Chemical Characterization of Marrubium vulgare Volatiles from Serbia
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Volatiles Isolation and Analysis
4.3. QSRR Analysis
4.4. BRT Model
4.5. Cluster Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yabrir, B. Essential oil of Marrubium vulgare: Chemical composition and biological activities. A review. Nat. Prod. Sci. 2019, 25, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Lippai, A.; Smith, P.A.; Price, T.V.; Weiss, J.; Lloyd, C.J. Effects of temperature and water potential on germination of horehound (Marrubium vulgare) seeds from two Australian Localities. Weed Sci. 1996, 44, 91–99. [Google Scholar] [CrossRef]
- Nedjimi, B.; Souissi, Z.E.; Guit, B.; Daoud, Y. Differential effects of soluble salts on seed germination of Marrubium vulgare L. J. Appl. Res. Med. Aromat. Plants 2020, 17, 100250. [Google Scholar] [CrossRef]
- Dmitruk, M.; Haratym, W. Morphological differentiation of non-glandular and glandular trichomes on Marrubium vulgare L. Mod. Phytomorphol. 2014, 6, 85. [Google Scholar]
- Aćimović, M.; Jeremić, K.; Salaj, N.; Gavarić, N.; Kiprovski, B.; Sikora, V.; Zeremski, T. Marrubium vulgare L.: A phytochemical and pharmacological overview. Molecules 2020, 25, 2898. [Google Scholar] [CrossRef]
- Lodhi, S.; Vadnere, G.P.; Sharma, V.K.; Usman, M.R. Marrubium vulgare L.: A review on phytochemical and pharmacological aspects. J. Intercult. Ethnopharmacol. 2017, 6, 429–452. [Google Scholar] [CrossRef]
- Mahmoud, A.A.; Gendy, A.S.H.; Said-Al Ahl, H.A.H.; Grulova, D.; Astatkie, T.; Abdelrazik, T.M. Impact of harvest time and water stress on the growth and essential oil components of horehound (Marrubium vulgare). Sci. Hortic. 2018, 232, 139–144. [Google Scholar] [CrossRef]
- Said-Al Ahl, H.A.H.; Gendy, A.S.H.; Mahmoud, A.A.; Mohamed, H.F.Y. Essential oil composition of Marrubium vulgare L. cultivated in Egypt. Int. J. Plant. Sci. Ecol. 2015, 1, 138–141. [Google Scholar]
- El-Leithy, A.S.; El-Hanafy, S.H.; Omer, E.A.; El-Sayed, A.A.A. Effect of nitrogen and potassium biofertilization on growth, yield and essential oil production of the white horehound, Marrubium vulgare L. plant. J. Hortic. Sci. Ornam. Plants 2013, 5, 46–59. [Google Scholar]
- Weel, K.G.C.; Venskutonis, P.R.; Pukalskas, A.; Gruzdiene, D.; Linssen, J.P.H. Antioxidant activity of horehound (Marrubium vulgare L.) grown in Lithuania. Lipid 1999, 101, 395–400. [Google Scholar] [CrossRef]
- Morteza-Semnani, K.; Saeedi, M.; Babanezhad, E. The essential oil composition of Marrubium vulgare L. from Iran. J. Essent Oil Res. 2008, 20, 488–489. [Google Scholar] [CrossRef]
- Golparvar, A.R.; Hadipanah, A.; Mehrabi, A.M.; Armin, A. Essential oil composition of Marrubium vulgare L. from Iran. Flavour Herb. Drug 2015, 6, 1–5. [Google Scholar]
- Zarai, Z.; Kadri, A.; Chobba, I.B.; Mansour, R.B.; Bekir, A.; Mejdoub, H.; Gharsallah, N. The in-vitro evaluation of antibacterial, antifungal and cytotoxic properties of Marrubium vulgare L. essential oil grown in Tunisia. Lipids Hum. Health Dis. 2011, 10, 161. [Google Scholar] [CrossRef] [Green Version]
- Kadri, A.; Zarai, Z.; Bekir, A.; Gharsallah, N.; Damak, M.; Gdoura, R. Chemical composition and antioxidant activity of Marrubium vulgare L. essential oil from Tunisia. Afr. J. Biotechnol. 2011, 10, 3908–3914. [Google Scholar]
- Abadi, A.; Hassani, A. Essential oil composition and antioxidant activity of Marrubium vulgare L. growing wild in Eastern Algeria. Int. Lett. Chem. Phys. Astron. 2013, 9, 17–24. [Google Scholar] [CrossRef]
- Bayir, B.; Gunduz, H.; Usta, T.; Sahin, E.; Ozdemir, Z.; Kayir, O.; Sen, O.; Aksit, H.; Elmastas, M.; Erenler, R. Chemical composition of essential oil from Marrubium vulgare L. leaves. J. New Results Sci. 2014, 6, 44–50. [Google Scholar]
- El-Hallous, E.I.; Alsanie, W.F.; Ismail, I.A.; Dessoky, E.S. Utilization of Marrubium vulgare extract as a therapeutic to hepatic damage induced by Carbon Tetrachloride in rats. Int J. Pharm. Res. Allied Sci. 2018, 7, 168–178. [Google Scholar]
- Yabrir, B. Chemical composition and biological activities of some Marrubium species essential oil: A review. Chem. J. Mold. 2018, 13, 8–23. [Google Scholar] [CrossRef]
- Salehi, N.; Kharazian, N.; Shiran, B. Genetic diversity of Marrubium species from Zagros Region (Iran), using inter simple sequence repeat molecular marker. J. Sci. Islamic Repub. Iran. 2018, 29, 7–19. [Google Scholar]
- Kharazian, N.; Hashemi, M. Chemotaxonomy and morphological studies in five Marrubium L. species in Iran. Iran. J. Sci. Technol. Trans. Sci. 2017, 41, 17–31. [Google Scholar] [CrossRef]
- Akgul, G.; Ketenoglu, O.; Pinar, N.M.; Kurt, L. Pollen and seed morphology of the genus Marrubium (Lamiaceae) in Turkey. Ann. Bot. Fenn. 2008, 45, 1–10. [Google Scholar] [CrossRef]
- Ahvazi, M.; Jamzad, Z.; Balali, G.R.; Saeidi, H. Trichome micro-morphology in Marrubium L. (Lamiaceae) in Iran and the role of environmental factors on their variation. Iran. J. Bot. 2016, 22, 39–58. [Google Scholar] [CrossRef]
- Ahvazi, M.; Balali, G.R.; Jamzad, Z.; Saeidi, H. A taxonomical, morphological and pharmacological review of Marrubium vulgare L., an old medicinal plant in Iran. J. Med. Plants 2018, 17, 7–24. [Google Scholar]
- Martin, E.; Cetin, O.; Akgul, G.; Hilal, A.Y. New chromosome numbers in the genus Marrubium (horehound) from Turkey. Biol. Divers. Conserv. 2011, 4, 185–188. [Google Scholar]
- Buyukkartal, H.N.; Colgecen, H.; Akgul, G. Comparative leaf, stem and root anatomies of taxa Marrubium bourgaei and Marrubium heterodon (Lamiaceae). Aust. J. Crop Sci. 2016, 10, 1516–1522. [Google Scholar] [CrossRef]
- Marzouk, R.I.; El-Darier, S.M.; Nour, I.H.; Kamal, S.A. Numerical taxonomic study of Marrubium L. (Lamiaceae) in Egypt. Catrina 2015, 13, 25–35. [Google Scholar]
- Sgarbossa, J.; Schmidt, D.; Schwerz, F.; Schwerz, L.; Prochnow, D.; Caron, B.O. Effect of season and irrigation on the chemical composition of Aloysia triphylla essential oil. Rev. Ceres 2019, 66, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Castelo, A.V.M.; Del Menezzi, C.H.S.; Resck, I.S. Seasonal variation in the yield and the chemical composition of essential oils from two Brazilian native arbustive species. J. Appl. Sci. 2012, 12, 753–760. [Google Scholar] [CrossRef]
- Yavari, A.; Nazeri, V.; Sefidkon, F.; Hassani, M.E. Influence of some environmental factors on the essential oil variability of Thymus migricus. Nat. Prod. Comm 2010, 5, 943–948. [Google Scholar] [CrossRef] [Green Version]
- Zouari-Bouassida, K.; Trigui, M.; Makni, S.; Jlaiel, L.; Tounsi, S. Seasonal variation in essential oils composition and the biological and pharmaceutical protective effects of Mentha longifolia leaves grown in Tunisia. Biomed. Res. Int. 2018, 7856517. [Google Scholar] [CrossRef] [Green Version]
- Gosztola, B.; Sarosi, S.; Nemeth, E. Variability of the essential oil content and composition of chamomile (Matricaria recutita) affected by weather conditions. Nat. Prod. Commun. 2010, 5, 465–470. [Google Scholar] [CrossRef] [Green Version]
- Acimovic, M.; Cvetkovic, M.; Stankovic, J. Effect of weather conditions, location and fertilization on coriander fruit essential oil quality. Essent Oil Bear Plants 2016, 19, 1208–1215. [Google Scholar]
- Aziz, E.E.; Badawy, E.M.; Zheljazkov, V.D.; Nicola, S.M.; Fouad, H. Yield and chemical composition of essential oil of Achillea millefolium L. as affected by harvest time. Egypt J. Chem. 2019, 62, 533–540. [Google Scholar] [CrossRef]
- Hamdaoui, B.; Wannes, W.A.; Marrakchi, M.; Brahim, N.B.; Marzouk, B. Essential oil composition of two Tunisian horehound species: Marrubium vulgare L. and Marrubium aschersonii Magnus. J. Essent Oil Bear Plants 2013, 16, 608–612. [Google Scholar] [CrossRef]
- Laouer, H.; Yabrir, B.; Djeridane, A.; Yousfi, M.; Beldovini, N.; Lamamra, M. Composition, antioxidant and antimicrobial activities of the essential oil of Marrubium deserti. Nat. Prod. Commun. 2009, 4, 1133–1138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagy, M.; Svajdlenka, E. Comparison of essential oils from Marrubium vulgare L. and M. peregrinum L. J. Essent Oil Res. 1998, 10, 585–587. [Google Scholar] [CrossRef]
- Kırımer, N.; Kurkcuoglu, M.; Akgul, G.; Baser, K.H.H.; Mahmoud, A.A. Composition of the essential oil of Marrubium anisodon C. Koch of Turkish origin. Rec Nat. Prod. 2015, 9, 234–236. [Google Scholar]
- Teimori, M.; Khavari-Nejad, R.A.; Yassa, N.; Nejadsatari, T. Analysis of the essential oil of Marrubium crassidens Bioos. and M. astracanicum Jacq. J. Appl. Sci. 2008, 8, 1793–1795. [Google Scholar] [CrossRef] [Green Version]
- Hamedeyazdan, S.; Asnaashari, S.; Fathiazad, F. Characterization of non-terpenoids in Marrubium crassidens Bioss. essential oil. Adv. Pharm. Bull. 2013, 3, 429–432. [Google Scholar]
- Golmakani, H.; Rabbani Nasab, H.; Sharifan, M.; Kamali, H.; Yadollahi, A. The essential oil composition and antibacterial activity of Marrubium dubanese Murata from North Khorassan Province, Iran. J. Essent Oil Bear Plants 2016, 19, 963–971. [Google Scholar] [CrossRef]
- Hamedeyazdan, S.; Zarei, M.; Salem, A.; Asnaashari, S.; Fathiazad, F. Essential oil of two Iranian horehound species: Marrubium propinquum and Marrubium parviflorum. Pharm. Sci. 2017, 23, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Bal, Y.; Kaban, S.; Kirimer, N.; Baser, K.H.C. Composition of the essential oil of Marrubium parviflorum Fisch. et Mey. subsp. oligodon (Boiss.) Seybold. J. Essent Oil Res. 1999, 11, 300–302. [Google Scholar] [CrossRef]
- Kaurinovic, B.; Vlaisavljevic, S.; Popovic, M.; Vastag, D.; Djurendic-Brensel, M. Antioxidant properties of Marrubium peregrinum L. (Lamiaceae) essential oil. Molecules 2010, 15, 5943–5955. [Google Scholar] [CrossRef] [Green Version]
- Lazari, D.; Skaltsa, H.; Constantinidis, T. Essential oils of Marrubium velutinum Sm. and Marrubium peregrinum L., growing wild in Greece. Flavour Fragr. J. 1999, 14, 290–292. [Google Scholar] [CrossRef]
- Hamedeyazdan, S.; Fathiazad, F.; Asnaashari, S. Chemical composition of the essential oil from Marrubium persicum C.A. Mey. (Lamiaceae). Pharm. Sci. 2013, 19, 35–38. [Google Scholar]
- Nik, B.Z.; Mirza, M. Composition of the essential oil of Marrubium astracanicum Jacq. J. Essent Oil Res. 2003, 15, 342–343. [Google Scholar] [CrossRef]
- Khanavi, M.; Ghasemian, L.; Motlagh, E.H.; Hadjikhoondi, A.; Shafiee, A. Chemical composition of the essential oils of Marrubium parviflorum Fisch. & C.A. Mey. and Marrubium vulgare L. from Iran. Flavour Fragr. J. 2005, 20, 324–326. [Google Scholar]
- Sarikurkcu, C.; Ozer, M.S.; Calli, N.; Popović-Djorđević, J. Essential oil composition and antioxidant activity of endemic Marrubium parviflorum subsp oligodon. Ind. Crops Prod. 2018, 119, 209–213. [Google Scholar] [CrossRef]
- Miloudi, K.; Hamimed, A.; Benmimoun, Y.; Bellebna, Y.; Taibi, A.; Tilmatine, A. Intensification of essential oil extraction of the Marrubium vulgare using pulsed electric field. J. Essent Oil Bear Plants 2018, 21, 811–824. [Google Scholar] [CrossRef]
- Zawislak, G. Comparison of chemical composition of the essential oil from Marrubium vulgare L. and M. incanum Desr. during the second year of cultivation. Acta Agrobot. 2015, 68, 59–62. [Google Scholar] [CrossRef]
- Petrovic, S.; Pavlovic, M.; Maksimovic, Z.; Milenkovic, M.; Couladis, M.; Tzakou, O.; Niketic, M. Composition and antimicrobial activity of Marrubium incanum Desr. (Lamiaceae) essential oil. Nat. Prod. Commun. 2009, 4, 431–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chemsa, A.E.; Zellagui, A.; Ozturk, M.; Erol, E.; Ceylan, O.; Duru, M.E.; Gherraf, N. Antibiofilm formation, antioxidant and anticholinesterase activities of essential oil and methanol extract of Marrubium deserti de Noe. J. Mater. Env. Sci. 2016, 7, 993–1000. [Google Scholar]
- Mohammadhosseini, M. First report of screening of the profiles of the essential oils and volatiles from the aerial parts of Marrubium persicum using classical and advanced methods prior to Gas Chromatographic Mass Spectrometric determination. J. Med. Plants Prod. 2016, 2, 169–180. [Google Scholar]
- Agryropoulou, C.; Skaltsa, H. Identification of essential oil components of Marrubium thessalum Boiss. & Heldr., growing wild in Greece. Nat. Prod. Res. 2012, 26, 1–7. [Google Scholar]
- Aćimović, M.; Pezo, L.; Tešević, V.; Čabarkapa, I.; Todosijević, M. QSRR Model for predicting retention indices of Satureja kitaibelii Wierzb. Ex Heuff. essential oil composition. Ind. Crops Prod. 2020, 154, 112752. [Google Scholar] [CrossRef]
- Nekoei, M.; Salimi, M.; Dolatabadi, M.; Mohammadhosseini, M. Prediction of antileukemia activity of berbamine derivatives by genetic algorithm–multiple linear regression. Mon. Chem. 2011, 142, 943. [Google Scholar] [CrossRef]
- Nekoei, M.; Mohammadhosseini, M.; Pourbasheer, E. QSAR study of VEGFR-2 inhibitors by using genetic algorithm-multiple linear regressions (GA-MLR) and genetic algorithm-support vector machine (GA-SVM): A comparative approach. Med. Chem. Res. 2015, 24, 3037–3046. [Google Scholar] [CrossRef]
- Azar, P.A.; Nekoei, M.; Riahi, S.; Ganjali, M.R.; Zare, K. A quantitative structure-retention relationship for the prediction of retention indices of the essential oils of Ammoides atlantica. J. Serb. Chem Soc. 2011, 76, 891–902. [Google Scholar] [CrossRef]
- Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors, Methods and Principles in Medicinal Chemistry; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2000. [Google Scholar]
- Bakić, V.V.; Pezo, M.L.; Jovanović, M.P.; Turanjanin, V.M.; Vučićević, B.S.; Mirkov, N.S. Technical analysis of photovoltaic/wind systems with hydrogen storage. Science 2012, 16, 865–875. [Google Scholar]
- Arsenović, M.; Pezo, L.; Stanković, S.; Radojević, Z. Factor space differentiation of brick clays according to mineral content: Prediction of final brick product quality. Appl. Clay. Sci. 2015, 115, 108–114. [Google Scholar] [CrossRef]
- Boulila, A.; Sanaa, A.; Salem, I.B.; Rokbeni, N.; Mrabet, Y.; Hosni, K.; Fernandez, X. Antioxidant properties and phenolic variation in wild populations of Marrubium vulgare L. (Lamiaceae). Ind. Crops Prod. 2015, 76, 616–622. [Google Scholar] [CrossRef]
- Mahdavi, A.; Moradi, P.; Mastinu, A. Variation in terpene profiles of Thymus vulgaris in water deficit stress response. Molecules 2020, 25, 1091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noorizadeh, H.; Farmany, A.; Noorizadeh, M. Quantitative structure-retention relationships analysis of retention index of essential oils. Química Nova 2011, 34, 242–249. [Google Scholar] [CrossRef]
- Driouche, Y.; Messadi, D. Quantitative structure-retention relationship model for predicting retention indices of constituents of essential oils of Thymus vulgaris (Lamiaceae) (Short communication). J. Serb. Chem Soc. 2019, 84, 405–416. [Google Scholar] [CrossRef] [Green Version]
- Acimovic, M.; Pezo, L.; Stankovic Jeremic, J.; Cvetkovic, M.; Rat, M.; Cabarkapa, I.; Tesevic, V. QSRR model for predicting retention indices of geraniol chemotype of Thymus serpyllum essential oil. J. Essent Oil Bear Plants 2020, 23, 464–473. [Google Scholar] [CrossRef]
- Pavlić, B.; Teslić, N.; Kojić, P.; Pezo, L. Prediction of the GC-MS retention time for terpenoids detected in sage (Salvia officinalis L.) essential oil using QSRR approach. J. Serb. Chem. Soc. 2020, 85, 9–23. [Google Scholar] [CrossRef] [Green Version]
- Noorizadeh, H. Linear and nonlinear quantitative structure linear retention indices relationship models for essential oils. Eurasian J. Anal. Chem 2013, 8, 50–63. [Google Scholar]
- Héberger, K. Quantitative structure–(chromatographic) retention relationships. J. Chromatogr A 2007, 1158, 273–305. [Google Scholar] [CrossRef] [Green Version]
- Kaliszan, R.; Ba̧czek, T.; Buciński, A.; Buszewski, B.; Sztupecka, M. Prediction of gradient retention from the linear solvent strength (LSS) model, quantitative structure-retention relationships (QSRR), and artificial neural networks (ANN). J. Sep. Sci 2003, 26, 271–282. [Google Scholar] [CrossRef]
- Khodadoust, S.; Ghaedi, M.; Hadjmohammadi, M.R. Dispersive nano solid material-ultrasound assisted microextraction as a novel method for extraction and determination of bendiocarb and promecarb: Response surface methodology. Talanta 2013, 116, 637–646. [Google Scholar] [CrossRef]
- Wolfender, J.L.; Martia, G.; Thomas, A.; Bertranda, S. Current approaches and challenges for the metabolite profiling of complex natural extracts. J. Chromatogr. A 2015, 1382, 136–164. [Google Scholar] [CrossRef] [PubMed]
- Zisi, C.; Sampsonidis, I.; Fasoula, S.; Papachristos, K.; Witting, M.; Gika, H.G.; Nikitas, P.; Pappa-Louisi, A. QSRR modeling for metabolite standards analyzed by two different chromatographic columns using multiple linear regression. Metabolites 2017, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Deconinck, E.; Zhang, M.H.; Petitet, F.; Dubus, E.; Ijjaali, I.; Coomans, D.; Vander Heydena, Y. Boosted regression trees, multivariate adaptive regression splines and their two-step combinations with multiple linear regression or partial least squares to predict blood–brain barrier passage: A case study. Anal. Chim. Acta 2008, 609, 13–23. [Google Scholar] [CrossRef]
- Yap, C.W. PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem. 2011, 32, 1446–1474. [Google Scholar] [CrossRef]
- Goldberg, D.E. Genetic Algorithms in Search, Optimisation and Machine Learning; Addison-Wesley: Boston, MA, USA, 1989. [Google Scholar]
- Gramatica, P. Principles of QSAR models validation: Internal and external. Qsar Comb. Sci 2007, 26, 694–701. [Google Scholar] [CrossRef]
- Statistica 10 Software (StatSoft, Inc. STATISTICA, ver. 10, Data Analysis Software System). Available online: https://www.statsoft.de/en/software/tibco-statisticatm (accessed on 15 December 2018).
- Foroughia, M.; Hossein, M.; Azqhandic, A.; Kakhki, S. Bio-inspired, high, and fast adsorption of tetracycline from aqueous media using Fe3O4-g-CN@PEI-β-CD nanocomposite: Modeling by response surface methodology (RSM), boosted regression tree (BRT), and general regression neural network (GRNN). J. Hazard. Mater. 2020, 388, 121769. [Google Scholar] [CrossRef]
- Cheong, Y.L.; Leitão, P.J.; Lakes, T. Assessment of land use factors associated with dengue cases in Malaysia using Boosted Regression Trees. Spat. Spatiotemporal Epidemiol. 2014, 10, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Froeschke, J.T.; Froeschke, B.F. Spatio-temporal predictive model based on environmental factors for juvenile spotted seatrout in Texas estuaries using boosted regression trees. Fish. Res. 2011, 111, 131–138. [Google Scholar] [CrossRef]
- Sut, N.; Simsek, O. Comparison of regression tree data mining methods for prediction of mortality in head injury. Expert Syst. Appl. 2011, 38, 15534–15539. [Google Scholar] [CrossRef]
- Mazaheri, H.; Ghaedi, M.; Azqhandi, M.A.; Asfaram, A. Application of machine/ statistical learning, artificial intelligence and statistical experimental design for the modeling and optimization of methylene blue and Cd (II) removal from a binary aqueous solution by natural walnut carbon. Phys. Chem. Chem. Phys. 2017, 19, 11299–11317. [Google Scholar] [CrossRef]
- Salonen, J.S.; Luoto, M.; Alenius, T.; Heikkilä, M.; Seppä, H.; Telford, R.J.; Birks, H.J. Reconstructing palaeoclimatic variables from fossil pollen using boosted regression trees: Comparison and synthesis with other quantitative reconstruction methods. Quat Sci. Rev. 2014, 88, 69–81. [Google Scholar] [CrossRef]
No | Compound/Class | Cycle | RIpred. | 2019 | 2020 | Reference | ||
---|---|---|---|---|---|---|---|---|
RIa | % | RIa | % | |||||
1 | 2E-Hexenal O | Train | 892.915 | - | - | 847 | 0.2 | M. aschersonii [34], M. deserti [35], M. peregrinum [36], M. vulgare [10,12,15,16,34] |
2 | Furan, 2,5-diethyltetrahydro O | Validation | 853.684 | - | - | 897 | 0.1 | |
3 | 1-Octen-3-ol O | Validation | 965.818 | 976 | 0.2 | 974 | 0.6 | M. anisodon [37], M. astracanicum [38], M. crassidens [39], M. deserti [35], M. duabense [40], M. parviflorum [41,42], M. peregrinum [43,44], M. persicum [45], M. propinquum [41], M. velutinum [44], M. vulgare [7,8,10,15] |
4 | 2-Pentyl furan O | Train | 1059.803 | - | - | 989 | 0.1 | |
5 | 3-Octanol O | Test | 962.233 | - | - | 992 | 0.1 | M. anisodon [37], M. astracanicum [46], M. duabense [40], M. peregrinum [36,44], M. velutinum [44] |
6 | Linalool OMN | Train | 1106.041 | 1102 | 0.1 | 1098 | 0.1 | M. aschersonii [34], M. astracanicum [46], M. parviflorum [41,42,47,48], M. peregrinum [36,43,44], M. persicum [45], M. velutinum [44], M. vulgare [8,10,12,17,34,36,47,49] |
7 | n-Nonanal O | Train | 1078.484 | - | - | 1102 | 0.1 | M. aschersonii [34], M. deserti [35], M. duabense [40], M. peregrinum [43,44], M. persicum [45], M. velutinum [44], M. vulgare [34] |
8 | E-Thujone OMN | Train | 1118.307 | - | - | 1114 | 0.1 | M. peregrinum [43], M. vulgare [8,15] |
9 | NI-1 | - | - | - | - | 1132 | 0.1 | - |
10 | Geijerene O | Train | 1192.301 | 1143 | 0.1 | 1139 | 0.6 | M. incanum [50,51], M. parviflorum [42,47], M. peregrinum [43], M. vulgare [50] |
11 | 2E-Nonen-1-al O | Validation | 1097.602 | - | - | 1156 | 0.1 | |
12 | β-Cyclocitral O | Train | 1216.889 | - | - | 1219 | 0.1 | M. peregrinum [44], M. velutinum [44], M. vulgare [10] |
13 | Cogeijerene O | Train | 1203.235 | - | - | 1283 | 0.1 | |
14 | Pregeijerene O | Train | 1149.857 | 1290 | 0.1 | 1287 | 0.2 | M. astracanicum [38], M. crassidens [38], M. parviflorum [42,47], M. peregrinum [43] |
15 | Thymol AR | Test | 1209.017 | 1292 | 0.3 | - | - | M. deserti [52], M. vulgare [7,8,10,15,50] |
16 | 2-Undecanone O | Train | 1269.228 | 1295 | 0.1 | 1292 | Trace | M. vulgare [15] |
17 | Carvacrol AR | Validation | 1179.072 | 1302 | 0.1 | - | - | M. duabense [40], M. incanum [50], M. parviflorum [42], M. peregrinum [43], M. vulgare [7,8,10,49,50] |
18 | δ-Elemene ST | Test | 1512.436 | - | - | 1336 | 0.1 | M. anisodon [37], M. astracanicum [38], M. crassidens [38], M. deserti [35,40], M. duabense [40], M. incanum [50,51], M. parviflorum [47], M. peregrinum [44], M. persicum [53], M. thessalum [54], M. velutinum [44], M. vulgare [47,50] |
19 | α-Cubebene ST | Train | 1491.202 | - | - | 1348 | 0.1 | M. astracanicum [38], M. crassidens [39], M. deserti [35,40], M. duabense [40], M. parviflorum [47], M. peregrinum [44], M. persicum [45], M. vulgare [8,47] |
20 | Eugenol AR | Train | 1372.624 | - | - | 1357 | 0.4 | M. aschersonii [34], M. peregrinum [36,43,44], M. persicum [53], M. velutinum [44], M. vulgare [10,12,34,36,47] |
21 | α-Copaene ST | Train | 1475.878 | 1377 | 3.3 | 1377 | 6.1 | M. anisodon [37], M. aschersonii [34], M. astracanicum [38], M. crassidens [38], M. deserti [35], M. duabense [40], M. incanum [50,51], M. parviflorum [42,47,48], M. peregrinum [36,43,44], M. persicum [53], M. thessalum [54], M. velutinum [44], M. vulgare [8,9,10,11,12,13,36,47,50] |
22 | β-Bourbonene ST | Train | 1487.976 | 1385 | 0.8 | 1384 | 1.2 | M. anisodon [37], M. astracanicum [38], M. crassidens [38], M. deserti [35,52], M. incanum [50,51], M. parviflorum [41,42,47,48], M. peregrinum [43,44], M. persicum [45,53], M. thessalum [54], M. velutinum [44], M. vulgare [9,10,13,50] |
23 | NI-2 | - | - | - | - | 1388 | 0.1 | - |
24 | β-Cubebene ST | Test | 1475.610 | 1390 | 0.1 | 1389 | 0.2 | M. aschersonii [34], M. deserti [35], M. peregrinum [43,44], M. parviflorum [42], M. velutinum [44], M. vulgare [12,13,34,47] |
25 | β-Elemene ST | Train | 1475.506 | 1392 | 0.4 | 1391 | 1.0 | M. anisodon [37], M. astracanicum [38], M. crassidens [38], M. deserti [35,52], M. duabense [40], M. incanum [50,51], M. parviflorum [42,47], M. peregrinum [44], M. persicum [53], M. thessalum [54], M. velutinum [44], M. vulgare [47,50] |
26 | Z-Caryophyllene ST | Train | 1463.161 | 1407 | 0.1 | 1406 | 0.2 | |
27 | α-Z-Bergamotene ST | Train | 1428.215 | 1416 | 0.2 | - | - | |
28 | E-Caryophyllene ST | Validation | 1463.161 | 1422 | 24.6 | 1423 | 23.0 | M. anisodon [37], M. aschersonii [34], M. astracanicum [38,46], M. crassidens [38,39], M. deserti [35,52], M. duabense [40], M. incanum [50,51], M. parviflorum [41,42,47,48], M. peregrinum [36,43,44], M. persicum [45,53], M. propinquum [41], M. thessalum [54], M. velutinum [44], M. vulgare [7,8,9,10,11,12,13,16,17,34,36,47,49,50] |
29 | β-Copaene ST | Test | 1459.623 | 1430 | 0.4 | 1430 | 1.3 | M. incanum [50], M. vulgare [50] |
30 | α-E-Bergamotene ST | Train | 1428.215 | 1436 | 0.1 | 1435 | 0.1 | M. anisodon [37], M. astracanicum [46], M. crassidens [38], M. parviflorum [42,47], M. peregrinum [44], M. velutinum [44], M. vulgare [47] |
31 | NI-3 | - | - | 1445 | 0.2 | 1444 | 0.6 | - |
32 | α-Humulene ST | Validation | 1503.999 | 1454 | 5.2 | 1455 | 5.3 | M. anisodon [37], M. aschersonii [34], M. astracanicum [38,46], M. crassidens [38,39], M. duabense [40], M. incanum [50,51], M. parviflorum [42,47], M. peregrinum [36,43], M. persicum [45], M. thessalum [54], M. velutinum [44], M. vulgare [8,9,10,12,13,15,34,36,47,50] |
33 | Sesquisabinene ST | Train | 1442.740 | - | - | 1457 | 0.9 | |
34 | E-β-Farnesene ST | Test | 1431.419 | 1457 | 1.3 | - | - | M. anisodon [37], M. aschersonii [34], M. crassidens [39], M. parviflorum [41,42,47], M. peregrinum [43,44], M. persicum [45], M. propinquum [41], M. thessalum [54], M. velutinum [44], M. vulgare [8,10,12,16,17,34,36,47] |
35 | C16H34 A | Train | 1573.436 | 1462 | 1.5 | 1462 | 0.2 | |
36 | NI-4 | - | - | - | Trace | - | 0.2 | - |
37 | Z-Muurola-4(14),5-diene ST | Train | 1482.433 | - | - | 1466 | 0.1 | |
38 | NI-5 | - | - | 1469 | 0.1 | - | - | - |
39 | NI-6 | - | - | 1472 | 0.1 | - | - | - |
40 | E-Cadina-1(6),4-diene ST | Train | 1481.465 | - | - | 1475 | Trace | M. vulgare [15] |
41 | γ-Muurolene ST | Test | 1450.203 | 1479 | 0.1 | - | - | M. incanum [50], M. peregrinum [43,44], M. parviflorum [42], M. velutinum [44] |
42 | Germacrene D ST | Test | 1450.188 | 1483 | 9.6 | 1487 | 17.0 | M. anisodon [37], M. aschersonii [34], M. astracanicum [38], M. crassidens [38,39], M. deserti [35,52], M. incanum [50,51], M. parviflorum [41,42,47,48], M. peregrinum [36,43,44], M. persicum [45,53], M. propinquum [41], M. thessalum [54], M. velutinum [44], M. vulgare [9,10,11,12,13,15,16,17,34,36,47,50] |
43 | E-β-Ionone O | Test | 1471.735 | 1486 | 0.4 | 1489 | Trace | M. anisodon [37], M. aschersonii [34], M. duabense [40], M. incanum [51], M. parviflorum [42], M. peregrinum [43,44], M. thessalum [54], M. vulgare [12] |
44 | NI-7 | - | - | - | - | 1489 | 0.1 | - |
45 | epi-Cubebol OST | Train | 1622.285 | - | - | 1495 | 0.2 | |
46 | Viridiflorene ST | Validation | 1507.447 | 1497 | 0.1 | - | - | |
47 | Bicyclogermacrene ST | Validation | 1493.697 | 1498 | 0.2 | 1498 | 0.2 | M. astracanicum [38], M. crassidens [38,39], M. deserti [35,52], M. duabense [40], M. incanum [50,51], M. parviflorum [41,42,47,48], M. peregrinum [36,43,44], M. persicum [45], M. propinquum [41], M. thessalum [54], M. velutinum [44], M. vulgare [10,11,17,50] |
48 | NI-8 | - | - | - | - | 1499 | 0.7 | - |
49 | Pentadecane A | Test | 1486.884 | 1500 | 0.2 | 1500 | Trace | |
50 | α-Muurolene ST | Train | 1465.650 | 1501 | 0.1 | 1501 | 0.2 | M. aschersonii [34], M. deserti [35,52], M. incanum [51], M. peregrinum [43], M. velutinum [44], M. vulgare [12,13,34] |
51 | Germacrene A ST | Train | 1450.188 | 1508 | 0.1 | 1506 | 0.1 | M. incanum [50], M. parviflorum [47,48] |
52 | β-Bisabolene ST | Validation | 1425.139 | 1511 | 0.2 | 1507 | 0.2 | M. anisodon [37], M. aschersonii [34], M. crassidens [38], M. parviflorum [47], M. peregrinum [44], M. persicum [45], M. propinquum [41], M. thessalum [54], M. velutinum [44], M. vulgare [11,12,13,17,34,47,49] |
53 | γ-Cadinene ST | Test | 1450.203 | 1513 | 0.2 | 1515 | 0.4 | M. deserti [52], M. incanum [50], M. parviflorum [47,48], M. peregrinum [43,44], M. persicum [53], M. velutinum [44], M. vulgare [7,10,15,47] |
54 | δ-Cadinene ST | Test | 1475.070 | 1523 | 4.7 | 1528 | 9.7 | M. deserti [52], M. incanum [50], M. parviflorum [42,47], M. peregrinum [43,44], M. persicum [53], M. velutinum [44], M. vulgare [7,10,15,47] |
55 | E-Cadina-1,4-diene ST | Train | 1471.521 | 1533 | 0.1 | 1533 | 0.1 | M. vulgare [15] |
56 | α-Cadinene ST | Train | 1465.650 | - | - | 1537 | 0.1 | M. peregrinum [43,44], M. velutinum [44], M. vulgare [47] |
57 | α-Calacorene ST | Train | 1540.123 | - | - | 1543 | 0.1 | M. deserti [52], M. vulgare [12,15] |
58 | NI-9 | - | - | 1555 | 0.2 | 1552 | 0.2 | - |
59 | E-Nerolidol OST | Validation | 1567.136 | 1561 | 3.5 | 1564 | 1.5 | M. anisodon [37], M. deserti [52], M. parviflorum [42], M. peregrinum [43,44], M. thessalum [54], M. velutinum [44], M. vulgare [9,36] |
60 | NI-10 | - | - | - | - | 1571 | 0.1 | - |
61 | NI-11 | - | - | 1577 | 0.2 | 1575 | 0.9 | - |
62 | NI-12 | - | - | - | - | 1582 | 0.3 | - |
63 | Caryophyllene oxide OST | Test | 1636.612 | 1580 | 1.0 | 1583 | 1.8 | M. anisodon [37], M. astracanicum [46], M. crassidens [38,39], M. deserti [52], M. duabense [40], M. incanum [50,51], M. parviflorum [41,42,47,48], M. peregrinum [36,43], M. persicum [45,53], M. propinquum [41], M. thessalum [54], M. velutinum [44], M. vulgare [8,9,10,12,36,47,50] |
64 | NI-13 | - | - | - | - | 1587 | 0.1 | - |
65 | Viridiflorol OST | Validation | 1573.436 | 1597 | 0.1 | - | - | M. aschersonii [34], M. astracanicum [38], M. crassidens [38], M. incanum [51], M. parviflorum [47], M. peregrinum [43], M. vulgare [10,12,34,47] |
66 | Hexadecane A | Train | 1594.576 | 1602 | 0.1 | - | - | M. duabense [40], M. velutinum [44] |
67 | Humulene epoxide II OST | Train | 1626.959 | 1607 | 0.2 | 1607 | 0.2 | M. anisodon [37], M. incanum [51], M. thessalum [54], M. vulgare [10] |
68 | Muurola-4,10(14)-dien-1-β-ol OST | Train | 1605.330 | - | - | 1627 | 0.3 | |
69 | NI-14 | - | - | 1628 | 0.1 | - | - | - |
70 | 4,4-dimethyl-Tetracyclo [6.3.2.0(2,5).0(1,8)]tridecan-9-ol O | Validation | 1605.030 | - | - | 1631 | 0.2 | |
71 | NI-15 | - | - | 1632 | 0.1 | - | - | - |
72 | Caryophylla-4(12),8(13)-dien-5-α-ol OST | Train | 1605.030 | 1636 | 0.1 | 1635 | 0.3 | |
73 | epi-α-Muurolol (=tau-muurolol) OST | Test | 1605.030 | 1642 | 0.2 | 1641 | 0.6 | M. astracanicum [38], M. deserti [35], M. incanum [51], M. parviflorum [42], M. peregrinum [44], M. velutinum [44] |
74 | α-Muurolol (=Torreyol) OST | Train | 1652.148 | - | - | 1645 | 0.1 | |
75 | α-Cadinol OST | Train | 1682.934 | 1654 | 0.3 | 1654 | 0.9 | M. crassidens [38], M. deserti [35,52], M. incanum [50,51], M. parviflorum [42], M. persicum [45], M. vulgare [12,50] |
76 | NI-16 | - | - | 1658 | 0.2 | 1656 | 0.2 | - |
77 | NI-17 | - | - | 1662 | 0.1 | 1662 | 0.1 | - |
78 | E-Calamenen-10-ol OST | Train | 1608.844 | - | - | 1669 | 0.1 | |
79 | NI-18 | - | - | 1668 | 0.2 | - | - | - |
80 | NI-19 | - | - | - | - | 1670 | 0.2 | - |
81 | 8-Heptadecene O | Train | 1607.164 | - | - | 1673 | 0.2 | |
82 | 1-Tetradecanol O | Train | 1702.771 | 1675 | 0.1 | - | - | |
83 | Germacra-4(15),5,10(14)-trien-1-α-ol OST | Train | 1700.003 | 1682 | 0.1 | 1685 | 0.2 | |
84 | Heptadecane A | Validation | 1726.886 | 1696 | 0.3 | 1696 | 0.2 | M. anisodon [37], M. parviflorum [42,47], M. vulgare [10,47] |
85 | Pentadecanal O | Validation | 1581.928 | 1710 | 0.1 | 1711 | 0.1 | M. anisodon [37] |
86 | Mint sulfide ST | Train | 1778.777 | 1733 | 0.1 | 1736 | 0.1 | |
87 | NI-20 | - | - | 1734 | 0.1 | - | - | - |
88 | NI-21 | - | - | 1742 | 0.1 | - | - | - |
89 | NI-22 | - | - | 1743 | 0.4 | 1744 | 0.1 | - |
90 | E-3-Octadecene O | Train | 1722.391 | - | - | 1777 | 0.1 | |
91 | n-Pentadecanol O | Train | 1787.022 | 1778 | 0.1 | - | - | M. parviflorum [42] |
92 | NI-23 | - | - | - | - | 1782 | 0.1 | - |
93 | Octadecane A | Validation | 1950.093 | 1796 | 0.1 | - | - | M. parviflorum [47], M. peregrinum [43], M. vulgare [47] |
94 | NI-24 | - | - | 1819 | 0.1 | - | - | - |
95 | 6,10,14-trimethyl-2-Pentadecanone O | Train | 1915.818 | 1844 | 4.8 | 1842 | 0.5 | M. peregrinum [44], M. velutinum [44], M. vulgare [10] |
96 | NI-25 | - | - | 1849 | 0.1 | - | - | - |
97 | NI-26 | - | - | 1853 | 0.2 | - | - | - |
98 | NI-27 | - | - | 1888 | 0.1 | - | - | - |
99 | NI-28 | - | - | 1891 | 0.8 | 1891 | 0.1 | - |
100 | Nonadecane A | Test | 1869.346 | 1897 | 0.2 | 1897 | 0.2 | M. duabense [40], M. parviflorum [47], M. peregrinum [43], M. vulgare [10,15,47] |
101 | NI-29 | - | - | 1904 | 0.1 | 1906 | Trace | - |
102 | 5E,9E-Farnesyl acetone OST | Train | 1956.289 | 1916 | 0.3 | 1915 | Trace | M. thessalum [54], M. vulgare [15] |
103 | NI-30 | - | - | 1918 | Trace | 1917 | Trace | - |
104 | NI-31 | - | - | 1924 | 0.1 | - | - | - |
105 | NI-32 | - | - | - | - | 1926 | Trace | - |
106 | NI-33 | - | - | 1925 | 0.1 | - | - | - |
107 | NI-34 | - | - | 1929 | 0.1 | - | - | - |
108 | NI | 1938 | 0.1 | 1940 | Trace | |||
109 | Hexadecanoic acid O | Validation | 1995.491 | 1960 | 3.9 | - | - | M. parviflorum [42], M. peregrinum [36], M. vulgare [36,47] |
110 | NI-35 | - | - | 1973 | 0.1 | 1974 | Trace | - |
111 | Eicosane A | Train | 2034.560 | 1997 | 0.2 | 1994 | 0.1 | M. parviflorum [48] |
112 | NI-36 | - | - | 2001 | 0.1 | - | - | - |
113 | E,E-Geranyl linalool OD | Train | 2028.645 | 2027 | 1.6 | - | - | M. aschersonii [34], M. parviflorum [42], M. vulgare [12,34] |
114 | 3,7,11,15-tetramethyl-(E,E)-1,6,10,14-Hexadecatetraen-3-ol OD | - | - | 2028 | 0.9 | |||
115 | Manool OD | Train | 2064.196 | 2057 | 0.3 | - | - | |
116 | NI-37 | - | - | 2061 | 0.1 | - | - | - |
117 | NI-38 | - | - | 2067 | 0.1 | - | - | - |
118 | NI-39 | - | - | 2084 | 0.1 | - | - | - |
119 | NI-40 | - | - | 2096 | 0.1 | - | - | - |
120 | Heneicosane A | Train | 2120.284 | 2101 | 1.6 | 2100 | 1.3 | M. parviflorum [42,47], M. peregrinum [43], M. propinquum [41], M. vulgare [10] |
121 | NI-41 | - | - | 2108 | 0.3 | 2105 | 0.2 | - |
122 | NI-42 | - | - | 2112 | 0.2 | 2110 | 0.3 | - |
123 | Phytol OD | Test | 2124.818 | 2116 | 1.4 | 2113 | 0.4 | M. anisodon [37], M. incanum [51], M. parviflorum [41,42], M. peregrinum [36], M. propinquum [41], M. vulgare [10,15] |
124 | NI-43 | - | - | 2131 | 0.2 | - | - | - |
125 | NI-44 | - | - | 2143 | 0.2 | 2143 | 0.1 | - |
126 | NI-45 | - | - | 2147 | 0.2 | - | - | - |
127 | NI-46 | - | - | 2164 | 0.2 | 2160 | 0.2 | - |
128 | NI-47 | - | - | 2167 | 0.1 | 2172 | 0.3 | - |
129 | NI-48 | - | - | 2175 | 0.6 | 2176 | 0.4 | - |
130 | NI-49 | - | - | 2181 | 0.9 | 2179 | 0.2 | - |
131 | NI-50 | - | - | 2183 | 0.4 | - | - | - |
132 | NI-51 | - | - | 2198 | 2.4 | 2195 | 2.4 | - |
133 | Docosane A | Validation | 2194.421 | 2205 | 0.9 | 2198 | 0.6 | M. crassidens [39], M. parviflorum [47] |
134 | NI-52 | - | - | - | - | 2201 | 0.1 | - |
135 | NI-53 | - | - | - | - | 2209 | 0.3 | - |
136 | NI-54 | - | - | 2215 | 0.3 | - | - | - |
137 | NI-55 | - | - | 2225 | 0.3 | 2221 | 0.1 | - |
138 | NI-56 | - | - | 2246 | 0.3 | - | - | - |
139 | NI-57 | - | - | 2258 | 0.2 | 2253 | 0.3 | - |
140 | NI-58 | - | - | 2270 | 0.1 | 2265 | 0.1 | - |
141 | NI-59 | - | - | 2277 | 0.2 | 2274 | 0.2 | - |
142 | NI-60 | - | - | 2293 | 3.8 | 2288 | 1.7 | - |
143 | Tricontane A | Train | 2381.642 | 2305 | 3.6 | 2302 | 2.6 | |
144 | NI-61 | - | - | 2309 | 0.2 | 2305 | 0.2 | - |
145 | NI-62 | - | - | 2344 | 0.2 | 2341 | 0.3 | - |
146 | NI-63 | - | - | 2380 | 0.1 | 2377 | 0.1 | - |
147 | NI-64 | - | - | 2383 | 0.1 | 2382 | 0.1 | - |
148 | Tetracosane A | Train | 2493.491 | 2401 | 0.3 | 2395 | 0.2 | M. deserti [52], M. parviflorum [41,42,47], M. propinquum [41] |
149 | NI-65 | - | - | 2454 | 0.4 | 2447 | 0.2 | - |
150 | NI-66 | - | - | 2488 | 0.2 | 2483 | 0.2 | - |
151 | Pentacosane A | Test | 2510.087 | 2503 | 0.8 | 2497 | 0.6 | M. anisodon [37], M. parviflorum [42,47] |
152 | Heptacosane A | Train | 2730.537 | 2702 | 0.6 | 2696 | 0.5 | M. anisodon [37], M. aschersonii [34], M. incanum [51], M. parviflorum [42], M. vulgare [34] |
153 | NI-67 | - | - | - | - | 2766 | 0.1 | - |
154 | Octacosane A | 2801 | 0.1 | 2791 | Trace | M. crassidens [39], M. parviflorum [42], M. persicum [45] | ||
155 | Squalene T | Train | 2870.673 | 2835 | 0.1 | 2823 | 0.1 | |
156 | NI-68 | - | - | 2868 | 0.1 | 2855 | 0.1 | - |
157 | Nonacosane A | Test | 2930.732 | 2905 | 0.7 | 2892 | 0.6 | M. anisodon [37], M. crassidens [39], M. persicum [45] |
158 | Untriacontane A | Validation | 3150.673 | 3105 | 0.4 | 3095 | 0.3 | |
159 | NI-69 | - | - | - | - | 3212 | 0.1 | - |
160 | Tritriacontane A | Train | 3319.753 | 3300 | 0.1 | 3301 | Trace | |
Oxygenated monoterpenes OMN | 0.1 | 0.2 | ||||||
Sesquiterpene hydrocarbons ST | 52.0 | 67.8 | ||||||
Oxygenated sesquiterpenes OST | 5.8 | 6.2 | ||||||
Oxygenated diterpenes OD | 3.3 | 1.3 | ||||||
Triterpene T | 0.1 | 0.1 | ||||||
Aromatics AR | 0.4 | 0.4 | ||||||
Alkanes A | 11.7 | 7.4 | ||||||
Other O | 9.9 | 3.4 | ||||||
NI | 16.7 | 12.5 | ||||||
Total | 100 | 99.3 |
AATSC2p | MATS5v | GATS6v | SM1_Dzv | VR1_Dzs | VAdjMat | |
---|---|---|---|---|---|---|
AATSC4e | 0.031 | −0.138 | −0.135 | 0.030 | 0.205 | 0.224 |
AATSC2p | −0.265 | −0.131 | 0.036 | −0.231 | −0.010 | |
MATS5v | 0.212 | −0.008 | 0.066 | 0.109 | ||
GATS6v | 0.072 | 0.131 | 0.214 | |||
SM1 Dzv | 0.058 | 0.084 | ||||
VR1 Dzs | 2.339 |
Boosted Tree Model | χ2 | RMSE | MBE | MPE | r2 |
---|---|---|---|---|---|
2019 | 4455.272 | 66.160 | −13.063 | 3.285 | 0.956 |
2020 | 3975.751 | 62.581 | −7.698 | 3.241 | 0.964 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aćimović, M.; Ivanović, S.; Simić, K.; Pezo, L.; Zeremski, T.; Ovuka, J.; Sikora, V. Chemical Characterization of Marrubium vulgare Volatiles from Serbia. Plants 2021, 10, 600. https://doi.org/10.3390/plants10030600
Aćimović M, Ivanović S, Simić K, Pezo L, Zeremski T, Ovuka J, Sikora V. Chemical Characterization of Marrubium vulgare Volatiles from Serbia. Plants. 2021; 10(3):600. https://doi.org/10.3390/plants10030600
Chicago/Turabian StyleAćimović, Milica, Stefan Ivanović, Katarina Simić, Lato Pezo, Tijana Zeremski, Jelena Ovuka, and Vladimir Sikora. 2021. "Chemical Characterization of Marrubium vulgare Volatiles from Serbia" Plants 10, no. 3: 600. https://doi.org/10.3390/plants10030600
APA StyleAćimović, M., Ivanović, S., Simić, K., Pezo, L., Zeremski, T., Ovuka, J., & Sikora, V. (2021). Chemical Characterization of Marrubium vulgare Volatiles from Serbia. Plants, 10(3), 600. https://doi.org/10.3390/plants10030600