Expression Level of Transcription Factor ART1 Is Responsible for Differential Aluminum Tolerance in Indica Rice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Screening of Al Tolerance in Indica Cultivars
2.2. Al Tolerance Evaluation in Hydroponic Solution
2.3. Growth Test in Acid and Neutral Soils
2.4. Determination of Al Accumulation in the Roots
2.5. RNA Sequencing Analysis
2.6. Quantitative Real-Time PCR (qRT-PCR) Analysis
2.7. Sequence Comparison of the Promoter and Coding Sequence Regions of ART1
2.8. Statistical Analysis
3. Results
3.1. Screening of Al Tolerance in Indica Cultivars
3.2. Al Tolerance Test of Two Indica Cultivars
3.3. Al Accumulation in the Root Tips
3.4. Differentially Expressed Genes (DEGs) between Kasalath and Jinguoyin
3.5. Verification of RNA-seq Results by Quantitative Real-Time PCR
3.6. GO and KEGG Pathway Enrichment Analysis
3.7. Expression Profile of ART1-Regulated Genes in Kasalath and Jinguoyin
3.8. Sequence Comparison of Promoter and Coding Sequence Region of ART1
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Von Uexkull, H.R.; Mutert, E.W. Global extent, development and economic impact of acid soils. Plant Soil 1995, 171, 1–15. [Google Scholar] [CrossRef]
- Ma, J.F. Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants. Int. Rev. Cytol. 2007, 264, 225–252. [Google Scholar] [CrossRef]
- Kochian, L.V.; Pineros, M.A.; Liu, J.; Magalhaes, J.V. Plant Adaptation to Acid Soils: The Molecular Basis for Crop Aluminum Resistance. Annu. Rev. Plant Biol. 2015, 66, 571–598. [Google Scholar] [CrossRef]
- Ma, J.F.; Shen, R.; Zhao, Z.; Wissuwa, M.; Takeuchi, Y.; Ebitani, T.; Yano, M. Response of rice to Al stress and identification of quantitative trait Loci for Al tolerance. Plant Cell Physiol. 2002, 43, 652–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Famoso, A.N.; Zhao, K.; Clark, R.T.; Tung, C.W.; Wright, M.H.; Bustamante, C.; Kochian, L.V.; McCouch, S.R. Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping. PLoS Genet. 2011, 7, e1002221. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.F.; Chen, Z.C.; Shen, R.F. Molecular mechanisms of Al tolerance in gramineous plants. Plant Soil 2014, 381, 1–12. [Google Scholar] [CrossRef]
- Yamaji, N.; Huang, C.F.; Nagao, S.; Yano, M.; Sato, Y.; Nagamura, Y.; Ma, J.F. A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice. Plant Cell 2009, 21, 3339–3349. [Google Scholar] [CrossRef] [Green Version]
- Tsutsui, T.; Yamaji, N.; Ma, J.F. Identification of a cis-acting element of ART1, a C2H2-type zinc-finger transcription factor for aluminum tolerance in rice. Plant Physiol. 2011, 156, 925–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.F.; Yamaji, N.; Mitani, N.; Yano, M.; Nagamura, Y.; Ma, J.F. A bacterial-type ABC transporter is involved in aluminum tolerance in rice. Plant Cell 2009, 21, 655–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokosho, K.; Yamaji, N.; Ma, J.F. An Al-inducible MATE gene is involved in external detoxification of Al in rice. Plant J. 2011, 68, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Yamaji, N.; Kasai, T.; Ma, J.F. Plasma membrane-localized transporter for aluminum in rice. Proc. Natl. Acad. Sci. USA 2010, 107, 18381–18385. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.F.; Yamaji, N.; Chen, Z.; Ma, J.F. A tonoplast-localized half-size ABC transporter is required for internal detoxification of aluminum in rice. Plant J. 2012, 69, 857–867. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.C.; Yamaji, N.; Motoyama, R.; Nagamura, Y.; Ma, J.F. Up-Regulation of a Magnesium Transporter Gene OsMGT1 Is Required for Conferring Aluminum Tolerance in Rice. Plant Physiol. 2012, 159, 1624–1633. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.X.; Yamaji, N.; Ma, J.F. A plasma membrane-localized small peptide is involved in rice aluminum tolerance. Plant J. 2013, 76, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Che, J.; Tsutsui, T.; Yokosho, K.; Yamaji, N.; Ma, J.F. Functional characterization of an aluminum (Al)-inducible transcription factor, ART2, revealed a different pathway for Al tolerance in rice. New Phytol. 2018, 220, 209–218. [Google Scholar] [CrossRef]
- Xia, J.; Yamaji, N.; Che, J.; Shen, R.F.; Ma, J.F. Differential expression of Nrat1 is responsible for Al-tolerance QTL on chromosome 2 in rice. J. Exp. Bot. 2014, 65, 4297–4304. [Google Scholar] [CrossRef] [Green Version]
- Li, J.Y.; Liu, J.; Dong, D.; Jia, X.; McCouch, S.R.; Kochian, L.V. Natural variation underlies alterations in Nramp aluminum transporter (NRAT1) expression and function that play a key role in rice aluminum tolerance. Proc. Natl. Acad. Sci. USA 2014, 111, 6503–6508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokosho, K.; Yamaji, N.; Fujii-Kashino, M.; Ma, J.F. Functional Analysis of a MATE Gene OsFRDL2 Revealed its Involvement in Al-Induced Secretion of Citrate, but a Lower Contribution to Al Tolerance in Rice. Plant Cell Physiol. 2016, 57, 976–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [Green Version]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.C.; Mendell, J.T.; Salzberg, S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.K.; Feng, Z.X.; Wang, X.; Wang, X.W. DEGseq: An R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 2010, 26, 136–138. [Google Scholar] [CrossRef]
- Young, M.D.; Wakefield, M.J.; Smyth, G.K.; Oshlack, A. Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biol. 2010, 12. [Google Scholar] [CrossRef] [Green Version]
- Mao, X.; Cai, T.; Olyarchuk, J.G.; Wei, L. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 2005, 21, 3787–3793. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows Wheeler Transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.F.; Shen, R.F.; Nagao, S.; Tanimoto, E. Aluminum targets elongating cells by reducing cell wall extensibility in wheat roots. Plant Cell Physiol. 2004, 45, 583–589. [Google Scholar] [CrossRef] [Green Version]
- Arbelaez, J.D.; Maron, L.G.; Jobe, T.O.; Piñeros, M.A.; Famoso, A.N.; Rebelo, A.R.; Singh, N.; Ma, Q.; Fei, Z.; Kochian, L.V. ALUMINUM RESISTANCE TRANSCRIPTION FACTOR 1 (ART1) contributes to natural variation in aluminum resistance in diverse genetic backgrounds of rice (O. sativa). Plant Direct 2017, 1. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, W.; Yumnam, J.S.; Sen, D.; Rai, M. Root transcriptome reveals efficient cell signaling and energy conservation key to aluminum toxicity tolerance in acidic soil adapted rice genotype. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.C.; Yokosho, K.; Kashino, M.; Zhao, F.J.; Yamaji, N.; Ma, J.F. Adaptation to acidic soil is achieved by increased numbers of cis-acting elements regulating ALMT1 expression in Holcus lanatus. Plant J. 2013, 76, 10–23. [Google Scholar] [CrossRef] [PubMed]
RAPDB ID | Kasalath | Jinguoyin | Description | ||||
---|---|---|---|---|---|---|---|
Fold Change | Q Value | Significant | Fold Change | Q Value | Significant | ||
(+Al/−Al) | (+Al/−Al) | ||||||
Os01g0178300 | 22.56 | 0.00 | yes | 40.18 | 0.00 | yes | OsCDT3 |
Os01g0652100 | 1.84 | 0.00 | no | 1.57 | 0.00 | no | Protein of unknown function DUF231 domain-containing protein |
Os01g0716500 | 4.01 | 0.00 | yes | 6.21 | 0.00 | yes | Methyltransferase type 12 domain-containing protein |
Os01g0731600 | 37.58 | 0.00 | yes | 10.97 | 0.00 | yes | Similar to pathogen-related protein |
Os01g0766300 | 7.27 | 0.02 | yes | 13.98 | 0.00 | yes | Conserved hypothetical protein |
Os01g0860500 | 7.15 | 0.00 | yes | 1.51 | 0.00 | no | Chitinase |
Os01g0869200 | 2.42 | 0.00 | yes | 5.64 | 0.00 | yes | OsMGT1 |
Os01g0919100 | 712.05 | 0.00 | yes | 369.73 | 0.00 | yes | OsFRDL4 |
Os01g0919200 | 38.08 | 0.00 | yes | 25.89 | 0.00 | yes | Bacterial transferase hexapeptide repeat domain-containing protein |
Os02g0131800 | 3.91 | 0.00 | yes | 5.67 | 0.00 | yes | OsNramp4/OsNrat1 |
Os02g0186800 | 21.19 | 0.00 | yes | 18.89 | 0.00 | yes | Cytochrome P450 family protein |
Os02g0755900 | 6.29 | 0.00 | yes | 11.63 | 0.00 | yes | UDP-glucuronosyl/UDP-glucosyltransferase domain-containing protein |
Os02g0770800 | 32.18 | 0.00 | yes | 27.40 | 0.00 | yes | NADH/NADPH-dependent nitrate reductase |
Os03g0126900 | 3.42 | 0.00 | yes | 6.21 | 0.00 | yes | Conserved hypothetical protein |
Os03g0304100 | inf | 0.05 | no | 23.84 | 0.07 | no | Conserved hypothetical protein |
Os03g0755100 | 3.61 | 0.00 | yes | 4.89 | 0.00 | yes | OsALS1 |
Os03g0760800 | 5.48 | 0.00 | yes | 15.68 | 0.00 | yes | A member of the GAST (gibberellin (GA)-Stimulated Transcript) family |
Os04g0494900 | 4.94 | 0.00 | yes | 13.39 | 0.00 | yes | Similar to Unidentified precursor |
Os04g0583500 | 1.66 | 0.00 | no | 1.58 | 0.00 | no | OsEXPA10 |
Os05g0119000 | 14.14 | 0.11 | no | 0.40 | 0.64 | no | OsSTAR2 |
Os06g0695800 | 10.46 | 0.00 | yes | 8.93 | 0.00 | yes | OsSTAR1 |
Os07g0493100 | 5.28 | 0.00 | yes | 12.71 | 0.00 | yes | Hypothetical protein |
Os07g0587300 | 15.14 | 0.00 | yes | 21.31 | 0.00 | yes | Hypothetical protein |
Os09g0426800 | 0.82 | 0.36 | no | 2.11 | 0.00 | yes | Homologue of WAX2/GL1, Synthesis of leaf cuticular wax |
Os09g0479900 | 1.48 | 0.07 | no | 2.71 | 0.00 | yes | Similar to Subtilisin-like protease |
Os10g0206800 | 4.37 | 0.00 | yes | 6.00 | 0.00 | yes | OsFRDL2 |
Os10g0524600 | 1.59 | 0.00 | no | 4.40 | 0.00 | yes | Peptidase S8, subtilisin-related domain-containing protein |
Os10g0578800 | 4.50 | 0.00 | yes | 8.03 | 0.00 | yes | Similar to LrgB-like family protein |
Os11g0490100 | 2.88 | 0.00 | yes | 2.41 | 0.00 | yes | Protein of unknown function DUF579, plant family protein |
Os12g0227400 | 9.44 | 0.00 | yes | 22.18 | 0.00 | yes | Allyl alcohol dehydrogenase |
Os04g0419100 | 6.34 | 0.00 | yes | 6.01 | 0.00 | yes | Conserved hypothetical protein |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.M.; Che, J.; Ma, J.F.; Shen, R.F. Expression Level of Transcription Factor ART1 Is Responsible for Differential Aluminum Tolerance in Indica Rice. Plants 2021, 10, 634. https://doi.org/10.3390/plants10040634
Sun LM, Che J, Ma JF, Shen RF. Expression Level of Transcription Factor ART1 Is Responsible for Differential Aluminum Tolerance in Indica Rice. Plants. 2021; 10(4):634. https://doi.org/10.3390/plants10040634
Chicago/Turabian StyleSun, Li Ming, Jing Che, Jian Feng Ma, and Ren Fang Shen. 2021. "Expression Level of Transcription Factor ART1 Is Responsible for Differential Aluminum Tolerance in Indica Rice" Plants 10, no. 4: 634. https://doi.org/10.3390/plants10040634
APA StyleSun, L. M., Che, J., Ma, J. F., & Shen, R. F. (2021). Expression Level of Transcription Factor ART1 Is Responsible for Differential Aluminum Tolerance in Indica Rice. Plants, 10(4), 634. https://doi.org/10.3390/plants10040634