Immunomodulatory and Anticancer Activities of Hyacinthus orientalis L.: An In Vitro and In Vivo Study
Abstract
:1. Introduction
2. Results
2.1. Moisture Content and Percentage Yields of H. orientalis Hydroalcoholic Extract and Fractions
2.2. Antiproliferative Activity of H. orientalis L. Extracts
2.3. Apoptotic Activity of H. orientalis L. Extract and Fractions against T47D Cell Line
2.4. Effect of H. orientalis L. Extract and Fraction on Lymphocytes Proliferation in the Presence and Absence of Mitogens
2.5. Effect of H. orientalis L. Extract and Fractions on Phagocytic Activity of Mouse Peritoneal Macrophages
2.6. Effect of H. orientalis L. Extract and Fractions on Pinocytic Activity of Mouse Peritoneal Macrophages
2.7. Effect of H. orientalis L. Extract and Fractions on Cytokines Level
2.8. Total Phenolic Content of H. orientalis L. Polar Extract and Fractions
2.9. LC–MS Analysis of H. orientalis L. Extract and Fractions
2.10. Peganine and Sabinene Are the Main Components of H. orientalis L. Hydroalcoholic Extract
2.11. Toxicity Evaluation of H. orientalis L. Hydroalcoholic Extract
2.12. Antitumor Effects of H. orientalis L. Hydroalcoholic Extract on EMT6/P Cells Implanted in Mice
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Cell lines and Cell Culturing Conditions
4.3. Plant Collection, Moisture Content, and Extracts Preparation
4.4. Antiproliferative Assay
4.5. Apoptosis Detection in T47D Cells
4.6. Preparation of Murine Splenocytes
4.7. Lymphocytes Proliferation Assay
4.8. Macrophage Isolation from Peritoneal Fluid
4.9. In Vitro Phagocytic Assay (Nitro Blue Tetrazolium (NBT) Reduction Test)
4.10. Determination of Pinocytic Activity Using Neutral Red Method
4.11. Effect of H. orientalis L. Extracts on Cytokines Levels in Activated Lymphocytes
4.12. Detection of Total Phenolic Content (TPC) Using Folin–Ciocalteu Method
4.13. LC–MS Measurements of H. orientalis L. Extracts
4.14. GC–MS Analysis of H. orientalis L. Hydroalcoholic Extract
4.15. Acute Toxicity of H. orientalis L. Hydroalcoholic Extract
4.16. Antitumor Activity on Experimental Animals
4.17. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: An overview. Cancers 2014, 6, 1769–1792. [Google Scholar] [CrossRef]
- Kuruppu, A.I.; Paranagama, P.; Goonasekara, C.L. Medicinal plants commonly used against cancer in traditional medicine formulae in Sri Lanka. Saudi Pharm. J. SPJ Off. Publ. Saudi Pharm. Soc. 2019, 27, 565–573. [Google Scholar] [CrossRef]
- Graham, J.G.; Quinn, M.L.; Fabricant, D.S.; Farnsworth, N.R. Plants used against cancer—An extension of the work of Jonathan Hartwell. J. Ethnopharmacol. 2000, 73, 347–377. [Google Scholar] [CrossRef]
- Khan, T.; Ali, M.; Khan, A.; Nisar, P.; Jan, S.A.; Afridi, S.; Shinwari, Z.K. Anticancer Plants: A Review of the Active Phytochemicals, Applications in Animal Models, and Regulatory Aspects. Biomolecules 2019, 10, 47. [Google Scholar] [CrossRef]
- Rayan, A.; Raiyn, J.; Falah, M. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity. PLoS ONE 2017, 12, e0187925. [Google Scholar] [CrossRef]
- Leng, J.C.; Gany, F. Traditional Chinese medicine use among Chinese immigrant cancer patients. J. Cancer Educ. 2014, 29, 56–61. [Google Scholar] [CrossRef]
- Damery, S.; Gratus, C.; Grieve, R.; Warmington, S.; Jones, J.; Routledge, P.; Greenfield, S.; Dowswell, G.; Sherriff, J.; Wilson, S. The use of herbal medicines by people with cancer: A cross-sectional survey. Br. J. Cancer 2011, 104, 927–933. [Google Scholar] [CrossRef]
- Christopher, B. The Royal Horticultural Society AZ Encyclopedia of Garden Plants; Dorling Kindersley: London, UK, 1996; pp. 884–885. [Google Scholar]
- Hu, F.; Liu, H.; Wang, F.; Bao, R.; Liu, G. Root tip chromosome karyotype analysis of hyacinth cultivars. Genet. Mol. Res. 2015, 14, 10863–10876. [Google Scholar] [CrossRef]
- Altundag, E.; Ozturk, M. Ethnomedicinal studies on the plant resources of east Anatolia, Turkey. Procedia-Soc. Behav. Sci. 2011, 19, 756–777. [Google Scholar] [CrossRef]
- Ghafari, S.; Tavakoli, Z.; Shirooyeh, P.; Meybodi, R.N.; Behmanesh, E.; Mokaberinejad, R.; Tansaz, M.; Fahimi, S. The herbal medicine proposed by Iranian Traditional Medicine (Persian Medicine) for treatment of primary Dysmenorrhea: A Review. Tradit. Integr. Med. 2018, 3, 30–42. [Google Scholar]
- Hosokawa, K.; Fukunaga, Y.; Fukushi, E.; Kawabata, J. Acylated anthocyanins from red Hyacinthus orientalis. Phytochemistry 1995, 39, 1437–1441. [Google Scholar] [CrossRef]
- Karaman, S.; Kocabas, Y.Z. Traditional medicinal plants of K. Maras (Turkey). Science 2001, 1, 125–128. [Google Scholar]
- Hosokawa, K.; Fukunaga, Y.; Fukushi, E.; Kawabata, J. Acylated anthocyanins in red flowers of Hyacinthus orientalis regenerated in vitro. Phytochemistry 1996, 42, 671–672. [Google Scholar] [CrossRef]
- Lin, B.W.; Gong, C.C.; Song, H.F.; Cui, Y.Y. Effects of anthocyanins on the prevention and treatment of cancer. Br. J. Pharmacol. 2017, 174, 1226–1243. [Google Scholar] [CrossRef]
- Yin, Z.; Zhang, W.; Feng, F.; Zhang, Y.; Kang, W. α-Glucosidase inhibitors isolated from medicinal plants. Food Sci. Hum. Wellness 2014, 3, 136–174. [Google Scholar] [CrossRef]
- Kayıran, S.D.; Özkan, E.E. The Ethnobotanical Uses of Hyacinthaceae Species Growing in Turkey and a Review of Pharmacological Activities. 2017. Available online: http://nopr.niscair.res.in/handle/123456789/40121 (accessed on 15 August 2020).
- Talib, W.H.; Al Kury, L.T. Parthenolide inhibits tumor-promoting effects of nicotine in lung cancer by inducing P53-dependent apoptosis and inhibiting VEGF expression. Biomed. Pharmacother. 2018, 107, 1488–1495. [Google Scholar] [CrossRef]
- Musumeci, G.; Loreto, C.; Carnazza, M.L.; Martinez, G. Characterization of apoptosis in articular cartilage derived from the knee joints of patients with osteoarthritis. Knee Surg. Sports Traumatol. Arthrosc. 2011, 19, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; El-Deiry, W.S. Overview of cell death signaling pathways. Cancer Biol. Ther. 2005, 4, 147–171. [Google Scholar] [CrossRef]
- Talib, W.H. Regressions of breast carcinoma syngraft following treatment with piperine in combination with thymoquinone. Sci. Pharm. 2017, 85, 27. [Google Scholar] [CrossRef]
- Misra, P.; Khaliq, T.; Dixit, A.; SenGupta, S.; Samant, M.; Kumari, S.; Kumar, A.; Kushawaha, P.K.; Majumder, H.K.; Saxena, A.K. Antileishmanial activity mediated by apoptosis and structure-based target study of peganine hydrochloride dihydrate: An approach for rational drug design. J. Antimicrob. Chemother. 2008, 62, 998–1002. [Google Scholar] [CrossRef]
- Jia, S.-S.; Xi, G.-P.; Zhang, M.; Chen, Y.-B.; Lei, B.; Dong, X.-S.; Yang, Y.-M. Induction of apoptosis by D-limonene is mediated by inactivation of Akt in LS174T human colon cancer cells. Oncol. Rep. 2013, 29, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Messeha, S.S.; Zarmouh, N.O.; Asiri, A.; Soliman, K.F. Rosmarinic acid-induced apoptosis and cell cycle arrest in triple-negative breast cancer cells. Eur. J. Pharmacol. 2020, 885, 173419. [Google Scholar] [CrossRef]
- Fong, Y.; Tang, C.-C.; Hu, H.-T.; Fang, H.-Y.; Chen, B.-H.; Wu, C.-Y.; Yuan, S.-S.; Wang, H.-M.D.; Chen, Y.-C.; Teng, Y.-N. Inhibitory effect of trans-ferulic acid on proliferation and migration of human lung cancer cells accompanied with increased endogenous reactive oxygen species and β-catenin instability. Chin. Med. 2016, 11, 45. [Google Scholar] [CrossRef] [PubMed]
- Basli, A.; Belkacem, N.; Amrani, I. Health Benefits of Phenolic Compounds against Cancers. In Phenolic Compounds—Biological Activity; IntechOpen: London, UK, 2017; pp. 193–210. [Google Scholar]
- Al Obaydi, M.F.; Hamed, W.M.; Al Kury, L.T.; Talib, W.H. Terfezia boudieri: A desert truffle with anticancer and immunomodulatory activities. Front. Nutr. 2020, 7. [Google Scholar] [CrossRef]
- Talib, W.H. Consumption of garlic and lemon aqueous extracts combination reduces tumor burden by angiogenesis inhibition, apoptosis induction, and immune system modulation. Nutrition 2017, 43, 89–97. [Google Scholar] [CrossRef]
- Giannoulia-Karantana, A.; Vlachou, A.; Polychronopoulou, S.; Papassotiriou, I.; Chrousos, G.P. Melatonin and immunomodulation: Connections and potential clinical applications. Neuroimmunomodulation 2006, 13, 133–144. [Google Scholar] [CrossRef]
- Yamamoto, M.; Kamigaki, T.; Yamashita, K.; Hori, Y.; Hasegawa, H.; Kuroda, D.; Moriyama, H.; Nagata, M.; Ku, Y.; Kuroda, Y. Enhancement of anti-tumor immunity by high levels of Th1 and Th17 with a combination of dendritic cell fusion hybrids and regulatory T cell depletion in pancreatic cancer. Oncol. Rep. 2009, 22, 337–343. [Google Scholar]
- Eggermont, L.J.; Paulis, L.E.; Tel, J.; Figdor, C.G. Towards efficient cancer immunotherapy: Advances in developing artificial antigen-presenting cells. Trends Biotechnol. 2014, 32, 456–465. [Google Scholar] [CrossRef]
- Del Toro-Arreola, S.; Flores-Torales, E.; Torres-Lozano, C.; Del Toro-Arreola, A.; Tostado-Pelayo, K.; Ramirez-Dueñas, M.G.; Daneri-Navarro, A. Effect of D-limonene on immune response in BALB/c mice with lymphoma. Int. Immunopharmacol. 2005, 5, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Lappas, C.M.; Lappas, N.T. D-Limonene modulates T lymphocyte activity and viability. Cell. Immunol. 2012, 279, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, J.; Chaudhary, N.; Seo, H.-J.; Kim, M.-Y.; Shin, T.-S.; Kim, J.-D. Immunomodulatory effect of tea saponin in immune T-cells and T-lymphoma cells via regulation of Th1, Th2 immune response and MAPK/ERK2 signaling pathway. Immunopharmacol. Immunotoxicol. 2014, 36, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.; Schwaiger, S.; Waltenberger, B.; Fuchs, D.; Pezzei, C.; Schennach, H.; Stuppner, H.; Gostner, J. Immunomodulatory Effects of Diterpene Quinone Derivatives from the Roots of Horminum pyrenaicum in human PBMC. Oxidative Med. Cell. Longev. 2018, 2018, 2980295. [Google Scholar] [CrossRef] [PubMed]
- Heo, S.-K.; Noh, E.-K.; Yoon, D.-J.; Jo, J.-C.; Koh, S.; Baek, J.H.; Park, J.-H.; Min, Y.J.; Kim, H. Rosmarinic acid potentiates ATRA-induced macrophage differentiation in acute promyelocytic leukemia NB4 cells. Eur. J. Pharmacol. 2015, 747, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Kil, D.; Kong, C.; Kim, B. Comparison of oven-drying methods for determination of moisture content in feed ingredients. Asian Australas. J. Anim. Sci. 2014, 27, 1615. [Google Scholar] [CrossRef]
- Talib, W.H.; Mahasneh, A.M. Antiproliferative activity of plant extracts used against cancer in traditional medicine. Sci. Pharm. 2010, 78, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Sabbah, D.A.; Al-Tarawneh, F.; Talib, W.H.; Sweidan, K.; Bardaweel, S.K.; Al-Shalabi, E.; Zhong, H.A.; Abu Sheikha, G.; Abu Khalaf, R.; Mubarak, M.S. Benzoin schiff bases: Design, synthesis, and biological evaluation as potential antitumor agents. Med. Chem. 2018, 14, 695–708. [Google Scholar] [CrossRef]
- Chen, J.-R.; Yang, Z.-Q.; Hu, T.-J.; Yan, Z.-T.; Niu, T.-X.; Wang, L.; Cui, D.-A.; Wang, M. Immunomodulatory activity in vitro and in vivo of polysaccharide from Potentilla anserina. Fitoterapia 2010, 81, 1117–1124. [Google Scholar] [CrossRef]
- Boothapandi, M.; Ramanibai, R. Immunomodulatory activity of Indigofera tinctoria leaf extract on in vitro macrophage responses and lymphocyte proliferation. Int. J. Pharm. Pharm. Sci. 2016, 8, 58–63. [Google Scholar]
- Moretão, M.P.; Buchi, D.F.; Gorin, P.A.; Iacomini, M.; Oliveira, M.B.M. Effect of an acidic heteropolysaccharide (ARAGAL) from the gum of Anadenanthera colubrina (Angico branco) on peritoneal macrophage functions. Immunol. Lett. 2003, 89, 175–185. [Google Scholar] [CrossRef]
- Liu, Z.; Xing, J.; Huang, Y.; Bo, R.; Zheng, S.; Luo, L.; Niu, Y.; Zhang, Y.; Hu, Y.; Liu, J. Activation effect of Ganoderma lucidum polysaccharides liposomes on murine peritoneal macrophages. Int. J. Biol. Macromol. 2016, 82, 973–978. [Google Scholar] [CrossRef] [PubMed]
- Rainard, P. A colorimetric microassay for opsonins by reduction of NBT in phagocytosing bovine polymorphs. J. Immunol. Methods 1986, 90, 197–201. [Google Scholar] [CrossRef]
- Falah, R.R.; Talib, W.H.; Shbailat, S.J. Combination of metformin and curcumin targets breast cancer in mice by angiogenesis inhibition, immune system modulation and induction of p53 independent apoptosis. Adv. Med. Oncol. 2017, 9, 235–252. [Google Scholar] [CrossRef] [PubMed]
- Akyüz, M. Nutritive value, flavonoid content and radical scavenging activity of the truffle (Terfezia boudieri Chatin). J. Soil Sci. Plant Nutr. 2013, 13, 143–151. [Google Scholar] [CrossRef]
- Akhila, J.S.; Shyamjith, D.; Alwar, M. Acute toxicity studies and determination of median lethal dose. Curr. Sci. 2007, 93, 917–920. [Google Scholar]
- Agrawal, N.; Bettegowda, C.; Cheong, I.; Geschwind, J.-F.; Drake, C.G.; Hipkiss, E.L.; Tatsumi, M.; Dang, L.H.; Diaz, L.A.; Pomper, M. Bacteriolytic therapy can generate a potent immune response against experimental tumors. Proc. Natl. Acad. Sci. USA 2004, 101, 15172–15177. [Google Scholar] [CrossRef] [PubMed]
Source | Extraction Method | Extraction Solvent | % of Dried Extracts Yields |
---|---|---|---|
H. orientalis | Maceration | Hydroalcoholic (ethanol 70%) | 24.3% |
Fractionation | Chloroform | 20.7% | |
Water | 46% | ||
Aqueous/Methanol | 6.6% | ||
n-Hexane | 12% |
H. orientalis L. Extracts | MCF-7 Cell Line | T47D Cell Line | EMT6/P Cell Line | VERO Cell Line |
---|---|---|---|---|
Hydroalcoholic extract IC₅₀ (mg/mL) | 0.95 ± 0.07 | 6.12 ± 0.1 | 3.65 ± 1.2 | >50 |
Chloroform fraction IC₅₀ (mg/mL) | 0.70 ± 0.2 | 3.53 ± 0.5 | 1.53 ± 0.2 | >50 |
Aqueous fraction IC₅₀ (mg/mL) | 6.59 ± 0.01 | 11.38 ± 1.2 | 11.78 ± 0.6 | >50 |
n-hexane fraction IC₅₀ (mg/mL) | 2.23 ± 1.5 | 0.59 ± 0.02 | 3.65 ± 1.2 | >50 |
Aq. Methanol fraction IC₅₀ (mg/mL) | 0.24 ± 0.04 | 0.11 ± 0.08 | 3.06 ± 0.5 | >50 |
NO | Compounds | Formula | RT | Relative % (Hydroalcoholic Extract) | Relative % (Chloroform Fraction) | Relative % (Aq. Methanol Fraction) | Relative % (n-hexane Fraction) | Relative % (Aqueous Fraction) |
---|---|---|---|---|---|---|---|---|
1 | Caffeic Acid | C9H8O4 | 3.31 | 0.35% | 0.60% | 0.44% | 0.00% | 1.47% |
2 | Vanillin | C8H8O3 | 3.75 | 3.16% | 1.87% | 2.34% | 3.18% | 0.44% |
3 | p-Coumaric acid | C9H8O3 | 4.44 | 22.74% | 18.85% | 21.08% | 30.31% | 0.44% |
4 | 4’-O-GlcA-7-O-GlcA Apigenin (NMR) | C27H26O17 | 4.66 | 0.00% | 0.01% | 0.01% | 0.00% | 0.16% |
5 | Ferulic acid (trans) | C10H10O4 | 5.21 | 33.21% | 33.37% | 30.13% | 47.17% | 0.87% |
6 | 2,4-Dihydroxyacetophenone | C8H8O3 | 5.21 | 1.78% | 2.16% | 2.36% | 3.00% | 0.04% |
7 | 3-Hydroxy-4-methoxycinnamic acid (isoferulic acid) | C10H10O4 | 5.66 | 0.06% | 0.04% | 0.06% | 0.00% | 0.28% |
8 | Luteolin 7-O-glucoside (Cynaroside) | C21H20O11 | 5.92 | 3.83% | 2.58% | 3.37% | 5.98% | 0.01% |
9 | Apigenin-7-O-glucoside (Apigetrin) | C21H20O10 | 6.81 | 4.46% | 2.42% | 3.63% | 5.42% | 0.06% |
10 | Rosmarinic acid | C18H16O8 | 7 | 17.99% | 17.30% | 23.58% | 0.15% | 78.67% |
11 | (4 or 7) Hydroxy-Coumarin Plus Hydrate | C9H6O3 | 7 | 2.41% | 2.76% | 3.99% | 0.00% | 9.84% |
12 | 3,7,4’-Trihydroxyflavone (5-Deoxykampferol) | C15H10O5 | 8 | 0.13% | 0.03% | 0.09% | 0.00% | 0.51% |
13 | 3,6,2’,3’-Tetrahydroxyflavone | C15H10O6 | 8.61 | 1.63% | 2.54% | 2.11% | 0.13% | 3.95% |
14 | Baicalein | C15H10O5 | 9.92 | 2.21% | 5.83% | 2.61% | 0.45% | 2.38% |
15 | Apigenin | C15H10O5 | 9.93 | 2.47% | 6.09% | 3.43% | 1.59% | 0.97% |
16 | Galangustin | C17H14O6 | 10.6 | 0.10% | 0.23% | 0.16% | 0.01% | 0.32% |
17 | 9Z, 11E-Linoleic acid | C18H32O2 | 29.77 | 1.49% | 0.00% | 0.00% | 2.60% | 0.00% |
18 | Linoelaidic acid | C18H32O2 | 30.07 | 0.00% | 3.33% | 0.00% | 0.00% | 0.00% |
19 | Stearic acid | C18H36O2 | 32.18 | 1.99% | 0.00% | 0.61% | 0.00% | 0.00% |
No | Compound | Formula | Molecular Weight (MW) | RT | % |
---|---|---|---|---|---|
1 | alpha-pinene | C10H16 | 136 | 9.92 | 3.5 |
2 | Ruine | C19H22N2O7 | 390 | 11.22 | 9.5 |
3 | Sabinene | C10H16 | 136 | 14.83 | 19.3 |
4 | Peganine | C11H12N2O | 188 | 17.45 | 25.4 |
5 | Limonene | C10H16 | 134 | 19.92 | 12.3 |
6 | Camphor | C10H16O | 152 | 32.5 | 6.7 |
7 | Linalool | C10H18O | 154 | 34.99 | 7.1 |
8 | Myrtenal | C10H14O | 150 | 37.72 | 6.9 |
9 | Saponin | C97H137NO17Si2 | 1645 | 40.02 | 2.95 |
10 | Quinone | C6H4O2 | 108 | 42.61 | 2.11 |
Groups (n = 4) | Dose (mg/kg) | No. of Mortality | Dose Difference (a) | Mean Mortality (b) | Probit (a × b) |
---|---|---|---|---|---|
1 | PBS + 5% tween 20 | 0 | 0 | 0 | 0 |
2 | 2500 | 0 | 0 | 0 | 0 |
3 | 3000 | 0 | 500 | 0 | 0 |
4 | 4000 | 2 | 1000 | 1 | 1000 |
5 | 5000 | 4 | 1000 | 3 | 3000 |
Treatment Groups (n = 10) | Initial Tumor Size (mm³) ± SEM | Final Tumor Size (mm³) ± SEM | % Change in Tumor Size | % of Mice with no Detectable Tumor | Average Tumor Weight (g) |
---|---|---|---|---|---|
Control | 432.62 ± 11.1 | 895.61 ± 35.4 | 107.01 | 20% | 0.71 |
H. orientalis hydroalcoholic extract | 475.25 ± 18.4 | 252.13 ± 21.3 | -46.94 | 50% | 0.31 |
No. of Mice | Assessment Study | No. of Mice | Assessment Study |
---|---|---|---|
8 | Pilot study | 20 | Anti-tumor assay |
20 | Acute toxicity assay | 6 | Immune assay |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kury, L.T.A.; Taha, Z.; Talib, W.H. Immunomodulatory and Anticancer Activities of Hyacinthus orientalis L.: An In Vitro and In Vivo Study. Plants 2021, 10, 617. https://doi.org/10.3390/plants10040617
Kury LTA, Taha Z, Talib WH. Immunomodulatory and Anticancer Activities of Hyacinthus orientalis L.: An In Vitro and In Vivo Study. Plants. 2021; 10(4):617. https://doi.org/10.3390/plants10040617
Chicago/Turabian StyleKury, Lina T. Al, Zainab Taha, and Wamidh H. Talib. 2021. "Immunomodulatory and Anticancer Activities of Hyacinthus orientalis L.: An In Vitro and In Vivo Study" Plants 10, no. 4: 617. https://doi.org/10.3390/plants10040617
APA StyleKury, L. T. A., Taha, Z., & Talib, W. H. (2021). Immunomodulatory and Anticancer Activities of Hyacinthus orientalis L.: An In Vitro and In Vivo Study. Plants, 10(4), 617. https://doi.org/10.3390/plants10040617