Preserving Biodiversity as Source of Health Promoting Compounds: Phenolic Profile and Biological Activity of Four Varieties of Solanum lycopersicum L.
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antioxidant Activity and Phytochemical Profile
2.2. Determination of Chlorophyll and Carotenoid Content
2.3. HPLC-DAD Analysis
2.4. Principal Component Analysis (PCA)
3. Materials and Methods
3.1. Chemicals
3.2. Cultivars
3.3. Extracts
3.4. Antioxidant Activity: 2,2-Diphenyl-1-picrylhydrazyl (DPPH)
3.5. Determination of Chlorophyll and Carotenoid Content
3.6. HPLC-DAD Analysis
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siracusa, L.; Patane, C.; Rizzo, V.; Cosentino, S.L.; Ruberto, G. Targeted secondary metabolic and physico-chemical traits analysis to assess genetic variability within a germplasm collection of “long storage” tomatoes. Food Chem. 2018, 244, 275–283. [Google Scholar] [CrossRef]
- Aherne, S.A.; Jiwan, M.A.; Daly, T.; O’Brien, N.M. Geographical location has greater impact on carotenoid content and bioaccessibility from tomatoes than variety. Plant Foods Hum. Nutr. 2009, 64, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Timpanaro, G.; Scuderi, A.; Foti, V. A network for the conservation of agrobiodiversity of local ecotypes. In Proceedings of the VI Balkan Symposium on Vegetables and Potatoes 1142, Zagreb, Croatia, 29 September–2 October 2014; pp. 163–170. [Google Scholar]
- Berni, R.; Romi, M.; Parrotta, L.; Cai, G.; Cantini, C. Ancient Tomato (Solanum lycopersicum L.) Varieties of Tuscany Have High Contents of Bioactive Compounds. Horticulturae 2018, 4, 51. [Google Scholar] [CrossRef] [Green Version]
- Ercolano, M.; Carli, P.; Soria, A.; Cascone, A.; Fogliano, V.; Frusciante, L.; Barone, A. Biochemical, sensorial and genomic profiling of traditional Italian tomato varieties. Euphytica 2008, 164, 571–582. [Google Scholar] [CrossRef]
- Fratianni, F.; Cozzolino, A.; d’Acierno, A.; Nazzaro, F.; Riccardi, R.; Spigno, P. Qualitative Aspects of Some of Some Traditional Landraces of the Tomato “Piennolo”(Solanum lycopersicum L.) of the Campania Region, Southern Italy. Antioxidants 2020, 9, 565. [Google Scholar] [CrossRef]
- Carrillo, J.; Ingwell, L.L.; Li, X.; Kaplan, I. Domesticated tomatoes are more vulnerable to negative plant–soil feedbacks than their wild relatives. J. Ecol. 2019, 107, 1753–1766. [Google Scholar] [CrossRef]
- Renna, M.; Durante, M.; Gonnella, M.; Buttaro, D.; D’Imperio, M.; Mita, G.; Serio, F. Quality and nutritional evaluation of regina tomato, a traditional long-storage landrace of puglia (Southern Italy). Agriculture 2018, 8, 83. [Google Scholar] [CrossRef] [Green Version]
- Hajjar, R.; Jarvis, D.I.; Gemmill-Herren, B. The utility of crop genetic diversity in maintaining ecosystem services. Agric. Ecosyst. Environ. 2008, 123, 261–270. [Google Scholar] [CrossRef]
- Koul, O. Plant biodiversity as a resource for natural products for insect pest management. In Biodiversity and Insect Pests: Key Issues for Sustainable Management; Geoff, M., Gurr, G.M., Wratten, S.D., Snyder, W.E., Read, D.M.Y., Eds.; John Wiley & Sons Ltd: Hoboken, NJ, USA, 2012; pp. 85–105. [Google Scholar]
- Balzan, M.V.; Bocci, G.; Moonen, A.-C. Landscape complexity and field margin vegetation diversity enhance natural enemies and reduce herbivory by Lepidoptera pests on tomato crop. BioControl 2016, 61, 141–154. [Google Scholar] [CrossRef]
- Barone, D.; Cito, L.; Tommonaro, G.; Abate, A.A.; Penon, D.; De Prisco, R.; Penon, A.; Forte, I.M.; Benedetti, E.; Cimini, A.; et al. Antitumoral potential, antioxidant activity and carotenoid content of two Southern Italy tomato cultivars extracts: San Marzano and Corbarino. J. Cell. Physiol. 2018, 233, 1266–1277. [Google Scholar] [CrossRef]
- Muratore, G.; Licciardello, F.; Maccarone, E. Evaluation of the chemical quality of a new type of small-sized tomato. Italian J. Food Sci. 2005, 17, 75–81. [Google Scholar]
- Gómez-Romero, M.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Metabolite profiling and quantification of phenolic compounds in methanol extracts of tomato fruit. Phytochemistry 2010, 71, 1848–1864. [Google Scholar] [CrossRef]
- George, B.; Kaur, C.; Khurdiya, D.S.; Kapoor, H.C. Antioxidants in tomato (Lycopersium esculentum) as a function of genotype. Food Chem. 2004, 84, 45–51. [Google Scholar] [CrossRef]
- Chandra, H.M.; Ramalingam, S. Antioxidant potentials of skin, pulp, and seed fractions of commercially important tomato cultivars. Food Sci. Biotechnol. 2011, 20, 15–21. [Google Scholar] [CrossRef]
- Tranchida-Lombardo, V.; Mercati, F.; Avino, M.; Punzo, P.; Fiore, M.C.; Poma, I.; Patanè, C.; Guarracino, M.R.; Sunseri, F.; Tucci, M. Genetic diversity in a collection of Italian long storage tomato landraces as revealed by SNP markers array. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 2019, 153, 288–297. [Google Scholar] [CrossRef]
- Chandra, H.M.; Shanmugaraj, B.M.; Srinivasan, B.; Ramalingam, S. Influence of genotypic variations on antioxidant properties in different fractions of tomato. J. Food Sci. 2012, 77, C1174–C1178. [Google Scholar] [CrossRef]
- Valdez-Morales, M.; Espinosa-Alonso, L.G.; Espinoza-Torres, L.C.; Delgado-Vargas, F.; Medina-Godoy, S. Phenolic content and antioxidant and antimutagenic activities in tomato peel, seeds, and byproducts. J. Agric. Food Chem. 2014, 62, 5281–5289. [Google Scholar] [CrossRef] [PubMed]
- Guyer, L.; Hofstetter, S.S.; Christ, B.; Lira, B.S.; Rossi, M.; Hörtensteiner, S. Different mechanisms are responsible for chlorophyll dephytylation during fruit ripening and leaf senescence in tomato. Plant Physiol. 2014, 166, 44–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, M.-H.; Sangwanangkul, P.; Baek, D.-R. Changes in carotenoid and chlorophyll content of black tomatoes (Lycopersicone sculentum L.) during storage at various temperatures. Saudi J. Biol. Sci. 2018, 25, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Ferruzzi, M.G.; Blakeslee, J. Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives. Nutr. Res. 2007, 27, 1–12. [Google Scholar] [CrossRef]
- Lanfer-Marquez, U.M.; Barros, R.M.; Sinnecker, P. Antioxidant activity of chlorophylls and their derivatives. Food Res. Int. 2005, 38, 885–891. [Google Scholar] [CrossRef]
- Dzakovich, M.P.; Gas-Pascual, E.; Orchard, C.J.; Sari, E.N.; Riedl, K.M.; Schwartz, S.J.; Francis, D.M.; Cooperstone, J.L. Analysis of Tomato Carotenoids: Comparing Extraction and Chromatographic Methods. J. AOAC Int. 2019, 102, 1069–1079. [Google Scholar] [CrossRef] [PubMed]
- Charles, N.I. Effect of Thermal Processing on Lycopene, Beta-Carotene and Vitamin C Content of Tomato [Var.UC82B]. J. Food Nutr. Sci. 2014, 2, 87. [Google Scholar] [CrossRef]
- Riahi, A.; Hdider, C. Bioactive compounds and antioxidant activity of organically grown tomato (Solanum lycopersicum L.) cultivars as affected by fertilization. Sci. Hortic. 2013, 151, 90–96. [Google Scholar] [CrossRef]
- Raffo, A.; La Malfa, G.; Fogliano, V.; Maiani, G.; Quaglia, G. Seasonal variations in antioxidant components of cherry tomatoes (Lycopersicon esculentum cv. Naomi F1). J. Food Compos. Anal. 2006, 19, 11–19. [Google Scholar] [CrossRef]
- Kaur, C.; Walia, S.; Nagal, S.; Walia, S.; Singh, J.; Singh, B.B.; Saha, S.; Singh, B.; Kalia, P.; Jaggi, S.; et al. Functional quality and antioxidant composition of selected tomato (Solanum lycopersicon L.) cultivars grown in Northern India. LWT Food Sci. Technol. 2013, 50, 139–145. [Google Scholar] [CrossRef]
- Ilahy, R.; Hdider, C.; Lenucci, M.S.; Tlili, I.; Dalessandro, G. Phytochemical composition and antioxidant activity of high-lycopene tomato (Solanum lycopersicum L.) cultivars grown in Southern Italy. Sci. Hortic. 2011, 127, 255–261. [Google Scholar] [CrossRef]
- Szabo, K.; Diaconeasa, Z.; Catoi, A.F.; Vodnar, D.C. Screening of Ten Tomato Varieties Processing Waste for Bioactive Components and Their Related Antioxidant and Antimicrobial Activities. Antioxidants 2019, 8, 292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barros, L.; Dueñas, M.; Pinela, J.; Carvalho, A.M.; Buelga, C.S.; Ferreira, I.C. Characterization and quantification of phenolic compounds in four tomato (Lycopersicon esculentum L.) farmers’ varieties in northeastern Portugal homegardens. Plant Foods Hum. Nutr. 2012, 67, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Slimestad, R.; Fossen, T.; Verheul, M.J. The flavonoids of tomatoes. J. Agric. Food Chem. 2008, 56, 2436–2441. [Google Scholar] [CrossRef]
- Le Gall, G.; DuPont, M.S.; Mellon, F.A.; Davis, A.L.; Collins, G.J.; Verhoeyen, M.E.; Colquhoun, I.J. Characterization and content of flavonoid glycosides in genetically modified tomato (Lycopersicon esculentum) fruits. J. Agric. Food Chem. 2003, 51, 2438–2446. [Google Scholar] [CrossRef]
- Kalogeropoulos, N.; Chiou, A.; Pyriochou, V.; Peristeraki, A.; Karathanos, V.T. Bioactive phytochemicals in industrial tomatoes and their processing byproducts. LWT Food Sci. Technol. 2012, 49, 213–216. [Google Scholar] [CrossRef]
- Vinha, A.F.; Alves, R.C.; Barreira, S.V.; Castro, A.; Costa, A.S.; Oliveira, M.B.P. Effect of peel and seed removal on the nutritional value and antioxidant activity of tomato (Lycopersicon esculentum L.) fruits. LWT Food Sci. Technol. 2014, 55, 197–202. [Google Scholar] [CrossRef] [Green Version]
- Padula, M.C.; Lepore, L.; Milella, L.; Ovesna, J.; Malafronte, N.; Martelli, G.; de Tommasi, N. Cultivar based selection and genetic analysis of strawberry fruits with high levels of health promoting compounds. Food Chem. 2013, 140, 639–646. [Google Scholar] [CrossRef]
- Russo, D.; Faraone, I.; Labanca, F.; Sinisgalli, C.; Bartolo, M.; Andrade, P.B.; Valentao, P.; Milella, L. Comparison of different green-extraction techniques and determination of the phytochemical profile and antioxidant activity of Echinacea angustifolia L. extracts. Phytochem. Anal. 2019, 30, 547–555. [Google Scholar] [CrossRef]
- Cetera, P.; Russo, D.; Milella, L.; Todaro, L. Thermo-treatment affects Quercus cerris L. wood properties and the antioxidant activity and chemical composition of its by-product extracts. Ind. Crop. Prod. 2019, 130, 380–388. [Google Scholar] [CrossRef]
- Prohens, J.; Whitaker, B.D.; Plazas, M.; Vilanova, S.; Hurtado, M.; Blasco, M.; Gramazio, P.; Stommel, J.R. Genetic diversity in morphological characters and phenolic acids content resulting from an interspecific cross between eggplant, Solanum melongena, and its wild ancestor (S. incanum). Ann. Appl. Biol. 2013, 162, 242–257. [Google Scholar] [CrossRef]
- Cortina, P.R.; Santiago, A.N.; Sance, M.M.; Peralta, I.E.; Carrari, F.; Asis, R. Neuronal network analyses reveal novel associations between volatile organic compounds and sensory properties of tomato fruits. Metabolomics 2018, 14, 57. [Google Scholar] [CrossRef] [PubMed]
Samples | DPPH (mg TE/100 g FW) |
---|---|
ARSICOLO PEEL | 70.34 ± 7.97 c |
ARSICOLO FRUIT | 30.44 ± 3.18 f |
ARSICOLO PULP | 11.14 ± 1.25 i |
ARSICOLO SEEDS | 18.33 ± 1.7 h |
CROVARESE PEEL | 111.32 ± 11.81 a |
CROVARESE FRUIT | 40.38 ± 4.66 e |
CROVARESE PULP | 25.98 ± 3.44 g |
CROVARESE SEEDS | 38.32 ± 2.18 e |
DATTERINO PEEL | 60.13 ± 3.88 c |
DATTERINO FRUIT | 86.79 ± 6.17 b |
DATTERINO PULP | 41.7 ± 4.27 e |
DATTERINO SEEDS | 50.4 ± 5.93 d |
SAN MARZANO PEEL | 67.81 ± 5.94 c |
SAN MARZANO FRUIT | 54.88 ± 3.08 d |
SAN MARZANO PULP | 39.03 ± 1.73 e |
SAN MARZANO SEEDS | 42.03 ± 3.28 e |
Samples | mg β-Carotene/100 g FW | mg Lycopene/100 g FW | mg Chlorophyll a/100 g FW | mg Chlorophyll b/100 g FW |
---|---|---|---|---|
ARSICOLO PEEL | 2.98 ± 0.15 a | 6.48 ± 0.52 a | 0.04 ± 0.00 c | 0.06 ± 0.008 d,e |
ARSICOLO FRUIT | 1.18 ± 0.09 e,f | 1.39 ± 0.10 f | 0.01 ± 0.00 f | 0.04 ± 0.005 f,g |
ARSICOLO PULP | 1.83 ± 0.13 b–d | 3.10 ± 0.26 c | 0.03 ± 0.00 d | 0.04 ± 0.005 f,g |
ARSICOLO SEEDS | 0.35 ± 0.05 h | 0.10 ± 0.01 h | 0.04 ± 0.01 c | 0.06 ± 0.007 d,e |
CROVARESE PEEL | 1.89 ± 0.18 b,c | 2.01 ± 0.20 d,e | 0.03 ± 0.01 d | 0.05 ± 0.01 e,f |
CROVARESE FRUIT | 2.06 ± 0.22 b,c | 1.75 ± 0.15 e,f | 0.04 ± 0.00 c | 0.03 ± 0.00 g,h |
CROVARESE PULP | 2.34 ± 0.20 b | 1.99 ± 0.26 d,e | 0.06 ± 0.01 a | 0.09 ± 0.01 b,c |
CROVARESE SEEDS | 0.43 ± 0.05 h | 0.14 ± 0.02 h | 0.05 ± 0.01 b | 0.06 ± 0.01 d,e |
DATTERINO PEEL | 1.56 ± 0.13 c–e | 3.76 ± 0.45 b | 0.03 ± 0.01 d | 0.06 ± 0.01 d,e |
DATTERINO FRUIT | 1.29 ± 0.10 d–f | 0.92 ± 0.10 g | 0.01 ± 0.00 f | 0.01 ± 0.01 i |
DATTERINO PULP | 1.35 ± 0.10 d–f | 3.13 ± 0.29 c | 0.02 ± 0.00 e | 0.06 ± 0.01 d,e |
DATTERINO SEEDS | 0.63 ± 0.05 g,h | 0.24 ± 0.03 h | 0.01 ± 0.00 f | 0.02 ± 0.00 h |
SAN MARZANO PEEL | 1.91 ± 0.20 b,c | 4.28 ± 0.50 b | 0.05 ± 0.00 b | 0.07 ± 0.01 c,d |
SAN MARZANO FRUIT | 1.01 ± 0.12 f,g | 1.43 ± 0.14 f | 0.06 ± 0.01 a | 0.13 ± 0.02 a |
SAN MARZANO PULP | 1.64 ± 0.17 c–e | 2.42 ± 0.38 d | 0.01 ± 0.00 f | 0.02 ± 0.00 h |
SAN MARZANO SEEDS | 0.2 ± 0.02 h | 0.11 ± 0.01 h | 0.06 ± 0.01 a | 0.10 ± 0.02 b |
SAMPLES | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AS | AF | AP | ASD | CS | CF | CP | CSD | DS | DF | DP | DSD | SMS | SMF | SMP | SMSD | |
1 | 8.57 ± 0.69 c,d | 7.89 ± 0.45 c,d | 9.65 ± 0.70 b,c | 3.34 ± 0.23 g,h | 18.32 ± 1.48 a | 8.25 ± 0.52 c,d | 7.48 ± 0.33 d,e | 3.14 ± 0.12 h | 11.93 ± 0.94 b | 4.67 ± 0.24 f | 4.48 ± 0.25 f | 4.55 ± 0.38 f | 7.2 ± 0.55 d,e | 6.3 ± 0.43 e | 3.94 ± 0.25 f,g | 3.74 ± 0.45 g,h |
2 | 13.33 ± 0.80 a | 0.89 ± 0.05 h | nd | 0.64 ± 0.03 i | 1.02 ± 0.1 g,h | 1.06 ± 0.09 f,g | 1.42 ± 0.08 e | 2.54 ± 0.09 c | 1.91 ± 0.08 d | 1.28 ± 0.05 e | 1.24 ± 0.05 e,f | 0.261 ± 0.01 j | 4.23 ± 0.20 b | nd | 0.56 ± 0.03 i | nd |
3 | nd | nd | nd | nd | 2.38 ± 0.14 a | 0.04 ± 0.00 f | 0.71 ± 0.03 b,c | 0.41 ± 0.02 c,d | 0.93 ± 0.08 b | 0.39 ± 0.02 c,d | 0.39 ± 0.02 c,d | 0.28 ± 0.00 d | 0.77 ± 0.06 b | 0.13 ± 0.00 e | 0.42 ± 0.03 c,d | 1.08 ± 0.87 b |
4 | 1.08 ± 0.09 a | 0.07 ± 0.01 f | 0.31 ± 0.00 b | nd | nd | 0.05 ± 0.00 g | 0.14 ± 0.02 d | 0.28 ± 0.01 b | nd | 0.07 ± 0.01 f | 0.30 ± 0.02 b | 0.15 ± 0.03 d | nd | 0.20 ± 0.01 c | 0.12 ± 0.04 d | 0.1 ± 0.00 e |
5 | 3.39 ± 0.24 c | 2.32 ± 0.01 e,f | 1.35 ± 0.09 g | 1.05 ± 0.08 h | 2.65 ± 0.42 d,e | 2.06 ± 0.35 f | 2.08 ± 0.13 f | 3.59 ± 0.02 c | 4.37 ± 0.25 b | 3.5 ± 0.09 c | 2.82 ± 0.04 d | 1.05 ± 0.1 h | 5.59 ± 0.35 a | 0.20 ± 0.04 k | 0.74 ± 0.1 i | 0.44 ± 0.03 j |
6 | 17.97 ± 1.24 a,b | 3.99 ± 2.44 c,d | nd | 0.48 ± 0.17 e | 27.65 ± 5.77 a | 0.45 ± 0.15 e | nd | nd | 1.52 ± 1.14 d | 7.43 ± 3.55 c | nd | 5.74 ± 1.44 c | 17.64 ± 1.65 a,b | 3.9 ± 0.64 c,d | nd | 14 ± 1.54 b |
7 | 1.4 ± 0.67 b | 1.2 ± 0.36 b | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | 13.42 ± 5.44 a | nd | nd | nd |
8 | nd | nd | nd | nd | nd | nd | nd | nd | 0.45 ± 0.03 c | 4.69 ± 0.05 a | 4.73 ± 0.03 a | nd | nd | nd | nd | 1.39 ± 0.1 b |
9 | 1.1 ± 0.10 a | 0.20 ± 0.02 f | nd | nd | 0.13 ± 0.08 f | 0.12 ± 0.01 f | 0.10 ± 0.00 f | 0.54 ± 0.03 c,d | 0.63 ± 0.05 b,c | nd | nd | 0.02 ± 0.00 f | 0.43 ± 0.03 d | nd | nd | 0.74 ± 0.07 b |
10 | 0.24 ± 0.01 b,c | 0.25 ± 0.01 b | 0.25 ± 0.01 b | 0.69 ± 0.44 a | nd | 0.05 ± 0.00 d | 0.07 ± 0.00 d | nd | 0.25 ± 0.01 b | 0.17 ± 0.01 b,c | 0.16 ± 0.00 c | 0.89 ± 0.07 a | nd | nd | nd | 0.26 ± 0.01 b |
11 | 1.03 ± 0.05 a | 0.20 ± 0.01 c | 0.14 ± 0.00 d | 0.14 ± 0.01 d | nd | nd | nd | 0.55 ± 0.02 b | 0.61 ± 0.05 b | nd | nd | nd | nd | nd | nd | nd |
TOT | 48.17 ± 3.89 a | 17.02 ± 3.36 c,d | 11.71 ± 0.80 e,f | 6.33 ± 0.96 g | 52.15 ± 7.99 a | 12.08 ± 1.12 e,f | 12.01 ± 0.59 e,f | 11.05 ± 0.31 f | 22.59 ± 2.63 b | 22.20 ± 4.02 b,c | 14.12 ± 0.41 d,e | 12.95 ± 1.94 d–f | 49.28 ± 8.28 a | 10.73 ± 1.12 f | 5.78 ± 0.45 g | 21.71 ± 3.07 b,c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faraone, I.; Russo, D.; Ponticelli, M.; Candido, V.; Castronuovo, D.; Cardone, L.; Sinisgalli, C.; Labanca, F.; Milella, L. Preserving Biodiversity as Source of Health Promoting Compounds: Phenolic Profile and Biological Activity of Four Varieties of Solanum lycopersicum L. Plants 2021, 10, 447. https://doi.org/10.3390/plants10030447
Faraone I, Russo D, Ponticelli M, Candido V, Castronuovo D, Cardone L, Sinisgalli C, Labanca F, Milella L. Preserving Biodiversity as Source of Health Promoting Compounds: Phenolic Profile and Biological Activity of Four Varieties of Solanum lycopersicum L. Plants. 2021; 10(3):447. https://doi.org/10.3390/plants10030447
Chicago/Turabian StyleFaraone, Immacolata, Daniela Russo, Maria Ponticelli, Vincenzo Candido, Donato Castronuovo, Loriana Cardone, Chiara Sinisgalli, Fabiana Labanca, and Luigi Milella. 2021. "Preserving Biodiversity as Source of Health Promoting Compounds: Phenolic Profile and Biological Activity of Four Varieties of Solanum lycopersicum L." Plants 10, no. 3: 447. https://doi.org/10.3390/plants10030447
APA StyleFaraone, I., Russo, D., Ponticelli, M., Candido, V., Castronuovo, D., Cardone, L., Sinisgalli, C., Labanca, F., & Milella, L. (2021). Preserving Biodiversity as Source of Health Promoting Compounds: Phenolic Profile and Biological Activity of Four Varieties of Solanum lycopersicum L. Plants, 10(3), 447. https://doi.org/10.3390/plants10030447