shalhat, A.; Al-Sogair, A.; AL-Mohammad, M. Chemical Composition and Nutritive Value of Truffles of Saudi Arabia. J. Food Sci. 1985, 50, 450–453. [Google Scholar] [CrossRef]
- Feng, T.; Shui, M.; Song, S.; Zhuang, H.; Sun, M.; Ya, L. Characterization of the Key Aroma Compounds in Three Truffle Varieties from China by Flavoromics Approach. Molecules 2019, 24, 3305. [Google Scholar] [CrossRef] [Green Version]
- Culleré, L.; Ferreira, V.; Venturini, M.E.; Marco, P.; Blanc, D. Chemical and sensory effects of the freezing process on the aroma profile of black truffles (Tuber melanosporum). Food Chem. 2013, 136, 518–525. [Google Scholar] [CrossRef] [Green Version]
- Yoon, B.K.; Jackman, J.A.; Valle-González, E.R.; Cho, N.J. Antibacterial Free Fatty Acids and Monoglycerides: Biological Activities, Experimental Testing, and Therapeutic Applications. Int. J. Mol. Sci. 2018, 19, 1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, S. Biological Interaction of Sulphur Compounds; CRC Press: Boca Raton, FL, USA, 1996; ISBN 0748402446. [Google Scholar]
- Hackett, M.J.; Zaro, J.L.; Shen, W.C.; Guley, P.C.; Cho, M.J. Fatty Acids as Therapeutic Auxiliaries for Oral and Parenteral Formulations. Adv. Drug Deliv. Rev. 2013, 65, 1331–1339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajendrakumar, N.; Vasantha, K.; Mohan, V.R. GC-MS Analysis of Bioactive Components of Tubers of Ruellia tuberosa L. (Acanthaceae). Am. J. Phytomed. Clin. Ther. 2014, 2, 209–216. [Google Scholar]
- Suttiarporn, P.; Chumpolsri, W.; Mahatheeranont, S.; Luangkamin, S.; Teepsawang, S.; Leardkamolkarn, V. Structures of Phytosterols and Triterpenoids with Potential Anti-Cancer Activity in Bran of Black Non-Glutinous Rice. Nutrients 2015, 7, 1672–1687. [Google Scholar] [CrossRef] [Green Version]
- Sakouhi, F.; Absalon, C.; Sebei, K.; Fouquet, E.; Boukhchina, S.; Kallel, H. Gas chromatographic–mass spectrometric characterisation of triterpene alcohols and monomethylsterols in developing Olea europaea L. fruits. Food Chem. 2009, 116, 345–350. [Google Scholar] [CrossRef]
- Weete, J.D.; Kulifaj, M.; Montant, C.; Nes, W.R.; Sancholle, M. Distribution of sterols in fungi. II. Brassicasterol in Tuber and Terjezia species. Can. J. Microbiol. 2011, 31, 1127–1130. [Google Scholar] [CrossRef]
- Mo, S.; Dong, L.; Hurst, W.J.; van Breemen, R.B. Quantitative analysis of phytosterols in edible oils using APCI liquid chromatography-tandem mass spectrometry. Lipids 2013, 48, 949–956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammann, S.; Vetter, W. Method Development for the Determination of Free and Esterified Sterols in Button Mushrooms (Agaricus bisporus). J. Agric. Food Chem. 2016, 64, 3437–3444. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.M.; Wang, C.Y.; Zhang, A.L.; Liu, J.K. A New Trihydroxy Fatty Acid from the Ascomycete, Chinese Truffle Tuber indicum. Lipids 2001, 36, 1365–1370. [Google Scholar] [CrossRef] [PubMed]
- Jennemann, R.; Geyer, R.; Sandhoff, R.; Gschwind, R.; Levery, S.; Wiegandt, H.; Grone, H.J. Glycoinositolphospholipids (Basidiolipids) of higher mushrooms. Eur. J. Biochem. 2001, 268, 1190–1205. [Google Scholar] [CrossRef] [PubMed]
- Calpe-Berdiel, L.; Méndez-González, J.; Llaverias, G.; Escolà-Gil, J.C.; Blanco-Vaca, F. Plant sterols, cholesterol metabolism and related disorders. In Biochemical Aspects of Human Nutrition; Avigliano, L., Rossi, L., Eds.; Transworld Research Network: Kerala, India, 2010; pp. 223–242. ISBN 978-81-7895-478-3. [Google Scholar]
- Gao, J.M.; Zhu, W.M.; Zhang, S.Q.; Zhang, X.; Zhang, A.L.; Chen, H.; Sun, Y.Y.; Tang, M. Sphingolipids from the edible fungus Tuber indicum. Eur. J. Lipid Sci. Technol. 2004, 106, 815–821. [Google Scholar]
- Zhang, X.; Ye, L.; Kang, Z.; Zou, J.; Zhang, X.; Li, X. Mycorrhization of Quercusacutissima with Chinese black truffle significantly altered the host physiology and root-associated microbiomes. PeerJ 2019, 18, e6421. [Google Scholar] [CrossRef] [Green Version]
- Salhab, A.S.A. Minireview on Mushroom: Emphasis on the Wild Mushroom of Jordan. Jordan Med. J. 2007, 41, 170–178. [Google Scholar]
- Claus, R.; Hoppen, H.O.; Karg, H. The secret of truffles: A steroidal pheromone? Experientia 1981, 37, 1178–1179. [Google Scholar] [CrossRef]
- Villares, A.; García-Lafuente, A.; Guillamón, E.; Ramos, Á. Identification and quantification of ergosterol and phenolic compounds occurring in Tuber spp. truffles. J. Food Compos. Anal. 2012, 26, 177–182. [Google Scholar] [CrossRef]
- Zang, N.; Chen, H.; Sun, B.; Mao, X.; Zhang, Y.; Zhou, Y. Comparative Analysis of Volatile Composition in Chinese Truffles via GC × GC/HR-TOF/MS and Electronic Nose. Int. J. Mol. Sci. 2016, 17, 412. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, M.L. The Multifunctional Fungal Ergosterol. mBio 2018, 9, e01755-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | Compounds Identified from GC-MS Library | RT | RI (Determinated) |
---|---|---|---|
Tuber magnatum pico | 3-octanol | 20.452 | 1087 |
dimethyl sulfoxide | 28.769 | 516 | |
stearic acid | 32.974 | 216 | |
squalene | 34.536 | 2745 | |
beta-sitosterol | 36.167 | 3292 | |
campesterol | 36.680 | 3297 | |
stearic acid | 38.211 | 2163 | |
dimethyl sulfone | 51.286 | 924 | |
benzothiazole | 55.461 | 1184 | |
Tuber brumale | 3-octanol | 20.452 | 1087 |
1,2-butanediol | 21.968 | 811 | |
lupeol | 21.971 | 3265 | |
2,4-octanedione | 35.445 | 1082 | |
tris(methylthio)methane | 51.275 | 1364 | |
ergosterol | 52.008 | 3085 |
Sample Fraction | Compound No. | m/z Detected | Theoretic m/z | Formula | Tentative of Identification | Ref. |
---|---|---|---|---|---|---|
Tuber magnatum pico | 1 | 65.17 | 65.15 | C2H6S+ | dimethyl sulfide | [3,7,10,23,37] |
2 | 89.18 | 89.15 | C6H12O+ | isoamyl alcohol | [7,10] | |
3 | 89.14 | 89.12 | C4H8O2+ | 3-hydroxy-2-butanone | [38] | |
4 | 90.11 | 90.097 | C3H7O2+ | alanine | [7,25,39] | |
5 | 95.15 | 95.14 | C2H6O2S+ | dimethyl sulfone | [10,37] | |
6 | 95.23 | 95.20 | C2H6S2+ | dimethyl disulfide | [10,23] | |
7 | 99.17 | 99.15 | C6H10O | 1-hexen-3-one | [38] | |
8 | 105.19 | 105.18 | C4H8OS | methional | [7,10,38] | |
9 | 107.17 | 107.13 | C7H6O+ | benzaldehyde | [25,59] | |
10 | 107.20 | 107.19 | C4H10OS+ | 3-(methylthio)propanol | [38,40] | |
11 | 109.07 | 109.06 | C7H8O+ | methoxybenzene (anisole) | [10] | |
12 | 109.25 | 109.24 | C3H8S2+ | bis(methylthio)methane | [6,39] | |
13 | 110.15 | 110.14 | C6H7NO | 4-amino-phenol | [7,10,22] | |
14 | 117.17 | 117.16 | C6H12O2+ | butanoic acid ethyl ester | [39,40] | |
15 | 117.19 | 117.17 | C6H12O2 | ethyl butyrate | [40] | |
16 | 118.11 | 118.14 | C5H11NO2+ | valine | [7,25,39] | |
17 | 120.08 | 120.03 | C4H9NO3+ | threonine | [7,10,25,39] | |
18 | 121.18 | 121.16 | C8H8O+ | benzeneacetaldehyde | [38,59] | |
19 | 123.07 | 123.67 | C8H10O+ | 2-phenylethanol | [10] | |
20 | 123.10 | 123.08 | C8H10O+ | p-cresyl methyl ether | [40] | |
21 | 123.19 | 123.17 | C8H10O | 3-ethylphenol | [41] | |
22 | 125.16 | 125.15 | C7H8O2+ | 2-acetyl-5-methyl furan | [10,23,25] | |
23 | 125.27 | 125.24 | C9H18O+ | nonanal | [10,59] | |
24 | 127.16 | 127.13 | C8H14O+ | 6-methyl-5-hepten-2-one | [38] | |
25 | 127.23 | 127,21 | C8H14O+ | 3,4-dimethyl-3-hexen-2-one | [38] | |
26 | 127.29 | 127.27 | C2H6S3+ | dimethyl trisulfide | [3,38] | |
27 | 129.21 | 129.18 | C10H8+ | naphthalene | [10] | |
28 | 129.25 | 129.22 | C8H16O+ | 1-octen-3-ol | [3] | |
28 | 131.20 | 131.19 | C7H14O2+ | butanoic acid propyl ester | [38] | |
29 | 132.17 | 132.75 | C5H12N2O2+ | ornithine | [7,10,25,38,39] | |
30 | 132.19 | 132.18 | C6H13NO2+ | leucine | [7,10,25,38,39] | |
31 | 133.08 | 133.06 | C4H8O3+ | asparagine | [7,10,25,38] | |
32 | 135.25 | 135.23 | C10H14+ | p-cymene | [25,37,38] | |
33 | 136.20 | 136.19 | C7H5NS+ | benzothiazole | [37,60] | |
34 | 137.22 | 137.20 | C9H12O | 3-methyl-5-ethylphenol | [40,41,59] | |
35 | 137.26 | 137.24 | C10H16+ | D-limonene | [38] | |
36 | 137.27 | 137.25 | C10H14+ | cis-ocimene | [38] | |
37 | 141.31 | 141.29 | C3H8S3+ | methyl(methylthio)dimethyl sulfoxide | [3,38] | |
38 | 143.23 | 143.21 | C8H14O2+ | 2,4-octanedione | [37] | |
39 | 145.22 | 145.21 | C8H16O2+ | isobutyl hexanoate | [40] | |
40 | 147.21 | 147.19 | C6H14N2O2+ | lysine | [7,10,25] | |
41 | 149.19 | 149.17 | C9H8O2+ | cinnamic acid | [38] | |
42 | 150.21 | 150.20 | C6H11NO2S+ | methionine | [7,10,25] | |
43 | 151.23 | 151.22 | C10H14O+ | thymol | [21] | |
44 | 155.27 | 155.25 | C10H18O+ | α-terpineol | [38] | |
45 | 155.28 | 155.26 | C10H18O+ | eucalyptol | [38] | |
46 | 155.35 | 155.32 | C4H10S3+ | tris(methylthio)methane | [3,41] | |
47 | 156.18 | 156.16 | C6H9N3O2+ | histidine | [7,10,25,39] | |
48 | 157.25 | 157.23 | C9H16O2+ | 2-pentyl-3-butenoic acid | [59] | |
49 | 159.26 | 159.25 | C9H18O2+ | 2-isopropyl-hexanoic acid | [41] | |
50 | 165.19 | 165.17 | C9H8O3+ | p-coumaric acid | [22] | |
51 | 165.23 | 165.21 | C10H12O2+ | eugenol | [38] | |
52 | 169.18 | 169.16 | C8H8O4+ | homogentisic acid | [22] | |
53 | 169.31 | 169.29 | C11H20O+ | 2-methylisoborneol | [21] | |
54 | 171.15 | 171.13 | C7H6O5+ | gallic acid | [22,25] | |
55 | 171.28 | 171.26 | C10H18O2 | 3-methyl-2-nonenoic acid | [38,60] | |
56 | 171.36 | 171.34 | C12H26+ | 2,4-dimethyl-decane | [38] | |
57 | 173.11 | 173.15 | C10H20O2+ | capric acid | [22,25,38] | |
58 | 173.29 | 173.27 | C10H20O2+ | isobutyl hexanoate | [40] | |
59 | 177.14 | 177.13 | C6H8O6+ | ascorbic acid | [22] | |
60 | 179.28 | 179.24 | C11H14O2+ | benzene-1,2-dimethoxy-4-(2-propenyl) | [39] | |
61 | 181.19 | 181.17 | C9H8O4+ | caffeic acid | [22,25] | |
62 | 183.19 | 183.17 | C6H14O6+ | D-allitol | [51] | |
63 | 187.24 | 187.22 | C12H10O2+ | 2-naphthylacetic acid | [38] | |
64 | 195.21 | 195.19 | C10H10O4 | ferulic acid | [7,10,25] | |
65 | 205.36 | 205.35 | C15H24+ | α-cubebene | [10,38] | |
66 | 205.37 | 205.35 | C15H24+ | caryophyllene | [10,39] | |
67 | 205.38 | 205.36 | C15H24+ | β-elemene | [10,38] | |
68 | 217.35 | 217.33 | C12H24O3+ | triisopropyl-S-trioxane | [3,38] | |
69 | 227.36 | 227.35 | C14H26O2+ | 8-dodecenyl acetate | [10,38] | |
70 | 230.32 | 230.31 | C9H15N3O2S+ | L-ergothioneine | [7] | |
71 | 235.40 | 235.39 | C15H26N2+ | sparteine | [7] | |
72 | 239.35 | 239.34 | C16H18N2 | agroclavine | [7] | |
73 | 241.33 | 241.31 | C6H12N2O4S2+ | cystine | [7,10,39] | |
74 | 255.43 | 255.42 | C16H30O2+ | palmitoleic acid | [22,25] | |
75 | 257.27 | 257.25 | C16H32O2 | palmitic acid | [22] | |
76 | 273.45 | 272,43 | C19H28O | androstenone | [52] | |
77 | 278.25 | 278.24 | C9H17NO8+ | neuraminic acid | [7] | |
78 | 281.41 | 281.40 | C18H32O2 | linoleic acid | [22,25] | |
79 | 281.46 | 281.45 | C18H32O2 | octadecadienoic acid | [22,25,38] | |
80 | 283.51 | 283.50 | C18H34O2+ | oleic acid | [22,25] | |
81 | 289.47 | 289.45 | C18H36O2+ | stearic acid | [22,25] | |
82 | 291.11 | 291.09 | C15H14O6+ | catechin | [21] | |
83 | 298.30 | 298.28 | C11H15N5O5+ | 7-methylguanosine | [7] | |
84 | 300.27 | 300.29 | C18H37NO2+ | sphing-4-enine | [54] | |
85 | 303.06 | 303.05 | C20H30O2+ | eicosapentaenoic acid | [22] | |
86 | 305.53 | 305.51 | C20H32O2+ | arachidonic acid | [7,22] | |
87 | 309.53 | 309.51 | C20H36O2+ | ethyl linolate | [21,22] | |
88 | 322.38 | 322.36 | C11H19N3O6S | S-methyl glutathione | [1] | |
89 | 329.52 | 329.51 | C22H32O2+ | docosahexaenoic acid | [22] | |
90 | 341.35 | 341.34 | C22H44O2+ | behenic acid | [22] | |
91 | 343.32 | 343.31 | C12H22O11+ | trehalose | [22] | |
92 | 369.62 | 369.61 | C24H48O2+ | lignoceric acid | [22,25] | |
93 | 387.38 | 387.37 | C27H46O+ | cholesterol | [48,50,53,57,58,59,60] | |
94 | 401.71 | 401.69 | C28H48O | campestanol | [48,50,53,57,58,59,60] | |
95 | 411.74 | 411.72 | C30H50+ | squalene | [7,23,45] | |
96 | 413.71 | 413.70 | C29H48O+ | fucosterol | [48,50,53,57,58,59,60] | |
97 | 415.73 | 415.71 | C29H50O+ | beta-sitosterol | [7,45] | |
98 | 419.71 | 419.70 | C27H46O3 | cholest-5-en-3β,6,24S-triol | [48,50,53,57,58,59,60] | |
99 | 425.72 | 425.70 | C30H48O+ | lupenone | [7,22,45] | |
100 | 427.74 | 427.73 | C30H50O | lupeol | [7,22,45] | |
101 | 537.92 | 537.91 | C40H56+ | lycopene | [22] | |
102 | 596.51 | 586.50 | C31H24O12+ | kolaflavanone | [7] | |
103 | 812.72 | 812.70 | C46H89NO8 | glucosylceramide | [7,53,54] | |
Tuber brumale | 1 | 95.23 | 95.20 | C2H6S2+ | dimethyl disulfide | [3,7,10,23,37] |
2 | 99.17 | 99.15 | C6H10O | 1-hexen-3-one | [38] | |
3 | 105.19 | 105.18 | C4H8OS | methional | [7,10,39] | |
4 | 107.17 | 107.13 | C7H6O+ | benzaldehyde | [25,60] | |
5 | 107.20 | 107.19 | C4H10OS+ | 3-(methylthio)propanol | [38,40] | |
6 | 109.07 | 109.06 | C7H8O+ | methoxybenzene (anisole) | [10] | |
7 | 109.25 | 109.24 | C3H8S2+ | bis(methylthio)methane | [6,38] | |
8 | 110.15 | 110.14 | C6H7NO | 4-amino-phenol | [7,10,22] | |
9 | 117.17 | 117.16 | C6H12O2+ | butanoic acid ethyl ester | [38,41] | |
10 | 117.19 | 117.17 | C6H12O2 | ethyl butyrate | [40] | |
11 | 118.11 | 118.14 | C5H11NO2+ | valine | [10,25,39] | |
12 | 120.14 | 120.13 | C4H9NO3+ | threonine | [7,10,25,39] | |
13 | 121.18 | 121.16 | C8H8O+ | benzeneacetaldehyde | [38,59] | |
14 | 123.07 | 123.67 | C8H10O+ | 2-phenylethanol | [10] | |
15 | 123.19 | 123.17 | C8H10O+ | 3-ethylphenol | [41] | |
16 | 123.10 | 123.08 | C8H10O+ | p-cresyl methyl ether | [40] | |
17 | 125.16 | 125.15 | C7H8O2+ | 2-acetyl-5-methylfuran | [10,23,25] | |
18 | 125.27 | 125.24 | C9H18O+ | nonanal | [10,59] | |
19 | 127.16 | 127.13 | C8H14O+ | 6-methyl-5-hepten-2-one | [38] | |
20 | 127.23 | 127.21 | C8H14O+ | 3,4-dimethyl-3-hexen-2-one | [38] | |
21 | 127.29 | 127.27 | C2H6S3+ | dimethyl trisulfide | [10,23] | |
22 | 129.21 | 129.18 | C10H8+ | naphthalene | [10] | |
23 | 129.25 | 129.22 | C8H16O+ | 1-octen-3-ol | [3] | |
24 | 131.20 | 131.19 | C7H14O2+ | butanoic acid propyl ester | [38] | |
25 | 132.17 | 132.75 | C5H12N2O2+ | ornithine | [7,10,25,38,39] | |
26 | 132.19 | 132.18 | C6H13NO2+ | leucine | [7,10,25,38,39] | |
27 | 133.08 | 133.06 | C4H8O3+ | asparagine | [7,10,25,39] | |
28 | 135.25 | 135.23 | C10H14+ | p-cymene | [25,37,38] | |
29 | 137.22 | 137.20 | C9H12O+ | 3-methyl-5-ethylphenol | [40,41,59] | |
30 | 137.26 | 137.24 | C10H16+ | D-limonene | [38] | |
31 | 137.27 | 137.25 | C10H14+ | cis-ocimene | [38] | |
32 | 141.31 | 141.29 | C3H8S3+ | methyl(methylthio)dimethyl sulfoxide | [3,38] | |
33 | 143.23 | 143.21 | C8H14O2+ | 2,4-octanedione | [37] | |
34 | 145.22 | 145.21 | C8H16O2 | isobutyl hexanoate | [40] | |
35 | 147.21 | 147.19 | C6H14N2O2+ | lysine | [7,10,25] | |
36 | 149.19 | 149.17 | C9H8O2+ | cinnamic acid | [39] | |
37 | 150.21 | 150.21 | C6H11NO2S+ | methionine | [7,10,25] | |
38 | 151.23 | 151.22 | C10H14O+ | thymol | [21] | |
39 | 155.27 | 155.25 | C10H18O+ | α-terpineol | [38] | |
40 | 155.28 | 155.26 | C10H18O+ | eucalyptol | [38] | |
41 | 155.35 | 155.32 | C4H10S3+ | tris(methylthio)methane | [3,41] | |
42 | 156.18 | 156.16 | C6H9N3O2+ | histidine | [7,10,25,39] | |
43 | 157.25 | 157.23 | C9H16O2+ | 2-pentyl-3-butenoic acid | [59] | |
44 | 159.26 | 159.25 | C9H18O2+ | 2-isopropyl-hexanoic acid | [41] | |
45 | 162.15 | 162.13 | C7H15NO3+ | carnitine | [7] | |
46 | 165.19 | 165.17 | C9H8O3+ | p-coumaric acid | [22] | |
47 | 165.23 | 165.21 | C10H12O2+ | eugenol | [38] | |
48 | 169.18 | 169.16 | C8H8O4+ | homogentisic acid | [22] | |
49 | 169.31 | 169.29 | C11H20O+ | 2-methylisoborneol | [21] | |
50 | 171.15 | 171.13 | C7H6O5+ | gallic acid | [22,25] | |
51 | 171.28 | 171.26 | C10H18O2 | 3-methyl-2-nonenoic acid | [38,59] | |
52 | 171.36 | 171.34 | C12H26+ | 2,4-dimethyl-decane | [38] | |
53 | 173.11 | 173.15 | C10H20O2+ | capric acid | [22,25,38] | |
54 | 173.29 | 173.27 | C10H20O2+ | isobutyl hexanoate | [40] | |
55 | 177.14 | 177.13 | C6H8O6+ | ascorbic acid | [22] | |
56 | 179.28 | 179.24 | C11H14O2+ | benzene-1,2-dimethoxy-4-(2-propenyl) | [38] | |
57 | 181.19 | 181.17 | C9H8O4+ | caffeic acid | [22,25] | |
58 | 183.19 | 183.17 | C6H14O6+ | D-allitol | [51] | |
59 | 183.40 | 183.38 | C6H14S3+ | dipropyl trisulfide | [10,23] | |
60 | 187.24 | 187.22 | C12H10O2+ | 2-naphthylacetic acid | [38] | |
61 | 195.21 | 195.19 | C10H10O4 | ferulic acid | [7,10,25] | |
62 | 205.36 | 205.35 | C15H24+ | α-cubebene | [10,38] | |
63 | 205.37 | 205.35 | C15H24+ | caryophyllene | [7,38] | |
64 | 205.38 | 205.36 | C15H24+ | β-elemene | [10,38] | |
65 | 217.35 | 217.33 | C12H24O3+ | triisopropyl-S-trioxane | [3,38] | |
66 | 227.34 | 227.30 | C10H10O2S2 | bis(2-methyl-3 furyl)disulfide | [40] | |
67 | 227.36 | 227.35 | C14H26O2+ | 8-dodecenyl acetate | [10,38] | |
68 | 230.32 | 230.31 | C9H15N3O2S+ | L-ergothioneine | [7] | |
69 | 235.40 | 235.39 | C15H26N2+ | sparteine | [7] | |
70 | 239.35 | 239.34 | C16H18N2 | agroclavine | [7] | |
71 | 241.03 | 241.31 | C6H12N2O4S2+ | cystine | [7,10,39] | |
72 | 255.43 | 255.42 | C16H30O2+ | palmitoleic acid | [22,25] | |
73 | 257.27 | 257.25 | C16H32O2 | palmitic acid | [22] | |
74 | 273.45 | 272,43 | C19H28O | androstenone | [53] | |
75 | 278.25 | 278.24 | C9H17NO8+ | neuraminic acid | [7] | |
76 | 281.41 | 281.40 | C18H32O2 | linoleic acid | [22,25] | |
77 | 281.46 | 281.45 | C18H32O2 | octadecadienoic acid | [22,25,38] | |
78 | 283.51 | 283.50 | C18H34O2+ | oleic acid | [22,25] | |
79 | 289.47 | 289.45 | C18H36O2+ | stearic acid | [22,25] | |
80 | 291.11 | 291.09 | C15H14O6+ | catechin | [21] | |
81 | 298.30 | 298.28 | C11H15N5O5+ | 7-methylguanosine | [7] | |
82 | 300.27 | 300.29 | C18H37NO2+ | sphing-4-enine | [56] | |
83 | 303.06 | 303.05 | C20H30O2+ | eicosapentaenoic acid | [22] | |
84 | 305.53 | 305.51 | C20H32O2+ | arachidonic acid | [7,22] | |
85 | 309.53 | 309.51 | C20H36O2+ | ethyl linolate | [21,22] | |
86 | 311.37 | 311.36 | C16H24NO5+ | sinapine | [7] | |
87 | 322.38 | 322.36 | C11H19N3O6S | S-methyl glutathione | [1] | |
88 | 329.52 | 329.51 | C22H32O2+ | docosahexaenoic acid | [22] | |
89 | 341.35 | 341.34 | C22H44O2+ | behenic acid | [22] | |
90 | 343.32 | 343.31 | C12H22O11+ | trehalose | [22] | |
91 | 369.62 | 369.61 | C24H48O2+ | lignoceric acid | [22,25] | |
92 | 387.38 | 387.37 | C27H46O+ | cholesterol | [48,50,53,57,58,59,60] | |
93 | 397.61 | 397.60 | C28H44O | ergosta-5,7,22-trien-ß-ol | [48,50,53,57,58,59,60] | |
94 | 397.66 | 397.65 | C28H44O | ergosterol | [51,53,57,58,59,60] | |
95 | 399.69 | 399.67 | C28H46O | brassicasterol | [7,45,48,50,53,57,58,59,60] | |
96 | 401.71 | 401.69 | C28H48O | campestanol | [7,45,48,50,53,57,58,59,60] | |
97 | 411.74 | 411.72 | C30H50+ | squalene | [7,23,45] | |
98 | 413.71 | 413.70 | C29H48O+ | fucosterol | [48,50,53,57,58,59,60] | |
99 | 415.73 | 415.71 | C29H50O+ | beta-sitosterol | [7,45,48,50,53,57,58,59,60] | |
100 | 419.71 | 419.70 | C27H46O3 | cholest-5-en-3β,6,24S-triol | [48,50,53,57,58,59,60] | |
101 | 425.72 | 425.70 | C30H48O+ | lupenone | [7,22,45] | |
102 | 427.74 | 427.73 | C30H50O | lupeol | [7,45] | |
103 | 537.92 | 537.91 | C40H56+ | lycopene | [22] | |
104 | 596.51 | 586.50 | C31H24O12+ | kolaflavanone | [7] | |
105 | 812.72 | 812.70 | C46H89NO8 | glucosylceramide | [1,7,54] |
No. | VOC Name | Odor |
---|---|---|
1 | dimethylsulfone | sulfuric |
2 | dimethylsulfide | cabbage, sulfurous onion |
3 | dimethyl disulfide | cabbage, onion |
4 | methional | mold, French fry, yeasty |
5 | isoamyl alcohol | alcoholic, fruity |
6 | 3-hydroxy-2-butanone | dairy, buttery |
7 | 1-hexen-3-one | vegetable metallic |
8 | benzaldehyde | sweet almond |
9 | 3-(methylthio)propanol | onion, garlic |
10 | methoxybenzene (anisole) | anise seed |
11 | bis(methylthio)methane | garlic sulfurous, mushroom |
12 | 4-amino-phenol | sweet, balsamic |
13 | butanoic acid ethyl ester | sweet, fruity (apple) |
14 | ethyl butyrate | fruity, sweet |
15 | benzeneacetaldehyde | earthy, chocolate, floral |
16 | 2-phenylethanol | floral |
17 | p-cresyl methyl ether | nutty, camphor |
18 | 3-ethylphenol | phenolic |
19 | 2-acetyl-5-methylfuran | nutty, dusty |
20 | nonanal | citrus |
21 | 6-methyl-5-hepten-2-one | citrus, green, nutty |
22 | 3,4-dimethyl-3-hexen-2-one | blue-cheese, nutty |
23 | dimethyl trisulfide | onion, leek |
24 | naphthalene | naphthalene |
25 | 1-octen-3-ol | earthy, green, mushroom |
26 | butanoic acid propyl ester | fruity, pineapple |
27 | benzothiazole | sulfurous, nutty |
28 | 3-methyl-5-ethylphenol | fruity |
29 | methyl(methylthio)dimethyl sulfoxide | sulfurous, broccoli |
30 | 2,4-octanedione | earthy, dill |
31 | isobutyl hexanoate | sweet, fruity |
32 | tris(methylthio)methane | earthy, mushroom |
33 | carnitine | fishy |
34 | 2-methylisoborneol | earthy, musty |
35 | 3-methyl-2-nonenoic acid | fruity |
36 | isobutyl hexanoate | fruity, green |
37 | benzene-1,2-dimethoxy-4-(2-propenyl) | spicy, woody |
38 | dipropyl trisulfide | sulfurous, garlic, pungent |
39 | triisopropyl-S-trioxane | dairy |
40 | bis(2-methyl-3 furyl)disulfide | sulfurous, meaty |
41 | 8-dodecenyl acetate | fruity, pineapple |
42 | androstenone | urine, sweet, floral |
43 | S-methyl glutathione | allium, sulfurous |
Sample Fraction | Chemical Class | Metabolite Name |
---|---|---|
Tuber magnatum pico | Amino acids | alanine |
valine | ||
threonine | ||
ornithine | ||
leucine | ||
asparagine | ||
lysine | ||
methionine | ||
histidine | ||
cystine | ||
Saccharides and nucleoside | trehalose | |
7-methylguanosine | ||
glucosylceramide | ||
Flavonoids | sparteine | |
agroclavine | ||
kolaflavanone | ||
Organic acids | cinnamic acid | |
2-pentyl-3-butenoic acid | ||
2-isopropyl-hexanoic acid | ||
p-coumaric acid | ||
3-methyl-2-nonenoic acid | ||
capric acid | ||
2-naphthylacetic acid | ||
neuraminic acid | ||
homogentisic acid | ||
Phenols and alcohols | 4-amino-phenol | |
isoamyl alcohol | ||
D-allitol | ||
2-phenylethanol | ||
3-ethylphenol | ||
1-octen-3-ol | ||
3-methyl-5-ethylphenol | ||
Esters | butanoic acid ethyl ester | |
butanoic acid propyl ester | ||
ethyl butyrate | ||
8-dodecenyl acetate | ||
Sulfur compounds | dimethylsulfide | |
dimethylsulfone | ||
dimethyl disulfide | ||
methional | ||
bis(methylthio)methane | ||
methyl(methylthio)dimethyl sulfoxide | ||
3-(methylthio)propanol | ||
tris(methylthio)methane | ||
triisopropyl-S-trioxane | ||
L-ergothioneine | ||
S-methyl glutathione | ||
dimethyl trisulfide | ||
benzothiazole | ||
Terpenoids and sesquiterpenes | p-cymene | |
α-terpineol | ||
D-limonene | ||
cis-ocimene | ||
thymol | ||
eucalyptol | ||
2-methylisoborneol | ||
α-cubebene | ||
caryophyllene | ||
β-elemene | ||
squalene | ||
lupenone | ||
lupeol | ||
Aldehyde and ketone | benzaldehyde | |
3-hydroxy-2-butanone | ||
benzeneacetaldehyde | ||
nonanal | ||
1-Hexen-3-one | ||
6-methyl-5-hepten-2-one | ||
3,4-dimethyl-3-hexen-2-one | ||
2,4-octanedione | ||
Phenolic acids | ferulic acid | |
gallic acid | ||
caffeic acid | ||
catechin | ||
Fatty acids | palmitoleic acid | |
palmitic acid | ||
linoleic acid | ||
octadecadienoic acid | ||
oleic acid | ||
stearic acid | ||
eicosapentaenoic acid | ||
arachidonic acid | ||
ethyl linolate | ||
docosahexaenoic acid | ||
behenic acid | ||
lignoceric acid | ||
Sterol and steroids | cholesterol | |
campestanol | ||
fucosterol | ||
beta-sitosterol | ||
cholest-5-en-3β,6,24S-triol | ||
Hydrocarbons | 2,4-dimethyl-decane | |
2-acetyl-5-methylfuran | ||
naphthalene | ||
p-cymene | ||
eugenol | ||
Other | sphing-4-enine (ceramide) | |
isobutyl hexanoate (fatty acid esters) | ||
ascorbic acid (vitamin) | ||
lycopene (carotenoid) | ||
benzene-1,2-dimethoxy-4-(2-propenyl) | ||
p-cresyl methyl ether | ||
methoxybenzene (anisole) | ||
Tuber brumale | Amino acids | valine |
threonine | ||
ornithine | ||
leucine | ||
asparagine | ||
lysine | ||
methionine | ||
cystine | ||
Saccharides and nucleoside | trehalose | |
7-methylguanosine | ||
glucosylceramide | ||
Flavonoids | sparteine | |
agroclavine | ||
kolaflavanone | ||
Organic acids | cinnamic acid | |
p-coumaric acid | ||
3-methyl-2-nonenoic acid | ||
capric acid | ||
2-naphthylacetic acid | ||
neuraminic acid | ||
homogentisic acid | ||
2-pentyl-3-butenoic acid | ||
2-isopropyl-hexanoic acid | ||
Phenols and alcohols | 4-amino-phenol | |
3-ethylphenol | ||
1-octen-3-ol | ||
3-methyl-5-ethylphenol | ||
2-phenylethanol | ||
D-allitol | ||
Esters | butanoic acid ethyl ester | |
butanoic acid propyl ester | ||
ethyl butyrate | ||
8-dodecenyl acetate | ||
Sulfur compounds | dimethyl trisulfide | |
benzothiazole | ||
methional | ||
bis(methylthio)methane | ||
methyl(methylthio)dimethyl sulfoxide | ||
3-(methylthio)propanol | ||
tris(methylthio)methane | ||
triisopropyl-S-trioxane | ||
L-ergothioneine | ||
S-methyl glutathione | ||
dipropyl trisulfide | ||
bis(2-methyl-3 furyl)disulfide | ||
Terpenoids and sesquiterpenes | p-cymene | |
α-terpineol | ||
D-limonene | ||
cis-ocimene | ||
thymol | ||
eucalyptol | ||
2-methylisoborneol | ||
α-cubebene | ||
caryophyllene | ||
β-elemene | ||
squalene | ||
lupenone | ||
lupeol | ||
Aldehyde and ketone | benzaldehyde | |
3-hydroxy-2-butanone | ||
benzeneacetaldehyde | ||
nonanal | ||
1-Hexen-3-one | ||
6-methyl-5-hepten-2-one | ||
3,4-dimethyl-3-hexen-2-one | ||
2,4-octanedione | ||
Phenolic acid | gallic acid | |
ferulic acid | ||
caffeic acid | ||
catechin | ||
Hydrocarbons | 2,4-dimethyl-decane | |
2-acetyl-5-methylfuran | ||
naphthalene | ||
p-cymene | ||
eugenol | ||
Fatty acids | palmitoleic acid | |
palmitic acid | ||
linoleic acid | ||
octadecadienoic acid | ||
oleic acid | ||
stearic acid | ||
eicosapentaenoic acid | ||
arachidonic acid | ||
ethyl linolate | ||
docosahexaenoic acid | ||
behenic acid | ||
lignoceric acid | ||
Sterol and steroids | cholesterol | |
campestanol | ||
fucosterol | ||
beta-sitosterol | ||
cholest-5-en-3β,6,24S-triol | ||
ergosta-5,7,22-trien-ß-ol | ||
ergosterol | ||
brassicasterol | ||
Others | sphing-4-enine (ceramide) | |
isobutyl hexanoate (fatty acid esters) | ||
ascorbic acid (vitamins) | ||
lycopene (carotenoid) | ||
benzene-1,2-dimethoxy-4-(2-propenyl) | ||
p-cresyl methyl ether | ||
Lycopene (carotenoid) | ||
Sinapine (alkaloid) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Segneanu, A.-E.; Cepan, M.; Bobica, A.; Stanusoiu, I.; Dragomir, I.C.; Parau, A.; Grozescu, I. Chemical Screening of Metabolites Profile from Romanian Tuber spp. Plants 2021, 10, 540. https://doi.org/10.3390/plants10030540
Segneanu A-E, Cepan M, Bobica A, Stanusoiu I, Dragomir IC, Parau A, Grozescu I. Chemical Screening of Metabolites Profile from Romanian Tuber spp. Plants. 2021; 10(3):540. https://doi.org/10.3390/plants10030540
Chicago/Turabian StyleSegneanu, Adina-Elena, Melinda Cepan, Adrian Bobica, Ionut Stanusoiu, Ioan Cosmin Dragomir, Andrei Parau, and Ioan Grozescu. 2021. "Chemical Screening of Metabolites Profile from Romanian Tuber spp." Plants 10, no. 3: 540. https://doi.org/10.3390/plants10030540
APA StyleSegneanu, A. -E., Cepan, M., Bobica, A., Stanusoiu, I., Dragomir, I. C., Parau, A., & Grozescu, I. (2021). Chemical Screening of Metabolites Profile from Romanian Tuber spp. Plants, 10(3), 540. https://doi.org/10.3390/plants10030540