Anxiolytic and Antidepressant-Like Effects of Conyza canadensis Aqueous Extract in the Scopolamine Rat Model
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Analysis of the Investigated Extract
2.2. In vitro Antioxidant Potential Evaluation
2.3. In vivo Anxiety Assessment in the Elevated Plus-Maze Test
2.4. In vivo Depressive Response Evaluation in the Forced Swimming Test
3. Materials and Methods
3.1. Plant Material and Extraction Procedure
3.2. Chemical Assessment of the Extract
3.3. Antioxidant Activity Evaluation
3.4. Animals
3.5. Elevated Plus-Maze (EPM)
3.6. The Forced Swimming Test (FST)
3.7. Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hritcu, L.; Cioanca, O. Prevalence of Use of Herbal Medicines and Complementary and Alternative Medicine in Europe. In Herbal Medicine in Depression: Traditional Medicine to Innovative Drug Delivery; Grosso, C., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 135–181. ISBN 978-3-319-14021-6. [Google Scholar]
- Karimi, A.; Majlesi, M.; Rafieian-Kopaei, M. Herbal versus synthetic drugs; beliefs and facts. J. Nephropharmacology 2015, 4, 27–30. [Google Scholar]
- Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The Traditional Medicine and Modern Medicine from Natural Products. Molecules 2016, 21, 559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlsson, L.M.; Milberg, P. Comparing after-ripening response and germination requirements of Conyza canadensis and C. bonariensis (Asteraceae) through logistic functions. Weed Res. 2007, 47, 433–441. [Google Scholar] [CrossRef] [Green Version]
- Csupor-Löffler, B.; Hajdú, Z.; Zupkó, I.; Molnár, J.; Forgo, P.; Vasas, A.; Kele, Z.; Hohmann, J. Antiproliferative Constituents of the Roots of Conyza canadensis. Planta Med. 2011, 77, 1183–1188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruenwald, J.; Brendler, T.; Jaenicke, C. PDR for Herbal Medicines; Thomson, Reuters: Montvale, NJ, USA, 2007; ISBN 1563636786. [Google Scholar]
- Weiner, M.A. Earth Medicine-Earth Food: Plant Remedies, Drugs, and Natural Foods of the North American Indians; Macmillan: New York, NY, USA, 1980; ISBN 002625610X. [Google Scholar]
- Chiej, R. Encyclopaedia of Medicinal Plants; Macdonald: London, UK, 1984; ISBN 10: 0356105423. [Google Scholar]
- Duke, J.A.; Ayensu, E.S. Medicinal Plants of China; Reference Publications: Algonac, MI, USA, 1985; Volume 2, ISBN 0917256271. [Google Scholar]
- Lenfeld, J.; Motl, O.; Trka, A. Anti-inflammatory activity of extracts from Conyza canadensis. Pharmazie 1986, 41, 268–269. [Google Scholar] [PubMed]
- Content of Phenol Compounds and Silicon in Plants of Conyza canadensis (L.) Cronquist. Available online: https://agris.fao.org/agris-search/search.do?recordID=RU2008000152 (accessed on 19 March 2021).
- Thabit, R.; Cheng, X.; Tang, X.; Sun, J.; Shi, Y.; Le, G. Antioxidant and antibacterial activities of extracts from Conyza bonariensis growing in Yeme. Pak. J. Pharm. Sci. 2015, 28, 129–134. [Google Scholar] [PubMed]
- Conyza canadensis L. Cronq. Polyphenol Extraction and Its Antioxidation Activities. Available online: https://en.cnki.com.cn/Article_en/CJFDTotal-GXNY201211031.htm (accessed on 19 March 2021).
- Liu, H.; Liu, B.; Wang, G.; Dai, Y.; Ye, W.; Li, Y. Studies on the chemical constituents from Conyza canadensis. Zhong Yao Cai 2011, 34, 718–720. [Google Scholar]
- Pietta, P.-G. Flavonoids as Antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef]
- Iancu, C.E.; Cioancă, O.; Hăncianu, M.; Mircea, C. Phytochemical profile of two cultivated Pelargonium (Geraniaceae) species. Farmacia 2016, 64, 840–843. [Google Scholar]
- Gradinariu, V.; Cioanca, O.; Gille, E.; Aprotosoaie, A.C.; Hrițcu, L.; Hăncianu, M. The chemical profile of basil biovarieties and its implication on the biological activity. Farmacia 2013, 61, 532–639. [Google Scholar]
- Ioniță, R.; Postu, P.A.P.; Cioancă, O.; Mircea, C.; Hăncianu, M.; Hrițcu, L.; Ionita, R.; Postu, P.A.P.; Cioanca, O.; Mircea, C.; et al. Anxiolytic and antidepressant effects of Matricaria chamomilla hydroalcoholic extract in a rat model of scopolamine. Farmacia 2019, 67, 68–72. [Google Scholar] [CrossRef]
- Newcomer, M.E.; Brash, A.R. The structural basis for specificity in lipoxygenase catalysis. Protein Sci. 2015, 24, 298–309. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Su, Y.; Guo, H.; Yang, F.; Mao, H.; Gao, X.; Zhu, Z.; Tu, G. Phenylpropanoyl Esters from Horseweed (Conyza canadensis ) and Their Inhibitory Effects on Catecholamine Secretion. J. Nat. Prod. 2010, 73, 270–274. [Google Scholar] [CrossRef]
- Samad, N.; Saleem, A.; Yasmin, F.; Shehzad, M.A. Quercetin protects against stress-induced anxiety- and depression- like behavior and improves memory in male mice. Physiol. Res. 2018, 67, 795–808. [Google Scholar] [CrossRef] [PubMed]
- Rai, A.; Gill, M.; Kinra, M.; Shetty, R.; Krishnadas, N.; Rao, C.M.; Sumalatha, S.; Kumar, N. Catechin ameliorates depressive symptoms in sprague dawley rats subjected to chronic unpredictable mild stress by decreasing oxidative stress. Biomed. Rep. 2019, 11, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Stringer, T.P.; Guerrieri, D.; Vivar, C.; Van Praag, H. Plant-derived flavanol (-)epicatechin mitigates anxiety in association with elevated hippocampal monoamine and BDNF levels, but does not influence pattern separation in mice. Transl. Psychiatry 2015, 5. [Google Scholar] [CrossRef]
- Kumar, D.; Bhat, Z.A. Apigenin 7-glucoside from Stachys tibetica Vatke and its anxiolytic effect in rats. Phytomedicine 2014, 21, 1010–1014. [Google Scholar] [CrossRef]
- Crupi, R.; Paterniti, I.; Ahmad, A.; Campolo, M.; Esposito, E.; Cuzzocrea, S. Effects of Palmitoylethanolamide and Luteolin in an Animal Model of Anxiety/Depression. CNS Neurol. Disord. Drug Targets 2013, 12, 989–1001. [Google Scholar] [CrossRef]
- Samad, N.; Jabeen, S.; Imran, I.; Zulfiqar, I.; Bilal, K. Protective effect of gallic acid against arsenic-induced anxiety−/depression- like behaviors and memory impairment in male rats. Metab. Brain Dis. 2019, 34, 1091–1102. [Google Scholar] [CrossRef]
- Miyazaki, S.; Fujita, Y.; Oikawa, H.; Takekoshi, H.; Soya, H.; Ogata, M.; Fujikawa, T. Combination of syringaresinol–di–O–β-d-glucoside and chlorogenic acid shows behavioral pharmacological anxiolytic activity and activation of hippocampal BDNF–TrkB signaling. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef] [PubMed]
- Mirza, F.J.; Amber, S.; Sumera; Hassan, D.; Ahmed, T.; Zahid, S. Rosmarinic acid and Ursolic acid Alleviate Deficits in Cognition, Synaptic Regulation and Adult Hippocampal Neurogenesis in an Aβ1-42-induced Mouse Model of Alzheimer’s Disease. Phytomedicine 2021, 83, 153490. [Google Scholar] [CrossRef] [PubMed]
- Girish, C.; Raj, V.; Arya, J.; Balakrishnan, S. Involvement of the GABAergic system in the anxiolytic-like effect of the flavonoid ellagic acid in mice. Eur. J. Pharmacol. 2013, 710, 49–58. [Google Scholar] [CrossRef]
- Lee, B.; Sur, B.; Kwon, S.; Yeom, M.; Shim, I.; Lee, H.; Hahm, D.H. Chronic administration of catechin decreases depression and anxiety-like behaviors in a rat model using chronic corticosterone injections. Biomol. Ther. 2013, 21, 313–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Bu, H.; Jiang, Y.; Sun, G.; Jiang, R.; Huang, X.; Duan, H.; Zhiheng Huan, G.; Wu, Q. The antidepressant effects of apigenin are associated with the promotion of autophagy via the mTOR/AMPK/ULK1 pathway. Mol. Med. Rep. 2019, 20, 2867–2874. [Google Scholar] [CrossRef] [PubMed]
- Can, Ö.D.; Turan, N.; Demir Özkay, Ü.; Öztürk, Y. Antidepressant-like effect of gallic acid in mice: Dual involvement of serotonergic and catecholaminergic systems. Life Sci. 2017, 190, 110–117. [Google Scholar] [CrossRef]
- Jin, X.; Liu, P.; Yang, F.; Zhang, Y.H.; Miao, D. Rosmarinic acid ameliorates depressive-like behaviors in a rat model of CUS and up-regulates BDNF levels in the hippocampus and hippocampal-derived astrocytes. Neurochem. Res. 2013, 38, 1828–1837. [Google Scholar] [CrossRef]
- Anjaneyulu, M.; Chopra, K.; Kaur, I. Antidepressant Activity of Quercetin, A Bioflavonoid, in Streptozotocin-Induced Diabetic Mice. J. Med. Food 2003, 6, 391–395. [Google Scholar] [CrossRef]
- De La Peña, J.B.I.; Kim, C.A.; Lee, H.L.; Yoon, S.Y.; Kim, H.J.; Hong, E.Y.; Kim, G.H.; Ryu, J.H.; Lee, Y.S.; Kim, K.M.; et al. Luteolin mediates the antidepressant-like effects of Cirsium japonicum in mice, possibly through modulation of the GABAA receptor. Arch. Pharm. Res. 2014, 37, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Bedel, H.A.; Kencebay Manas, C.; Özbey, G.; Usta, C. The antidepressant-like activity of ellagic acid and its effect on hippocampal brain derived neurotrophic factor levels in mouse depression models. Nat. Prod. Res. 2018, 32, 2932–2935. [Google Scholar] [CrossRef]
- Rincón-Cortés, M.; Gagnon, K.G.; Dollish, H.K.; Grace, A.A. Diazepam reverses increased anxiety-like behavior, social behavior deficit, and dopamine dysregulation following withdrawal from acute amphetamine. Neuropsychopharmacology 2018, 43, 2418–2425. [Google Scholar] [CrossRef] [Green Version]
- Ostadhadi, S.; Norouzi-Javidan, A.; Chamanara, M.; Akbarian, R.; Imran-Khan, M.; Ghasemi, M.; Dehpour, A.-R. Involvement of NMDA receptors in the antidepressant-like effect of tramadol in the mouse forced swimming test. Brain Res. Bull. 2017, 134, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Ionita, R.; Postu, P.A.; Beppe, G.J.; Mihasan, M.; Petre, B.A.; Hancianu, M.; Cioanca, O.; Hritcu, L. Cognitive-enhancing and antioxidant activities of the aqueous extract from Markhamia tomentosa (Benth.) K. Schum. stem bark in a rat model of scopolamine. Behav. Brain Funct. 2017, 13, 5. [Google Scholar] [CrossRef] [Green Version]
- Ioniță, R.; Valu, V.M.; Postu, P.A.; Cioancă, O.; Hrițcu, L.; Mihasan, M. 6-hydroxy-l-nicotine effects on anxiety and depression in a rat model of chlorisondamine. Farmacia 2017, 65, 237–240. [Google Scholar]
No | Flavonoids (µg/mg Dry Extract) | Polyphenolic Acids (µg/mg Dry Extract) | ||
---|---|---|---|---|
1 | epicatechin | 59.343 * ± 0.011 | gallic acid | 13.785 ± 0.011 |
2 | catechin | 40.818 ± 0.021 | chlorogenic acid | 3.243 ± 0.003 |
3 | quercetin-3-arabinoside | 4.650 ± 0.012 | rosmarinic acid | 24.557 ± 0.012 |
4 | apigenin-7-O-glucoside | 6.345 ± 0.012 | ellagic acid | 3.435 ± 0.012 |
5 | luteolin-7-O-glucoside | 3.440 ± 0.005 | ||
6 | luteolin | 26.308 ± 0.012 | ||
7 | apigenin | 6.170 ± 0.021 | ||
8 | quercetin | 6.468 ± 0.012 | ||
Total identified | 153.542 ± 0.022 | 45.020 ± 0.023 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Akhal, J.; Humulescu, I.; Ionita, R.; Postu, P.A.; Ungureanu, E.; Hancianu, M.; Bencheikh, R.; Robu, S.; Cioanca, O.; Hritcu, L. Anxiolytic and Antidepressant-Like Effects of Conyza canadensis Aqueous Extract in the Scopolamine Rat Model. Plants 2021, 10, 645. https://doi.org/10.3390/plants10040645
El-Akhal J, Humulescu I, Ionita R, Postu PA, Ungureanu E, Hancianu M, Bencheikh R, Robu S, Cioanca O, Hritcu L. Anxiolytic and Antidepressant-Like Effects of Conyza canadensis Aqueous Extract in the Scopolamine Rat Model. Plants. 2021; 10(4):645. https://doi.org/10.3390/plants10040645
Chicago/Turabian StyleEl-Akhal, Jamila, Ioana Humulescu, Radu Ionita, Paula Alexandra Postu, Eugen Ungureanu, Monica Hancianu, Rachid Bencheikh, Silvia Robu, Oana Cioanca, and Lucian Hritcu. 2021. "Anxiolytic and Antidepressant-Like Effects of Conyza canadensis Aqueous Extract in the Scopolamine Rat Model" Plants 10, no. 4: 645. https://doi.org/10.3390/plants10040645
APA StyleEl-Akhal, J., Humulescu, I., Ionita, R., Postu, P. A., Ungureanu, E., Hancianu, M., Bencheikh, R., Robu, S., Cioanca, O., & Hritcu, L. (2021). Anxiolytic and Antidepressant-Like Effects of Conyza canadensis Aqueous Extract in the Scopolamine Rat Model. Plants, 10(4), 645. https://doi.org/10.3390/plants10040645