Soil Humus, Iron, Sulphate and Magnesium Content Affect Nectar Traits of Wild Garlic (Allium ursinum L.)
Abstract
:1. Introduction
2. Results
2.1. Effect of the Habitat on Ratio of Nectar-Producing Flowers, Nectar Volume and Concentration in Allium ursinum
2.2. Effect of the Soil Parameters on Number Of Nectar Producing Flowers, Nectar Volume and Concentration in Allium ursinum
3. Discussion
4. Materials and Methods
4.1. Study Sites, Selection of Plants
4.2. Soil Analysis
4.3. Nectar Sampling
4.4. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dafni, H.; Lensky, Y.; Fahn, A. Flower and Nectar Characteristics of Nine Species of Labiatae and Their Influence on Honeybee Visits. J. Apic. Res. 1988, 27, 103–114. [Google Scholar] [CrossRef]
- Fahn, A. Studies in the Ecology of Nectar Secretion. Palest. J. Bot. Jerus. Ser. 1949, 4, 207–224. [Google Scholar]
- Mačukanović-Jocić, M. Morpho-Physiological Flower Characteristics in Selected Lamiaceae Species in Relation to Honeybee Attraction; University of Belgrade: Belgrade, Serbia, 2006. (in Serbian) [Google Scholar]
- Mačukanović-Jocić, M.; Djurdjevic, I.; Stankovic, S. Influence of Microclimatic Conditions on Nectar Exudation in Glechoma Hirsuta WK. Arch. Biol. Sci. 2005, 57, 119–126. [Google Scholar] [CrossRef]
- Mačukanović-Jocić, M.; Duletić-Laušević, S.N.; Jocić, G. Nectar Production in Three Melliferous Species of Lamiaceae in Natural and Experimental Conditions. Acta Vet. 2004, 54, 475–487. [Google Scholar]
- Mačukanović-Jocić, M.; Dajic Stevanovic, Z.; Jarić, S.; Đurđević, L. Nectar Secretion in Basil (Ocimum basilicum L.) Grown in Different Soil Conditions. J. Apic. Res. 2008, 47, 89–90. [Google Scholar] [CrossRef]
- Lu, N.-N.; Li, X.-H.; Li, L.; Zhao, Z.-G. Variation of Nectar Production in Relation to Plant Characteristics in Protandrous Aconitum gymnandrum. J. Plant Ecol. 2015, 8, 122–129. [Google Scholar] [CrossRef] [Green Version]
- Pacini, E.; Nepi, M. Nectar production and presentation. In Nectaries and Nectar; Nicolson, S.W., Nepi, M., Pacini, E., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2007; pp. 167–214. ISBN 978-1-4020-5937-7. [Google Scholar]
- Petanidou, T.; Goethals, V.; Smets, E. Nectary Structure of Labiatae in Relation to Their Nectar Secretion and Characteristics in a Mediterranean Shrub Community—Does Flowering Time Matter? Plant Syst. Evol. 2000, 225, 103–118. [Google Scholar] [CrossRef]
- Silva, E.M.; Dean, B.B.; Hiller, L. Patterns of Floral Nectar Production of Onion (Allium cepa L.) and the Effects of Environmental Conditions. J. Am. Soc. Hortic. Sci. 2004, 129, 299–302. [Google Scholar] [CrossRef] [Green Version]
- Zimmerman, M. Nectar Production, Flowering Phenology, and Strategies for Pollination. Plant Reprod. Ecol. Patterns Strateg. 1988, 41, 157–178. [Google Scholar]
- Nickless, E.M.; Anderson, C.W.; Hamilton, G.; Stephens, J.M.; Wargent, J. Soil Influences on Plant Growth, Floral Density and Nectar Yield in Three Cultivars of Mānuka (Leptospermum scoparium). New Zealand J. Bot. 2017, 55, 100–117. [Google Scholar] [CrossRef]
- Denisow, B.; Strzalkowska-Abramek, M.; Wrzesien, M. Nectar Secretion and Pollen Production in Protandrous Flowers of Campanula patula L. (Campanulaceae). Acta Agrobot. 2018, 71, 1734–1742. [Google Scholar] [CrossRef] [Green Version]
- Bożek, M. Nectar Secretion and Pollen Production in Hyacinthus orientalis ‘Sky Jacket’ (Asparagaceae). Acta Agrobot. 2019, 72, 1796–1806. [Google Scholar] [CrossRef]
- Clearwater, M.J.; Revell, M.; Noe, S.; Manley-Harris, M. Influence of Genotype, Floral Stage, and Water Stress on Floral Nectar Yield and Composition of Mānuka (Leptospermum scoparium). Ann. Bot. 2018, 121, 501–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrera, C.M.; Pérez, R.; Alonso, C. Extreme Intraplant Variation in Nectar Sugar Composition in an Insect-Pollinated Perennial Herb. Am. J. Bot. 2006, 93, 575–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, R.J. Heritability of Nectar Traits: Why Do We Know so Little? Ecology 2004, 85, 1527–1533. [Google Scholar] [CrossRef]
- Antoń, S.; Komoń-Janczara, E.; Denisow, B. Floral Nectary, Nectar Production Dynamics and Chemical Composition in Five Nocturnal Oenothera species (Onagraceae) in Relation to Floral Visitors. Planta 2017, 246, 1051–1067. [Google Scholar] [CrossRef] [PubMed]
- Tutin, T.G. Biological Flora of the British Isles. Zostera L. J. Ecol. 1942, 30, 217. [Google Scholar] [CrossRef]
- Stearn, W.T. Geographical and Other Abbreviations in the Flora URSS by Komarov and Others. New Phytol. 1947, 46, 61–67. [Google Scholar] [CrossRef]
- Schmid, E. Die Vegetationsgürtel Griechenlands. Veröffentlichungen des Geobotanischen Institutes Rübel 1975, 55, 37–71. [Google Scholar]
- Reuter, H.D. Allium Sativum and Allium Ursinum: Part 2 Pharmacology and Medicinal Application. Phytomedicine 1995, 2, 73–91. [Google Scholar] [CrossRef]
- Sobolewska, D.; Podolak, I.; Makowska-Wąs, J. Allium Ursinum: Botanical, Phytochemical and Pharmacological Overview. Phytochem. Rev. 2015, 14, 81–97. [Google Scholar] [CrossRef] [Green Version]
- Djurdjevic, L.; Dinic, A.; Pavlovic, P.; Mitrovic, M.; Karadzic, B.; Tesevic, V. Allelopathic Potential of Allium ursinum L. Biochem. Syst. Ecol. 2004, 32, 533–544. [Google Scholar] [CrossRef]
- Trémolières, M.; Noël, V.; Hérault, B. Phosphorus and Nitrogen Allocation in Allium ursinum on an Alluvial Floodplain (Eastern France). Is There an Effect of Flooding History? Plant Soil 2009, 324, 279–289. [Google Scholar] [CrossRef]
- Nepi, M.; Stpiczyńska, M. The Complexity of Nectar: Secretion and Resorption Dynamically Regulate Nectar Features. Naturwissenschaften 2008, 95, 177. [Google Scholar] [CrossRef]
- Farkas, Á.; Molnár, R.; Morschhauser, T.; Hahn, I. Variation in Nectar Volume and Sugar Concentration of Allium ursinum L. Ssp. Ucrainicum in Three Habitats. Sci. World J. 2012, 3, 138579. [Google Scholar]
- Kevey Balázs, K. Magyarország Erditársulásai. Tilia 2008, 14, 1–488. [Google Scholar]
- Borhidi, A.B.; Kevey Balázs, K.; Lendvai Gábor, L.; Seregélyes Tibor, S. Plant Communities of Hungary; Akadémiai Kiadó: Budapest, Hungary, 2012; ISBN 978-963-05-9278-9. [Google Scholar]
- Ernst, W. Chemical Soil Factors Determining Plant Growth. Struct. Funct. Plant Popul. 1978, 1, 155–187. [Google Scholar]
- Leuschner, C.; Lendzion, J. Air Humidity, Soil Moisture and Soil Chemistry as Determinants of the Herb Layer Composition in European Beech Forests. J. Veg. Sci. 2009, 20, 288–298. [Google Scholar] [CrossRef]
- Blazewicz-Wozniak, M.; Michowska, A. The Growth, Flowering and Chemical Composition of Leaves of Three Ecotypes of Allium Ursinum L. Acta Agrobot. 2011, 64, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Karpaviciene, B. Distribution of Allium ursinum L. Lith. Acta Biol. Univ. Daugavp. 2006, 6, 117–122. [Google Scholar]
- Munoz, A.A.; Celedon-Neghme, C.; Cavieres, L.A.; Arroyo, M.T. Bottom-up Effects of Nutrient Availability on Flower Production, Pollinator Visitation, and Seed Output in a High-Andean Shrub. Oecologia 2005, 143, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Burkle, L.; Irwin, R. The Importance of Interannual Variation and Bottom–up Nitrogen Enrichment for Plant–Pollinator Networks. Oikos 2009, 118, 1816–1829. [Google Scholar] [CrossRef]
- Burkle, L.A.; Irwin, R.E. The Effects of Nutrient Addition on Floral Characters and Pollination in Two Subalpine Plants, Ipomopsis aggregata and Linum lewisii. Plant Ecol. 2009, 203, 83–98. [Google Scholar] [CrossRef]
- Hoover, S.E.; Ladley, J.J.; Shchepetkina, A.A.; Tisch, M.; Gieseg, S.P.; Tylianakis, J.M. Warming, CO2, and Nitrogen Deposition Interactively Affect a Plant-Pollinator Mutualism. Ecol. Lett. 2012, 15, 227–234. [Google Scholar] [CrossRef] [PubMed]
- David, T.I.; Storkey, J.; Stevens, C.J. Understanding How Changing Soil Nitrogen Affects Plant–Pollinator Interactions. Arthropod-Plant Interact. 2019, 13, 671–684. [Google Scholar] [CrossRef] [Green Version]
- Heinrichs, S.; Dierschke, H.; Kompa, T.; Schmidt, W. Effect of Phenology, Nutrient Availability and Windthrow on Flowering of Allium ursinum-Results from Long-Term Monitoring and Experiments. Tuexenia 2018, 38, 111–134. [Google Scholar]
- Burkle, L.A.; Irwin, R.E. Beyond Biomass: Measuring the Effects of Community-Level Nitrogen Enrichment on Floral Traits, Pollinator Visitation and Plant Reproduction. J. Ecol. 2010, 98, 705–717. [Google Scholar] [CrossRef]
- Fijen, T.P.; Scheper, J.A.; Vogel, C.; van Ruijven, J.; Kleijn, D. Insect Pollination Is the Weakest Link in the Production of a Hybrid Seed Crop. Agric. Ecosyst. Environ. 2020, 290, 106743. [Google Scholar] [CrossRef]
- Böhling, N. Zur Entwicklung Der Allium ursinum-Bestände Im Buchenreichen Eichen-Hainbuchenwald “Hohes Reisach” 1978/2007. Tuexenia 2008, 28, 41–49. [Google Scholar]
- Bareke, T.; Kumsa, T.; Roba, K.; Addi, A. Nectar Secretion Dynamics and Honey Production Potential of Croton macrostachyus L., Euphorbiaceae. Bee World 2020, 97, 123–127. [Google Scholar] [CrossRef]
- Tiessen, H.; Moir, J.O. Total and organic carbon. In Soil Sampling and Methods of Analysis; Carter, M.E., Ed.; Lewis Publishers: Ann Arbor, MI, USA, 1993; pp. 187–211. [Google Scholar]
- Şenlikci, A.; Doğu, M.; Eren, E.; Çetinkaya, E.; Karadağ, S. Pressure Calcimeter as a Simple Method for Measuring the CaCO3 Content of Soil and Comparison with Scheibler Calcimeter. Toprak Su Derg. 2015, 24–28. [Google Scholar] [CrossRef] [Green Version]
- Valkó, O.; Tóthmérész, B.; Kelemen, A.; Simon, E.; Miglécz, T.; Lukács, B.A.; Török, P. Environmental Factors Driving Seed Bank Diversity in Alkali Grasslands. Agric. Ecosyst. Environ. 2014, 182, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Čapka, D.; Kisić, I.; Zgorelec, Ž.; Mesić, M.; Jurišić, A. Determination of Soil PH in Dominant Soil Types in the Republic of Croatia. Agric. Conspec. Sci. 2009, 74, 13–19. [Google Scholar]
- McKenna, M.A.; Thomson, J.D. A Technique for Sampling and Measuring Small Amounts of Floral Nectar. Ecol. (Durh.) 1988, 69, 1306–1307. [Google Scholar] [CrossRef]
- Power, E.F.; Stabler, D.; Borland, A.M.; Barnes, J.; Wright, G.A. Analysis of Nectar from Low-Volume Flowers: A Comparison of Collection Methods for Free Amino Acids. Methods Ecol. Evol. 2018, 9, 734–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jablonski, B. Notes on the Method to Investigate Nectar Secretion Rate in Flowers. J. Apic. Sci. 2002, 46, 117–124. [Google Scholar]
- Adgaba, N.; Al-Ghamdi, A.; Tadesse, Y.; Getachew, A.; Awad, A.M.; Ansari, M.J.; Owayss, A.A.; Mohammed, S.E.A.; Alqarni, A.S. Nectar Secretion Dynamics and Honey Production Potentials of Some Major Honey Plants in Saudi Arabia. Saudi J. Biol. Sci. 2017, 24, 180–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarić, S.; Durdevic, L.A.; Mačukanović-Jocić, M.P.; Gajić, G.M. Morphometric Characteristics and Nectar Potential of Ocimum basilicum L. Var. Genovese (Lamiaceae) in Relation to Microclimatic and Edaphic Environmental Factors. Period. Biol. 2010, 112, 283–291. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. arXiv 2014, arXiv:1406.5823. preprint. [Google Scholar]
- Crawley, M. Statistics: An Introduction Using R, 2nd ed.; Wiley: Chichester, UK, 2014; ISBN 978-1-118-94109-6. [Google Scholar]
Site # | Site Name | GPS Coordinates | Vegetation Type, Soil Type | Association | Number of Flowers Examined | Ratio of Nectar Producing Flowers (%) | ||
---|---|---|---|---|---|---|---|---|
2013 | 2015 | 2013 | 2015 | |||||
1 | Ágfalva | n47°41.253 e16°31.372 | oak-hornbeam forest, BFS | Cyclamini purpurascenti-Carpinetum | 207 | - | 19.3 | - |
2 | Jánossomorja | n47°46.518 e17°9.189 | hardwood gallery forest, HF | Pimpinello majoris-Ulmetum | 64 | - | 82.8 | - |
3 | Pusztamarót | n47°41.032 e18°31.872 | beech forest, BFS | Daphno laureolae-Fagetum | 143 | - | 6.3 | - |
4 | Rajka | n48°496 e17°12.622 | hardwood gallery forest, HF | Pimpinello majoris-Ulmetum | 235 | - | 17.4 | - |
5 | Tatabánya | n47°31.971 e18°25.835 | oak-hornbeam forest, BFS | Corydalido pumilae-Carpinetum | 148 | - | 0.0 | - |
6 | Zalaistvánd | n46°92.813 e17°139 | oak-hornbeam forest substitute for black locust, BFS | Corydalido pumilae-Carpinetum Robinia pseudoacacia consoc. | 147 | - | 7.5 | - |
7 | Bakonybél | n47°30.638 e17°69.428 | beech forest, BFS | Daphno laureolae-Fagetum | 132 | 114 | 5.3 | 38.6 |
8 | Bisse | n45°89.981 e18°27.6851 | oak-hornbeam forest, BFS | Asperulo taurinae-Carpinetum | 126 | 97 | 0.8 | 55.7 |
9 | Bőszénfa | n46°13.781 e17°51.984 | oak-hornbeam forest, BFS | Helleboro dumetorum-Carpinetum | 172 | 119 | 29.7 | 25.2 |
10 | Lapis | n46°7.304 e18°12.073 | ravine forest, CFS | Scutellario altissimae-Aceretum | 247 | 199 | 39.7 | 26.6 |
11 | Lórév | n47°6.545 e18°53.566 | hardwood gallery forest, HF | Scillo vindobonensis-Ulmetum | 174 | 152 | 0.6 | 3.9 |
12 | Szenta | n46°22.739 e17°24.306 | alder gallery forest, SF | Aegopodio-Alnetum glutinosae | 127 | 126 | 1.6 | 23.0 |
13 | Zalaszántó | n46°87.145 e17°21.684 | alder gallery forest substitute for black walnut, SF | Aegopodio-Alnetum glutinosae Juglans nigra consoc. | 213 | 170 | 39.0 | 35.9 |
14 | Zobákpuszta | n46°11.658 e18°19.066 | transition of oak-hornbeam wood and alder gallery forest, MC | Asperulo taurinae-Carpinetum et Carici pendulae-Alnetum glutinosae confer | 212 | 62 | 20.8 | 19.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bodó, A.; Farkas, Á.; Nagy, D.U.; Rudolf, K.; Hoffmann, R.; Kocsis, M.; Morschhauser, T. Soil Humus, Iron, Sulphate and Magnesium Content Affect Nectar Traits of Wild Garlic (Allium ursinum L.). Plants 2021, 10, 597. https://doi.org/10.3390/plants10030597
Bodó A, Farkas Á, Nagy DU, Rudolf K, Hoffmann R, Kocsis M, Morschhauser T. Soil Humus, Iron, Sulphate and Magnesium Content Affect Nectar Traits of Wild Garlic (Allium ursinum L.). Plants. 2021; 10(3):597. https://doi.org/10.3390/plants10030597
Chicago/Turabian StyleBodó, Alexandra, Ágnes Farkas, Dávid U. Nagy, Kinga Rudolf, Richárd Hoffmann, Marianna Kocsis, and Tamás Morschhauser. 2021. "Soil Humus, Iron, Sulphate and Magnesium Content Affect Nectar Traits of Wild Garlic (Allium ursinum L.)" Plants 10, no. 3: 597. https://doi.org/10.3390/plants10030597
APA StyleBodó, A., Farkas, Á., Nagy, D. U., Rudolf, K., Hoffmann, R., Kocsis, M., & Morschhauser, T. (2021). Soil Humus, Iron, Sulphate and Magnesium Content Affect Nectar Traits of Wild Garlic (Allium ursinum L.). Plants, 10(3), 597. https://doi.org/10.3390/plants10030597